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Abstract

Stream learning has been largely studied for extracting knowledge structures from
continuous and rapid data records. However, efforts to understand whether knowl-
edge representation and reasoning are useful for addressing concept drift1, one of
the core challenges from the stream learning community, particularly those due
to dramatic changes in knowledge, have been limited and scattered. In this work,
we propose to study the problem in the context of the semantic representation of
data streams in the Semantic Web, i.e., ontology streams. Such streams are or-
dered sequences of data annotated with an ontological schema. A fundamental
challenge is to understand what knowledge should be encoded and how it can be
integrated with stream learning methods. To address this, we show that at least
three levels of knowledge encoded in ontology streams are needed to deal with
concept drifts: (i) existence of novel knowledge gained from stream dynamics,
(ii) significance of knowledge change and evolution, and (iii) (in)consistency of
knowledge evolution. We propose an approach to encoding such knowledge via
schema-enabled knowledge graph embeddings through a combination of novel
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representations: entailment vectors, entailment weights, and a consistency vec-
tor. We illustrate our approach on supervised classification tasks. Our main find-
ings are that: (i) It is possible to develop a general purpose framework to address
concept drifts in ontology streams by coupling any machine learning classifica-
tion algorithms with our proposed schema-enabled knowledge graph embeddings
method; (ii) Our proposed method is robust to significant concept drift (up to
51% of stream update ratio) and out-performs state of the art methods with 12%
to 35% improvement on the Macro-F1 score in the tested scenarios; (iii) Only a
small part of the ontological entailment (less than 20%) play an important role in
determining the consistency between two snapshots; (iv) Predictions with consis-
tent models outperform those with inconsistent models by over 300% in the two
use cases. Our findings could help future work on applications of stream learning,
such as autonomous driving, which demand high accuracy of stream learning in
the presence of sudden and disruptive changes.

Keywords: Ontology, Stream Learning, Concept Drift, Knowledge Graph,
Semantic Embedding

1. Introduction1

On Context of Work: Stream learning, or the problem of extracting and pre-2

dicting knowledge from evolving data, has been widely applied and largely stud-3

ied. One typical application is forecasting the air quality index in the future with4

streaming observations of air pollutants, meteorological elements, traffic condi-5

tions and so on [1]. Other applications include stock price prediction, traffic mon-6

itoring, machine diagnostics, etc. Most techniques from the Database commu-7

nity, such as those using association rules [2], focus on syntactic representation8

of data to identify frequent associations and exploit them for prediction. Ap-9

proaches in Machine Learning (ML) focus on learning prediction models such as10

random forests and Artificial Neural Networks for classifying or regressing data11

from streams in real-time [3, 4].12

On Limitations so far: Although highly scalable and quite accurate, most ML13

approaches have been shown to be non robust to changes of statistical properties14

of the target variable, which the model is trying to predict. This is referred as the15

problem of concept drift in the ML community [5] as changes occur over time in16

unforeseen ways. Existing ML approaches such as those based on some temporal17

statistic measures [6] build models on old data, but knowledge inconsistencies can18

occur as time passes and the models may loss the effectiveness.19
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... and Tentatives so far: Towards this challenge different strategies such as20

online active learning, priority on recent data and dynamic sliding windows, have21

been proposed [4] (cf. more details in Related Work). Although such strategies22

can manage gradual changes, they fail in maintaining high accuracy (and other23

quantitative measures such as Precision, Recall or F1 Score) for sudden, disruptive24

changes. This is mainly due to the inconsistent evolution of the knowledge and25

the lack of metrics to understand the evolution of semantics. The current methods26

are mostly based on measures to statistic changes of the raw data.27

On the Objective: This work aims at capturing unique properties of data streams28

to better detect, qualify and predict the concept drift, thus enhancing the model29

for stream learning.30

On A New Context to Address the Initial Challenges: In this work, we pro-31

pose to study the problem in the context of the semantic representation of data32

streams in the Semantic Web, i.e., ontology streams [7, 8]. Such streams are or-33

dered sequences of data annotated with an ontological schema, where knowledge34

representation languages such as Web Ontology Language (OWL)2 are used for35

modeling the semantics. From knowledge materialization [9] to predictive rea-36

soning [10, 11], to textual explanations of reasoning results [12], to knowledge37

augmented transfer learning [13, 14], all are inferences where dynamics, seman-38

tics of data are exploited for deriving a priori knowledge from pre-established39

(certain) statements. However, inductive reasoning and ML have rarely been inte-40

grated to deal with ontology streams, not to mention dealing with the concept drift41

problem in learning from ontology streams. This significantly limits the discovery42

of additional knowledge from ontology streams.43

On the Opportunity of such New Context: Representation learning [15], which44

refers to a variety of techniques that learn new representations of the raw data as45

more effective prediction input (features), has been widely investigated in differ-46

ent domains, such as natural language processing (e.g., BERT [16]) and computer47

vision (e.g., Graph Neural Networks [17]). From the Semantic Web perspective,48

components of knowledge base, such as entities, relations and facts can be rep-49

resented by vectors, where their semantics such as the relationship to the neigh-50

bours is kept in the vector space. Despite that many of these techniques are known51

as knowledge graph embedding techniques [18], they are mainly for schema-less52

knowledge graphs until recently. The vector representations can be fed into down-53

2https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
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stream statistical analysis and ML algorithms to discover new knowledge such as54

plausible facts and rules [19]. Although representation learning provides a way55

to understand the semantics of data for learning, there are currently few studies56

investigating the embeddings of expressive OWL ontologies, especially for the57

streaming context.58

On Our Method: In order to incorporate semantics in stream learning to ensure59

accurate prediction, we propose an approach to encoding the structured knowl-60

edge into compact vector representations through learning from not only declared61

relationships between entities but also knowledge gained from materialization.62

The learned representations (embeddings) capture the relevant semantics to sup-63

port reasoning tasks: (i) entailment to derive knowledge from axioms and rules,64

and (ii) consistency checking for capturing the validity of temporal evolution.65

Such schema-enabled embeddings are exploited in a context of supervised stream66

learning to learn prediction models, which are robust to concept drifts, including67

sudden and inconsistent changes. Note that our solution of incorporating rea-68

soning in learning embeddings could also be used to solve other complex hybrid69

learning and reasoning tasks.70

On Benefits and Our Contributions: This work first investigated the benefits71

of embedding semantics of data streams to tackle the problem of concept drift in72

stream learning. We presented a novel approach to embed the semantics of such73

streams, and particularly to embed core properties defining concept drifts: (i) the74

existence of novel knowledge gained from stream dynamics, (ii) the significance75

of knowledge change and evolution, and (iii) the consistency and inconsistency76

of knowledge evolution. Such knowledge is embedded through a combination77

of novel representations: entailment vectors, entailment weights, and a consis-78

tency vector. Such schema-enabled knowledge graph embeddings capture the79

concept drift properties, and are better fit-for-purpose when trying to tackle the80

problem of concept drift. Finally developed a consistent prediction framework81

that is adaptable and flexible to basic ML models such as Logistic Regression,82

for dealing with concept drift. We illustrate our approach on classification tasks83

for supervised steam learning. The experiments have shown its higher classifica-84

tion macro-averaged F1 score in comparison with the state-of-the-art approaches85

on bus delay forecasting and air quality index forecasting with real world data86

streams from Dublin in Ireland and Beijing in China.87

On the Rest of the Paper: The next two sections review the related work, the88

adopted logic and the ontology stream learning problem. In Section 4 we intro-89

duce the concept drift. Section 5 presents our methodology including the knowl-90
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edge graph embedding and the prediction. Section 6 presents the experiments and91

evaluation. Section 7 concludes the paper.92

2. Related Work93

The related work includes (i) stream learning with concept drift, (ii) ontol-94

ogy stream reasoning, and (iii) representation learning for the Semantic Web (i.e.,95

knowledge graph embedding).96

2.1. Stream Learning with Concept Drift97

There have been several methods for addressing the concept drift problem in98

stream learning. We classify them into three categories.99

• Recent Priority: These methods assign higher weights to more recent samples100

or more recently trained models. For example, Cao et al. [20] trained adaptive101

Support Vector Machine (SVM) models by placing higher weights on the errors102

of the more recent training samples. For another example, Chu et al. [21] utilized103

online active learning with customized properties of weighting. In these meth-104

ods, long-term historical samples are sometimes discarded, which is known as the105

forgotten mechanism.106

• Dynamic Sliding Window: In these methods, a dynamic-size window of re-107

cently seen samples are kept by monitoring the data change over time, based on108

which the model can be updated accordingly [6]. One typical algorithm is ADap-109

tive Windowing (ADWIN), proposed in [22]. It acts as a change detector or esti-110

mator by evaluating the model’s error, so as to adjusting the window size.111

• Model Ensemble: These methods often train multiple models and combine112

their prediction results. One typical example is Adaptive-Size Hoeffding Tree113

Bagging proposed by Bifet et al. [23]. It trains multiple classification trees with114

different segments of historical data and assigns an adaptive weight to each tree115

by monitoring its error. A similar sample segmentation and model ensemble tech-116

nique was also adopted by Gao et al. [24] for streaming data with a skewed dis-117

tribution. Combing multiple models have been shown to perform better than one118

single (complex) model in many real world applications [3].119

For high performance, the above strategies are often used together. Ensemble120

learning can be integrated with drift detection algorithms, and often incorporates121

dynamic updates, such as selective removal or addition of models, where the prin-122

ciple of recent priority and the data change detector are sometimes adopted [25].123

Leverage Bagging [26] is a state-of-the-art ensemble-based stream learning algo-124

rithm that updates models by detecting data changes with ADWIN.125
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The recent priority strategy assumes that the temporally adjacent data is more126

representative information for prediction [24], but this assumption is violated in127

case of sudden and disruptive changes. Change detectors with a dynamic sliding128

window use some intermediate metrics e.g., model error [22] for measurement.129

This, however, leads to additional biases. Combing multiple models can outper-130

form one single model, but it often relies on change detection or recent priority131

assumption for model selection, removal and addition [3]. Last but not the least,132

these statistical methods ignore domain knowledge (such as the semantics of vari-133

ables) and overall context (e.g., relationship between variables across streams) in134

understanding changes and concept drifts.135

2.2. Ontology Stream Reasoning136

Stream reasoning, or materialization over dynamic knowledge has been widely137

studied and applied [27, 28]. Some of these studies focus on continuous query138

over semantic data in less expressive languages RDF/RDFS (e.g., C-SPARQL139

[29]), while the others provide capabilities of semantic query, entailment reason-140

ing and rule-based reasoning for evolving OWL ontologies (e.g., TrOWL [30,141

31] and sigRL [32]). A successful industry application is turbine diagnosis in142

Siemens, where ontology-based data access, semantic query and reasoning are143

conducted jointly for the analysis of streaming sensor data [32].144

To the best of our knowledge, there are few studies investigating (predictive)145

analysis over ontology streams. [33] proposed a novel formalization of predict-146

ing future knowledge for streaming data represented by a Description Logic (DL)147

family DL-Lite, where rules are mined to represent complex data association pat-148

terns. [10] and [11] proposed to predict future or missing knowledge over on-149

tology streams represented by DL EL++, where consistent snapshots are first in-150

ferred with semantic reasoning, and semantic association rules are further mined151

and selected for prediction. [34] improved the scalability of the above method152

with incremental, approximate maintenance algorithms.153

In these predictive analytics studies for ontology streams (a.k.a. predictive154

reasoning) [33, 10, 11, 34], the problem of concept drift however is not consid-155

ered. They depend on semantic rules to represent data patterns and infer new156

knowledge, which makes them incompatible to popular ML models such as lo-157

gistic regression and random forests. Meanwhile, the scalability and efficiency158

issues, caused by rule mining and selection limited their applications.159
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2.3. Knowledge Graph Embedding160

Representation learning aims at learning representations of the raw data so as161

to make it easier to extract useful information in downstream statistical or predic-162

tive analysis [15]. It has been recently applied in the Semantic Web. Components163

of a knowledge base such as entities and relations, are embedded into a vector164

space with their semantics such as their relative relationships kept, for down-165

stream mining and prediction tasks such as entity categorization, link prediction,166

question answering and rule learning [18, 19, 35]. These techniques are known167

as knowledge graph embedding, as they are originally developed for knowledge168

graphs which are knowledge bases composed of facts in RDF form. A variety of169

knowledge graph embedding methods have been proposed, including those ten-170

sor factorization based (e.g.,RESCAL [36]), embedding translation based (e.g.,171

TransE [37]) and neural language model based (e.g., RDF2Vec [35]).172

Most of these embedding methods, as far as we know, are still limited to173

knowledge bases composed of RDF facts alone, while those OWL ontologies174

or knowledge bases with ontological schemas have not been widely investigated.175

Some methods such as JOIE [38] support ontology-aware embeddings, but the on-176

tology is often simple, expressed by RDF schema instead of any more expressive177

languages such as OWL. Paulheim and Stuckenschmidt [39] predicted the consis-178

tency of an expressive ontology by representing its ABox axioms with a feature179

vector that is composed of binary values. Different from [39], our embedding180

method learns the weights of ABox axioms.181

Although there have been some studies for embedding OWL ontologies (e.g.,182

EL Embedding [40] and OWL2Vec* [41]), they are limited to a static context183

which is totally different from the streaming context we aim at in this study. The184

knowledge graph embedding method in this paper on the one hand utilizes the185

expressiveness of OWL ontologies in two ways: inferring underlying entailments186

for richer semantics and checking consistency between two axiom sets, on the187

other hand explores the context of streaming ontologies. It infers entailments for188

OWL ontology streams, encodes them into vectors by learning the weights of189

entailments and checking the consistency between snapshots, and further applies190

all these embeddings for robust steam learning and prediction.191

3. Background192

In this section, we present the settings of our work, and how data stream,193

ontology and ontology stream are all connected to set-up the scene of a stream194

learning problem where concept drift is the challenge to tackle.195
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3.1. Settings196

Data streams are captured as temporal evolution of data through update. As we197

aimed at exploring the role of semantics for addressing the challenge of concept198

drift in stream learning, data (in streams) will be represented through semantic199

representation. In particular the semantics of data is represented using an ontol-200

ogy. We focus on Description Logic (DL) based ontologies since it offers reason-201

ing support for most of its expressive families and is compatible to W3C OWL202

(2) standard. Therefore data streams with attached semantic representations are203

characterized as ontology streams. The core objective of the work is to understand204

whether uplifting data streams with semantic representation is a way forward to205

tackle the problem of concept drift in stream learning.206

The next subsections expose details on (i) the semantics used for represen-207

tation, (ii) the definition of ontology stream, and (iii) the characterization of the208

ontology stream learning problem. The definitions and numerous concepts are209

illustrated with examples from our experimental context in Dublin on bus delay210

forecasting. In particular the very first examples are important as they illustrate211

the semantic representation of data (Example 1), ontology streams (Example 2),212

streams change (Example 3 - which is the basics behind concept drift), ontology213

stream learning problem (Example 4). All remaining examples are illustrations214

of our novel definitions and concepts, which are required to tackle the problem of215

concept drift in ontology stream learning.216

3.2. DL EL++
217

Our work is illustrated using DL EL++ [42], which is a sub-language of the
tractable OWL 2 EL profile in the OWL 2 family. A signature Σ, denoted as
(NC ,NR,NI), consists of disjoint sets of (i) atomic concepts NC , (ii) atomic
roles NR, and (iii) individuals NI . Given a signature, the top concept >, the
bottom concept ⊥, an atomic concept A, an individual a, an atomic role r, EL++

concept expressions C and D can be composed with the following constructors:

> | ⊥ | A | C uD | ∃r.C | {a}

A DL ontology O .
= 〈T ,A〉 is composed of a TBox T and an ABox A. Briefly218

a TBox is a set of concepts, roles and their relationship axioms. EL++ supports219

General Concept Inclusion axioms (e.g. C v D), Role Inclusion axioms (e.g.,220

r v s). An ABox is a set of concept assertion axioms (e.g., C(a)), role assertion221

axioms (e.g., R(a, b)), and individual in/equality axioms (e.g., a 6= b, a = b).222
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Example 1. (TBox and ABox Concept Assertion Axioms)223

Figure 1 presents (i) a fragement of a TBox T , where the conceptDisruptedRoad224

(2) defines “roads which are adjacent to an event that causes high disruption”, (ii)225

some concept assertions such as (11) and (12) which mean the road r0 is adjunct226

to roads r1 and r2 respectively.227

SocialEvent u ∃type.Poetry v Event u ∃disruption.Low (1)

Road u ∃adj.(∃occur.∃disruption.High) v DisruptedRoad (2)

Road u ∃adj.(∃occur.∃disruption.Low) v ClearedRoad (3)

BusRoad u ∃travel.Long v DisruptedRoad (4)

BusRoad u ∃travel.OK v ClearedRoad (5)

Road u ∃with.Bus v BusRoad (6) Road(r0) (7)
Road(r1) (8) Road(r2) (9) Bus(b0) (10)
adj(r0, r1) (11) adj(r0, r2) (12) Long uOK v ⊥ (13)

Figure 1: TBox Fragment and ABox Fragment of The Example Ontology.

All completion rules of DL EL++, which are used to classify individuals and228

entail subsumption, are described in [42]. Reasoning with such rules is PTime-229

Complete.230

3.3. Ontology Stream231

We represent knowledge evolution by dynamic and evolutive ontology ver-232

sions [7]. In such a context all data (ABox) and entailments (inferred statements)233

are changing over time, while the schema (TBox) remains unchanged.234

Definition 1. (DL EL++ Ontology Stream)235

A DL EL++ ontology stream Pnm from point of time m to point of time n is a236

sequence of Abox axioms (Pnm(m),Pnm(m+1), · · · ,Pnm(n)) with respect to a static237

TBox T of DL EL++, where m,n ∈ N and m < n.238

Pnm(i) is also known as a snapshot of an ontology streamPnm at time i, referring239

to all ABox axioms at time i. A transition from Pnm(i) to Pnm(i+1) is seen as an240

ABox update. We denote by Pnm[i, j] , i.e.,
⋃j
k=iPnm(k) a windowed stream241

of Pnm between time i and j with i ≤ j. Any window [i, j] has a fixed length.242

Windows of length 1 are denoted as [i]. We consider streams [α]
.
= [i, j] and243

[β]
.
= [k, l] (0 ≤ i < j ≤ n, 0 ≤ k < l ≤ n) of Pn0 as two windows in [0, n].244
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Example 2. (DL EL++ Ontology Stream)245

Figure 2 illustrates EL++ ontology streams Pn0 , Qn0 , Rn
0 , related to events, travel246

time, buses, through snapshots at time i ∈ {0, 1, 2, 3}, i.e., a window on [0, 3].247

Note n is any integer greater than or equal to 3 in our example. Their dynamic248

knowledge is captured by evolutive ABox axioms such as (20) which captures e1249

as “a social event on poetry occurring in road r2” at time 1.250

By applying completion rules on the static TBox T and the ABox sequence251

Pn0 , snapshot-specific axioms are inferred. Namely, for each snapshot at time i,252

entailments are inferred with its ABox axioms Pn0 (i) and T . In Definition 2 (from253

[11]), the evolution of a stream is captured along its changes, i.e., through new,254

obsolete and invariant ABox entailments from one windowed stream to another.255

Definition 2. (ABox Entailment-based Stream Changes)
Let Sn0 be an ontology stream; [α], [β] be its windows in [0, n]; T be the static
TBox, G be its snapshot-specific ABox entailments. The changes occurring from
Sn0 [α] to Sn0 [β], denoted by Sn0 [β]∇Sn0 [α], are ABox entailments in G being new
(14), obsolete (15), invariant (16).

G[α],[β]
new

.
= {g ∈ G | T ∪ Sn0 [β] |= g ∧ T ∪ Sn0 [α] 6|= g} (14)

G[α],[β]
obs

.
= {g ∈ G | T ∪ Sn0 [β] 6|= g ∧ T ∪ Sn0 [α] |= g} (15)

G[α],[β]
inv

.
= {g ∈ G | T ∪ Sn0 [β] |= g ∧ T ∪ Sn0 [α] |= g} (16)

(14) reflects knowledge we gain by sliding the window from [α] to [β], while256

(15) and (16) denote respectively lost and stable knowledge. All duplicates are257

assumingly removed. Definition 2 provides basics, via ABox entailments [43],258

for understanding how knowledge evolves over time.259

Example 3. (ABox Entailment-based Stream Changes)260

Table 1 illustrates changes occurring from (Q∪R)n0 [0, 1] to (Q∪R)n0 [2, 3] through261

ABox entailements. For instance, “r2 as a disrupted road window [2, 3] of (Q ∪262

R)n0 is new with respect to knowledge in [0, 1]. It is entailed by axioms (4), (6),263

(9), (24), (25), (27) and (28).264

3.4. Ontology Stream Learning Problem265

Definition 3 revisits classic supervised learning problem [44] for ontology266

stream as the problem of predicting class assertion entailments in a future snapshot267

according to the current and historical snapshots.268

10



Pn
0 (0) : (Incident u ∃impact.Limited)(e3), occur(r1, e3) (17)

Qn
0 (0) : (Road u ∃travel.OK)(r1) (18)

Rn
0 (0) : with(r1, b0) (19)

Pn
0 (1) : (SocialEvent u ∃type.Poetry)(e1), occur(r2, e1) (20)

Qn
0 (1) : (Road u ∃travel.OK)(r2) (21)

Rn
0 (1) : with(r2, b0) (22)

Pn
0 (2) : (Event u ∃disruption.High)(e2), occur(r2, e2) (23)

Qn
0 (2) : (Road u ∃travel.Long)(r2) (24)

Rn
0 (2) : with(r2, b0) (25)

Pn
0 (3) : (Event u ∃disruption.High)(e2), occur(r2, e2) (26)

Qn
0 (3) : (Road u ∃travel.Long)(r2) (27)

Rn
0 (3) : with(r2, b0) (28)

Figure 2: Ontology Streams Pn0 (i),Qn0 (i),Rn0 (i)i∈{0,1,2,3}.

Windowed Stream (Q∪R)n0 [2, 3]∇ (Q∪R)n0 [0, 1]
Changes obsolete invariant new

with(r2, b0) X
ClearedRoad(r2) X
DisruptedRoad(r2) X

Table 1: ABox Entailment-based Stream Changes.

Definition 3. (Ontology Stream Learning Problem)269

Let Sn0 be an ontology stream; T , A be its TBox and ABox respectively; g ∈ G270

be an ABox entailment; k be an integer in (0, n]. An Ontology Stream Learning271

Problem, noted OSLP〈Sn0 , k, T ,A, g〉, is the problem of estimating whether g can272

be entailed from T and A at time k of stream Sn0 , given knowledge at time t < k273

of Sn0 .274

This estimation is denoted as p|T ∪A(Sn0 (k) |= g) with values in [0, 1] and
k ≥ 1. One estimation, adopted from [45], is directly using the ratio of previous
snapshots where entailment g is entailed. In detail, it can be calculated as

p|T ∪A(Sn0 (k) |= g)
.
=
p|T ∪A(Sk-1

0 |= g)

p|T ∪A(a ∈ Sk-1
0 )

(29)

where the estimation p|T ∪A(Sk-1
0 |= g) is the proportion of snapshots in Sk-1

0 en-275

tailing g, while the estimation p|T ∪A(a ∈ Sk-1
0 ) is the proportion of snapshots that276
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contain some class assertions of the individual a which is involved in g. Specially,277

p|T ∪A(Sn0 (k) |= g)
.
= 0 if there are no snapshots that contain any class assertions278

of the individual a, i.e., p|T ∪A(a ∈ Sk-1
0 ) = 0. The conditional probability of a in279

Sk-1
0 (i.e., a ∈ Sk-1

0 ), given that Sk-1
0 entails g, is 1.280

Example 4. (Ontology Stream Learning Problem)281

The problem of estimating whether class assertion g, defined asDisruptedRoad(r2),282

can be entailed by T andA at time point 4 of (Q∪R)n0 is defined as OSLP〈(Q∪283

R)n0 , 4, T ,A, g〉. The estimation can be retrieved using (29) hence p|T ∪A((Q ∪284

R)n0 (4) |= DisruptedRoad(r2))
.
= 2/3.285

In the above description of OSLP, the entailment g to be predicted is described286

as a class assertion (e.g., DisruptedRoad(r2)), but it can also be a role assertion.287

This depends on how the domain data and prediction task are modeled with the288

ontology. Assume the ontology TBox has definedDisrupted (a class of road con-289

dition), c1 (an individual of Disrupted), and hadRoadCond (a relation between290

a road and a condition), predicting the above entailment DisruptedRoad(r2) is291

equivalent to predicting the role assertion hasRoadCond(r2, c1). To model a ML292

multi-class classification task by OSLP with class assertion, multiple class asser-293

tions in a snapshot should be predicted, and each of them corresponds to one class.294

In prediction, one score is calculated for each class assertion, and the class of the295

one with the largest score is adopted as the output class.296

The (naive) example of estimation by (29) can also be replaced by other (more297

complex) models such as a linear score function. In our method, the simple esti-298

mation (29) is used for concept drift analysis, while its results together with the299

knowledge graph embeddings are further integrated in order to learn the linear300

score function for final prediction.301

4. Concept Drift in Ontology Stream302

In this section we introduce semantic concept drift, its significance and mea-303

sures to quantify sudden and disruptive changes in an ontology stream.304

4.1. Semantic Concept Drift305

Definition 7 revisits concept drift [24] for ontology streams as prediction changes306

in ABox entailments (Definition 4), which include two types: sudden changes and307

disruptive changes (Definition 5 and 6).308
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Definition 4. (Prediction Change)
Let Sn0 be an ontology stream; T , A and G be its TBox, Abox and ABox entail-
ments. A prediction change in Sn0 is occurring between time i and j in [0, n] with
respect to T , A and G iff:

∃g ∈ G : ‖p|T ∪A(Sn0 (i) |= g)− p|T ∪A(Sn0 (j) |= g)‖ ≥ ε (30)

where ε ∈ (0, 1] is a variable bounding the difference of estimation, ‖·‖ refers to309

the absolute value, and i < j.310

The ABox entailment g is called an evidence entailment of the prediction311

change. G is the set of candidate evidence entailments. We adopt the classi-312

fication, relation and property entailments of those named individuals that have313

already exist in the original ABox before entailment reasoning. Namely entail-314

ments involving individuals that are generated during the inference are excluded.315

We denote by C|T ∪A(Sn0 , i, j, ε), the set of all evidence entailments of the pre-316

diction change with an ε difference between time i and j of ontology stream Sn0 .317

Note as only the snapshots before time t are given for the OSLP problem, all the318

concept drift analysis in Section 4 by default only adopts the snapshots before319

time t (e.g., i, j < k in Definition 4).320

Example 5. (Prediction Change)321

g
.
= DisruptedRoad(r2) can be entailed from T and A at time 2 of (Q ∪ R)n0322

with a zero probability following (29). Therefore a prediction change between323

times 2 and 4 (cf. Example 4) is captured with g ∈ C|T ∪A((Q∪R)n0 , 2, 4, 1/3).324

Definition 5. (α-Sudden Prediction Change)325

A prediction change at point of time i in stream Sn0 , satisfying (30), is defined as326

α-sudden, with α ∈ (0, n-i] iff j = i+ α.327

Definition 6. ( Disruptive Prediction Change)
A prediction change, satisfying (30), is disruptive iff ∃g′ ∈ G s.t.

T ∪ A ∪ g ∪ g′
max{i,j}⋃
l=0

Sn0 (l) |= ⊥ (31)

where
⋃max{i,j}
l=0 Sn0 (l) captures all axioms from any snapshot Sn0 (l) of stream Sn0328

with l ∈ [0,max{i, j}], G is the same as in Definition 4.329

Suddenness (Definition 5) characterises the proximity of prediction changes in330

streams. A lower α means closer changes. Disruptiveness (Definition 6) captures331

disruptive changes from a semantic perspective, i.e., conflicting knowledge among332

snapshots Sn0 (i), Sn0 (j) with respect to the knowledge T ∪ A.333
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Definition 7. (Semantic Concept Drift)334

A semantic concept drift in Sn0 , is defined as a 1-sudden prediction change or a335

disruptive prediction change.336

Evaluating if a concept drift occurs for a snapshot update is in worst case poly-337

nomial time with respect to acyclic TBoxes and Sn0 in EL++ since subsumption338

and satisfiability in (30), (31) can be checked in polynomial time [42].339

Example 6. (Semantic Concept Drift)340

Two prediction changes from time i = 2 to 3 and 3 to 4 (cf. Table 2) have occurred341

for g .
= DisruptedRoad(r2) in (Q ∪ R)n0 . They are semantic concept drifts as342

they are 1-sudden and disruptive with g′ .= ClearedRoad(r2) in (Q∪R)n0 (1).343

Prediction Prediction Change
Past Points Time p|T ∪A g ∈ C|T ∪A Disruptive-

of Time i ((Q∪R)n0 (i) |= g) ((Q∪R)n0 , i, i+1, 1/3) ness
{0} 1 0 7 7

{0, 1} 2 0 X X
{0, 1, 2} 3 1/2 X X
{0, 1, 2, 3} 4 2/3 N/A N/A

Table 2: Prediction Changes in (Q∪R)n0 (g
.
= Disrupted(r2)).

4.2. Significance of Concept Drift344

The significance of a semantic concept drift (Definition 8) is an indicator on345

its severity. It captures the homogeneity of the concept drifts across ABox en-346

tailments as the proportion of ABox entailments from Sn0 (i) and Sn0 (i+1) causing347

semantic concept drifts. The value of the significance ranges in [0, 1].348

Definition 8. (Semantic Concept Drift Significance)
The significance of a semantic concept drift, defined between points of time i ∈
(0, n) and i+1 of Sn0 with ε, T , A, G as the difference, TBox, ABox, and entail-
ments, respectively, is σ|T ∪A(Sn0 , i, ε):

|C|T ∪A(Sn0 , i, i+1, ε)|
|{g ∈ G | T ∪ Sn0 (i) |= g ∨ T ∪ Sn0 (i+1) |= g }|

(32)

where | · | represents the cardinality of a set.349
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As Definition 7, calculating the semantic concept drift significance by (32) is350

in worst case polynomial time.351

Example 7. (Semantic Concept Drift Significance)352

By applying (32) on concept drifts of Table 2 we derive that σ|T ∪A((Q∪R)n0 , 2, 1/3)353

is 4/7 while σ|T ∪A((Q ∪ R)n0 , 3, 1/3) is 0, hence there is a more significant drift354

between times 2 and 3 than between 3 and 4. In other words conflicting facts355

g
.
= DisruptedRoad(r2) and g′ .= ClearedRoad(r2) w.r.t. T and A have the356

most significant impact on prediction changes at times 2 and 3.357

Remark 1. (Semantic Concept Drift Evolution)358

A semantic concept drift in any ontology stream Sn0 is more significant at time i359

(i > 0) than at time i+1 if |G [0,i],[0,i+1]
new | = 0.360

Proof. (Sketch) Since |G [0,i],[0,i+1]
new | = 0, Sn0 (i) and Sn0 (i+1) are similar w.r.t. |=T ∪A.361

Thus, the set of all entailments, predicted at i+1 and i+2 from (29), are sim-362

ilar but with different prediction values (30) ∀ε ≥ 0. So σ|T ∪A(Sn0 , i, ε) and363

σ|T ∪A(Sn0 , i+1, ε) in (32) have same denominators while C|T ∪A(Sn0 , i+1, i+2, ε) ⊆364

C|T ∪A(Sn0 , i, i+1, ε) hence σ|T ∪A(Sn0 , i+1, ε) ≤ σ|T ∪A(Sn0 , i, ε).365

Algorithm 1 retrieves significant concept drifts in Sn0 with minimal signifi-366

cance σmin, where G refers to ABox entailments about classification, property367

and relation of named individuals that already exist in the original ABox. It it-368

erates on all snapshot updates except those with no new ABox entailment (Line369

5 - Remark 1) for minimizing satisfiability and subsumption checking. Semantic370

concept drifts, as 1-sudden and disruptive prediction changes, are retrieved (Line371

7). Algorithm 1 completes the process (Line 9) by filtering concept drifts by the372

minimal significance σmin.373

Computing the significant concept drifts with Algorithm 1, given an acyclic374

TBox and Sn0 in DL EL++, is in worst case polynomial time, due to the complex-375

ity of evaluating a semantic drift (cf. the complexity of Definition 7). The number376

of pairwise combinations of snapshots is quadratic w.r.t. the number of snapshots377

in the window that is considered. Therefore computing significant α-sudden, dis-378

ruptive prediction changes following Algorithm 1 is also in worst case polynomial379

time.380

15



Algorithm 1: [A1]SignificantDrift〈O,Sn0 , ε, σmin〉
1 Input: (i) Axioms O : 〈T ,A,G〉, (ii) Ontology stream Sn0 , (iii) Lower limit

ε ∈ (0, 1] of prediction difference, (iv) Minimum threshold of drift
significance σmin.

2 Result: S: Significant concept drifts in Sn0 w.r.t. σmin.
3 begin
4 S← ∅; % Init. of the Significant concept drift set.

5 foreach i ∈ (0, n] of Sn0 such that |G[0,i],[0,i+1]
new | 6= 0 do

6 % Selection of 1-sudden, disruptive prediction changes.
7 if ∃g, g′ ∈ G such that:

‖p|T ∪A(Sn0 (i) |= g)- p|T ∪A(Sn0 (i+1) |= g)‖ ≥ ε
∧ T ∪ A ∪ Sn0 (i) ∪ Sn0 (i+1) ∪ g ∪ g′ |= ⊥ then

8 % Semantic concept drifts with min. significance.
9 if σ|T ∪A(Sn0 , i, ε) ≥ σmin then

10 S← S ∪ {(i, i+1)}% Add snapshot update.

11 return S;

5. Ontology Stream Learning381

This section describes the approach towards ontology stream learning where382

the difficulty is incorporating the semantics of stream dynamics introduced in the383

above section into a supervised ML classification algorithm. To this end, we de-384

veloped our knowledge graph embedding method (i.e., Algorithm 2). As a core385

element, this embedding algorithm represents entailments and the semantic con-386

sistency by vectors, based on which the sampling strategy and the sample weight387

update strategy of the downstream ML classification algorithm are developed. We388

finally present such embeddings can be used for prediction using any ML classifi-389

cation algorithm, and our overall prediction approach (Algorithm 3) is agnostic to390

them. Indeed the knowledge graph embeddings are the main representations that391

are required to encode and incorporate the semantics of stream dynamics, which392

are then utilized by a ML model for prediction.393

5.1. Knowledge Graph Embeddings394

The semantics of streams exposes three levels of knowledge which are crucial395

for learning with concept drifts: (i) existence of class assertion entailments in-396

ferred from stream assertions and axioms, (ii) significance of different entailments397
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in comparing two snapshots, and (iii) consistency and inconsistency of knowledge398

evolution. Such semantics are encoded as knowledge graph embeddings including399

entailment vectors, entailment weights, and a consistency vector. The embeddings400

are based on not only original ABox assertions but also the underlying entailments401

inferred with TBox axioms, so that more complete semantics is captured.402

Bag of Entailment (BOE) Encoding: Assume we have a set of candidate ABox403

entailments, denoted by E, consisting of concept and role assertions of those404

named individuals extracted from the snapshots of Sn0 before time k, with the405

size of d. The BOE encoding captures the presence and non presence of each406

ABox entailment in a given snapshot. Namely, a snapshot is represented by a bi-407

nary value vector b = (b1, b2, ..., bd), where bi is set to 1 if entailment i is inferred,408

and is set to 0 otherwise. The vector is defined as BOE entailment vector, while409

this procedure is called BOE encoding, denoted by B.410

Let ni, nc and nr be the number of unique individuals, concepts and roles411

respectively in the setE of candidate ABox entailment, the maximum value of the412

BOE dimension d is ni×ni×nr+ni×nc. In real word applications (cf. air quality413

forecasting and bus delay forecasting in Section 6), the dimension is, however,414

often much smaller than the maximum value due to the sparsity of the relations415

between individuals. It can also be configured according to the application by416

methods like filtering out those entailments that appear in only a small ratio of417

snapshots.418

Weighted Bag of Entailment (WBOE) Encoding: We assume different entail-
ments have different importance in comparing two snapshots. We define entail-
ment weights as a vector w = (w1, w2, ..., wd), where each weight wi,1≤i≤d is
a numeric value to measure the importance of an entailment in E. With entail-
ment weights, the BOE encoding can be extended to weighted bag of entailment
(WBOE) encoding: e = b ·w, where · represents calculating dot product between
two vectors, and e is defined as WBOE entailment vector. The similarity between
two snapshots in vector space can be measured with Euclidean distance:

φ(e1, e2) = ‖e1 − e2‖2 = ‖b1 ·w − b2 ·w‖2 (33)

where ‖·‖2 represents calculating L2-norm.419

Entailment Weight Learning: The entailment weights w aim to project the inter-420

snapshot similarity w.r.t. the prediction task into a vector space constrained by the421

entailments E. They are learned according to the change of the entailment g of422

the snapshot. To this end, we first define task-specific (in-)consistent snapshot pair423

(Definition 9), where the ground truth entailment ḡ refers to the target entailment424
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g in current and past snapshots, whose truth is already known (either observed425

or inferred). w will also be learned based on these task-specific consistent and426

inconsistent snapshots.427

Definition 9. (Task-specific (In-)Consistent Snapshot Pair)428

Let Sn0 be an ontology stream, ḡ be the ground truth entailment, ∆ be the pre-429

diction time (ḡ and ∆ together is known as a task). Given two snapshots Sn0 (h)430

and Sn0 (t) with h ≤ t, Sn0 (h) and Sn0 (t) are defined as a task-specific consistent431

snapshot pair if the change of g from Sn0 (h) to Sn0 (h + ∆) is the same as that432

from Sn0 (t) to Sn0 (t+∆), and a task-specific inconsistent snapshot pair otherwise.433

Sn0 (h) is called a head snapshot while Sn0 (t) is called a tail snapshot.434

Example 8. (Task-specific (In-)Consistent Snapshot Pair)435

Assume ∆ is 1, ḡ in snapshot Sn0 (0), Sn0 (1), Sn0 (2) and Sn0 (3) isDisruptedRoad(r2),436

ClearedRoad(r2),DisruptedRoad(r2) andClearedRoad(r2) respectively, Sn0 (0)437

and Sn0 (2) are task-specific consistent snapshot pair, while Sn0 (1) and Sn0 (2) are438

task-specific inconsistent snapshot pair.439

We apply Algorithm 2 where the weights w are iteratively learnt through a
training procedure which aims at minimizing the loss (34). Note that Algorithm
2 only reports the sampling strategy and the iterative procedure to minimize the
loss and to obtain the weights that satisfy the loss. The training strategy could be
achieved through a neural network architecture using classical feedforward and
back-propagation mechanisms. We initially extract those task-specific consistent
and inconsistent snapshot pairs from the current and past snapshots. One consis-
tent pair corresponds to one positive sample (e+

h , e
+
t ), while one inconsistent pair

corresponds to one negative sample (e−
h , e

−
t ), where eh (ee resp.) represents the

WBOE vector of the head (tail resp.) snapshot. The training aims to minimize the
following max-margin-based loss function:

O(w) =
∑

(e+h ,e
+
t )∈S+

∑
(e−h ,e

−
t )∈S−

max
{

0, γ + φ(e+
h , e

+
t )− φ(e−

h , e
−
t )
}

(34)

where γ is a fixhyperparameter for the margin, S+ and S− represent the positive440

and negative sample sets respectively. Optimization algorithms like Stochastic441

Gradient Descent (SGD) [46] and Adam [47] can be adopted as the optimizer for442

training. The details for learning w are shown in Algorithm 2.443

The setting of hyperparameters (b, µ,m, γ) and the optimizer could be ad-444

justed. Indeed, Algorithm 2 is capturing the training process for computing knowl-445

edge graph embeddings which does require fine-tuning the hyperparameters. The446
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one that makes the loss curve converge and finally lead to the minimum loss is447

adopted. In real applications, approximation with hyperparameter searching al-448

gorithms like grid search on best configurations for (b, µ,m, γ) as well as some449

empirical tricks [46] (e.g., stopping increasing the maximum iteration number m450

when the loss curve can already converge) are adopted.451

As Algorithm 2 is exposing an iterative method to compute graph embeddings452

through the minimization of loss function (34), stochastic gradient descent could453

be used to derive the gradient and update the embeddings.454

Example 9. (Entailment Weight)455

The example sequence (Q∪R)n0 include 5 ABox entailments: ClearedRoad(r1),456

ClearedRoad(r2),DisruptedRoad(r2),with(r1, b0) andwith(r2, b0), with weights457

of 0.89, 0.92, 1.13, 0.02 and 0.12 respectively. The named classification entail-458

ments: ClearedRoad have much higher importance than the relationship entail-459

ment: with when comparing two snapshots w.r.t. bus delay.460

Definition 10. (Consistency Vector)
A consistency vector of snapshot Sn0 (i) in Sn0 , denoted by ci, is defined ∀j ∈ [0, n]
by cij if i < j; cji otherwise such that:

cij
.

=


h(Gi,jinv)

h(Gi,jnew)+h(Gi,jinv)+h(Gi,jobs)
if T ∪ Sn0 (i) ∪ Sn0 (j) 6|= ⊥

h(Gi,jinv)

h(Gi,jnew)+h(Gi,jinv)+h(Gi,jobs)
− 1 otherwise

(35)

where the function h(·) calculates the sum of weights of new (14), obsolete (15)461

and invariant (16) ABox entailments from Sn0 (i) to Sn0 (j). Assume b is the BOE462

vector of an entailment set G, then h(G) = |b ·w|, where | · | calculates a vector’s463

L1-norm. cij = cji for ∀i, j ∈ [0, n].464

A consistent vector with values in [−1, 1]n+1, encodes (i) consistency (incon-465

sistency resp.) with positive (negative resp.) values, and (ii) similarity of knowl-466

edge among Sn0 (i) and any other snapshot Sn0 (j)j∈[0,n] of stream Sn0 w.r.t. axioms467

T and A. In (35), a larger number of invariant entailments leads to higher sim-468

ilarity, while a larger number of new and obsolete ABox entailments, capturing469

some differentiators in knowledge evolution, leads to lower similarity. Mean-470

while, entailments that have larger weights have higher impact. When a semantic471

inconsistency occurs, the value 1 is subtracted instead of considering its additive472

inverse. This ensures that the invariant factor has always a positive impact. The473

consistency vector also indicates the stability of an ontology stream.474
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Algorithm 2: [A2]KnowledgeGraphEmbedding 〈b, µ,m, γ,Sn0 , E〉
1 Input: (i) Mini-batch size: b, (ii) Learning rate: µ, (iii) Maximum iteration

number: m, (iv) Margin: γ, (v) A sequence of snapshots, i.e., ontology
stream: Sn0 , (vi) A set of entailments: E with the size of d.

2 Result: w = (w1, w2, ..., wd): weights for entailments E.
3 begin
4 Uniformly initialize w;
5 Normalize w: wi = wi

‖w‖2
;

6 Set iteration: t = 0;
7 while t ≤ m do
8 % sample a batch of positive snapshot pair
9 Sbatch ← positive sampling(Sn0 , b);

10 Tbatch ← ∅; % initialize the input matrix
11 foreach (h+, t+) ∈ Sbatch do
12 % sample a negative snapshot pair for each positive snapshot pair
13 (h−, t−)← negative sampling(Sn0 ,h+, t+);
14 % encode each snapshot to a vector by WBOE
15 e+

h , e
+
t , e

−
h , e

−
t ← encoding(h+, t+,h−, t−);

16 Tbatch = Tbatch ∪
{

(e+
h , e

+
t ), (e−h , e

−
t )
}

;

17 % Update weights according to the derivative of (34)
18 Update w: w += µ

∑
((e+h ,e

+
t ),(e−h ,e

−
t ))∈Tbatch

∇O(w);

19 Normalize w: wi = wi
‖w‖2

;

20 Set iteration: t += 1;

21 return w;

Example 10. (Consistency Vector)475

Consistency vector c3, i.e., (c03, c13, c23, c33) of (Q ∪ R)n0 (3) is (0,−0.94, 1, 1).476

Knowledge at time 3 is consistent / inconsistent / similar with knowledge at times477

0 / 1 / 2 and 3.478

The BOE embedding through entailment vector calculation and the evaluation479

of the consistency vector by (35) are in worst case polynomial time with respect480

to T and Sn0 in EL++ (ABox entailment in polynomial time [42]). Computation481

complexity of Algorithm 2, i.e., entailment weight calculation for WBOE embed-482

ding is O(dbm), depending on the model complexity, i.e., the size of candidate483

ABox entailments d), batch size b and iteration number m.484
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5.2. Semantic Prediction485

Algorithm 3 trains the final prediction model by minimizing the loss (36),486

with the above concept drift analysis and the learned embeddings. This learning487

process is applied on the N concept drifted snapshots from Sn0 before time k (N <488

k), in order to infer a prediction at time k. These snapshots with concept drifts are489

denoted as Sn0 |κ, where κ refers to the proportion of these snapshots. Note Sn0 |κ is490

selected to capture (i) Sn0 (k-1), i.e., the closest (temporally) to Sn0 (k) (Line 4), (ii)491

knowledge in the most (Line 8-9) significant concept drifts (Definition 8 - Line 5),492

(iii) any other snapshots to meet N – the expected size (Line 11). In other words493

the prediction model captures the temporal dependencies of snapshots through494

knowledge graph embeddings and aims at learning a compact representation of495

such dependencies through the embeddings. The computation of the model is496

driven by (36) as the task is to minimize it. The results of applying the model497

computed in Algorithm 3 are values (multivariate in case of multi-dimensional498

space) at the snasphot of time k. The model is strongly constrained by significant499

concept drift and consistency to account for such properties of the stream.500

The model is trained with samples of the form {(xi, gi) | i ∈ {1, . . . ,N}}
where xi is the concatenation of the WBOE vector e and the feature vector, i.e.,
data properties of the corresponding snapshot of i from Sn0 (i.e., Sn0 |κ(i)), and
v(gi) is the target variable in {0, 1}, where 1 indicates gi is true (is observed or
can be inferred) and 0 indicates the opposite. The model is represented by a linear
scoring function f(xi) = aTxi + b with model parameters a ∈ RN and b ∈ R.
The goal of learning is to minimize the following objective function:

Oj(a, b)
.
=

κ∑
i=1

ωijL(v(gi), f(xi)) + αR(a), (36)

where L represents a loss function (e.g., hinge and log), R is a regularization501

term and α > 0 is a non-negative hyperparameter. R and α together control502

the variance of the model in case of overfitting. Each sample (xi, gi) in (36)503

is weighted by ωij which is calculated either by (37) or (38). (37) (resp. (38))504

which filters out consistent (resp. inconsistent) historical snapshots can be adopted505

for steams with a high (resp. low) percentage of snapshots with concept drifts.506

Note the concept drift with semantic concept drift significance can be detected via507

Definition 8). See Model Consistency Impact in Section 6 for more discussions508

and evaluation on the selection of (37) and (38).509
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ωij
.
=

{
0, if cij > 0

-cij else,
(37) ωij

.
=

{
0, if cij < 0

cij else,
(38)

Algorithm 3: [A3]PredictionModel〈O,Sn0 , k, ε, σmin, κ,N〉
1 Input: (i) Axioms and entailments O : 〈T ,A,G〉, (ii) The ontology stream Sn0 ,

(iii) The snapshot for prediction k, (iv) The lower limit ε ∈ (0, 1], (v) The
minimum drift significance σmin, (vi) The proportion κ of snapshots with
concept drifts used for modelling, (vii) The expected number of snapshots
with concept dirfts N.

2 Result: f : Model for prediction at time k of Sn0 .
3 begin
4 Sn0 |κ ← {k-1}; % Initial snapshot set for learning model.
5 % Computation of the most significant drifts w.r.t. ε, σmin.
6 S← SignificantDrift〈O,Sn0 , ε, σmin〉;
7 % Selection of κ/N snapshots involved in concept drifts S.
8 foreach i ∈ [0, k) s.t. (i, i+1) ∈ S ∧ |Sn0 |κ| < κ/N do
9 Sn0 |κ ← Sn0 |κ ∪ {i};

10 % Expand |Sn0 |κ| with snapshots not involved in S.
11 add 1-κ/N point(s) of time i to Sn0 |κ s.t. (i, i+1) /∈ S;
12 Learning model f using (36) with weight (37) or (38) :

(i) min
(a,b)∈RN×R

N∑
i=1

ωijL(v(gi), f(xi)) + αR(a)

(ii) f(xi) = aTxi + b

return f ;

Algorithm 1 and 3 are parameterized with low ε, σmin, high κ and (37) as510

weight (Line 12) favours models with significant concept drifts for prediction,511

which supports diversity and prediction changes in the model. Parameterized with512

high ε, σmin, low κ and (38) as weight, it will capture more consistent models.513

The linear scoring function f in (36) has the following advantages compared514

to more complex ML models such as Adaptive-Size Hoeffding Tree [23]: (i) bet-515

ter handling over-fitting with reduced sample size — due to filtering out snapshots516

with no significant concept drifts (Line 8-9 in Algorithm 3), (ii) ensuring efficient,517

scalable learning and prediction for online contexts. According to [48], the opti-518

mization algorithm SGD can be adopted to learn the parameters of the linear score519
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function, while the hyperparameter setting can be adjusted by the same approach520

as in entailment weight learning except that the target is changed from minimizing521

the loss to minimizing the testing error on a developing sample set.522

6. Experimental Results523

6.1. Experiment Settings524

We evaluated our method by (i) studying the impact of semantic reasoning525

and embeddings on concept drifts for two applications: air quality forecasting in526

Beijing, China (Beijing for short) and bus delay forecasting in Dublin, Ireland527

(Dublin for short), and (ii) comparing its results with state-of-the-art approaches.528

The experiments are conducted on: 16 Intel(R) Xeon(R) CPU E5-2680, 2.80GHz529

cores, 32GB RAM. The source codes3, the Dublin data4 and the Beijing data5 are530

available for the reproducibility purpose.531

• Beijing Context: The air quality level in Beijing, ranging from Good (value 5),532

Moderate (4), Unhealthy (3), Very Unhealthy (2), Hazardous (1) to Emergent (0) is533

forecasted using data streams of B1: air pollutants and meteorology elements, B2:534

wind speed, andB3: humidity observed in 12 sites (observations from surrounding535

cities of Beijing are utilized). The semantics of context is based on a DL ALC536

ontology whose TBox includes 48 concepts, 13 roles, 598 axioms. An average of537

6, 500 RDF triples (as ABox assertions) are generated at each update (snapshot)538

for the streams, while one snapshot lasts 600 seconds.539

•Dublin Context: The bus delay level in Dublin, classified as Free (value 4), Low540

(3), Moderate (2), Heavy (1), Stopped (0) can be forecasted using reputable live541

stream contextual data related to D1: bus GPS location, delay, congestion status,542

D2: weather conditions, D3: road incidents. Table 3 captures the descriptions543

of the latter data streams, described along the raw data size per day in Mb, their544

throughput, i.e., frequency of update, the number of ontological axioms received545

per update, and their size when serialised in RDF triples. The size of an update in546

RDF is much larger than the number of axioms, as each axiom could require up to547

12 triples, after serialisation. This is particularly the case for DL EL++ as blank548

nodes are required for existential quantification. We consider an extended setting549

by enriching data using a DL EL++ domain ontology. The ontology (TBox and550

ABox) ultimately includes 55 concepts, 19 roles and 25, 456 axioms.551

3https://bit.ly/36KOxOP, and https://goo.gl/TXdMpv
4https://bit.ly/30HeOK6
5http://bit.ly/2c8KmfZ
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Feature Size (Mb) Frequency of # Axioms # RDF Triples
DataSet per day Update (seconds) per Update per Update
D1: Bus 120 40 3,000 12,000
D2: Weather 3 300 53 318
D3: Incident 0.1 600 81 324

Table 3: Dataset Details of the Dublin Bus Delay Context.

The RDF descriptions of data streams for both Beijing and Dublin contexts are552

represented through the vocabulary of their respective domain ontologies. An in-553

ternal lightweight triple-based representation has been adopted to cope with scale554

and OWL/RDF mapping.555

• Knowledge Graph Embedding Setting: The results are reported with the fol-556

lowing setting to Algorithm 2. SGD is adopted as the optimizer. The hyperparam-557

eters b, µ and r are set to 16, 0.005 and 0.02. m is set to n/b×5 where n represents558

the size of training samples. Such hyperparameters have been experimented to559

be the best (with respect to the downstream task of stream classification) for both560

Beijing and Dublin contexts. We do not report an extensive evaluation of hyper-561

parmeters configurations and their respective results on those contexts as they are562

use case specific. We focus more on experimenting the impact of the knowledge563

graph embeddings on state-of-the-art approaches for solving the stream classifi-564

cation task. Fine tuning hyperparameters does have an impact, but our evaluation565

aims at emphasizing on the impact of integrating such sophisticated embeddings566

(Figure 6, Figure 7), and understanding the best context and fine-tuning for opti-567

mal results (Table 4, Figure 3, Figure 4, Figure 5).568

6.2. Classification Tasks569

Two classification tasks have been studied under different contexts of semantic570

expressivity, ontology size, and stream throughputs.571

• Classification Task in Beijing Context: The classification task is to predict572

air quality in Beijing where data is exposed through three sources of streaming573

data with semantic representations in DL ALC. The number of classes is five for574

the classification problem. The context variation, characterizing a concept drift575

problem, makes the air quality difficult to be forecasted.576

• Classification Task in Dublin Context: The task is to predict bus delay in577

Dublin where data is exposed through three sources of streaming data with se-578

mantic representations in DL EL++. The number of classes is four for the clas-579
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sification problem. Bus delay is subject to major changes due the high degree of580

context variation. The latter, responsible for the concept drift problem, impacts581

accuracy the most.582

•Metric: We used the macro-averaged F1-score (macro F1-score for short) as a583

proxy for evaluating the classifiers overall accuracy. All scores reported in Table584

4, Figures 3, 4, 5, 6 and 7 are Macro F1-scores as it is widely used for evaluating585

classifiers operating on more than two classes.586

• Validation: The macro-F1 score is measured by comparing the predicted en-587

tailments with the ground truth entailments which are observed or inferred from588

the observations. A cutting time is used to split the streaming data: observations589

before the cutting time are used for training, while those after the cutting time are590

used for evaluation. Three different cutting times are set for three different splits591

in each context. Multiple duplicated tests are conducted for each split. We used592

the average as final result. Note given a training split, we further randomly extract593

some samples as the validation set for searching suitable hyperparameter settings.594

595

6.3. Evaluation of Knowledge Graph Embeddings596

In this section we evaluate the impact of knowledge graph embeddings, de-597

scribed as a core element to capture and compact entailment and consistency rep-598

resentations of temporal snapshots in a stream. The evaluation aims at demon-599

strating that such embeddings explicit the semantics of stream dynamics, and then600

provide added-value (i.e., better macro-F1 scores) when applied to solve a classi-601

fication tasks in a stream context with significant concept drifts. In particular we602

studied how our approach is robust to significant concept drift. The significance of603

concept drift is characterized by the proportion of stream updates. Our approach604

is evaluated with up to 51% of stream updates.605

• Overall Semantic Impact: Table 4 reports the positive impact of using knowl-606

edge graph embeddings (cf. columns with Xand XX) on all forecasting tasks in607

both Beijing and Dublin contexts. The first four rows are results on the Beijing608

context where different data streams have been used: B1, B2 and B3 (cf. Section609

6.1 for details on context). The last four rows are results on the Dublin context610

with data streams D1, D2 and D3 from Table 3. The row on average improvement611

refers to the gain from using knowledge graph embeddings with two different612

encodings — BOE and WBOE, when compared to using no such embeddings.613

When referring to knowledge graph embeddings (cf. columns with 7) we refer to614

the embedding procedure as described in Algorithm 2 (which captures entailment615
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vectors, weights and consistency vector). The third, sixth and ninth columns refer616

to no encoding with ωij is set to 1 and Sn0 |κ is set to all snapshots of Sn0 before617

time k in Algorithm 3. The fourth, seventh and tenth columns refer to knowledge618

graph embedding with BOE. The fifth, eighth and eleventh refer to knowledge619

graph embedding with WBOE. The improvements on the Macro-F1 score due620

to using knowledge graph embeddings of either BOE or WBOE are significant,621

ranging from 12.8% (12.5%) to 35.7% (34.1% resp.) in the Beijing (Dublin resp.)622

Context. The embeddings naturally identify semantically (dis-)similar contexts623

by capturing temporal (in-)consistency. Thus, they help in building discriminat-624

ing models, even for long-term-ahead forecasting, as shown for ∆ = 18-hours with625

a 35.7% (34.1% resp.) gain in average in the Beijing (Dublin resp.) Context.626

• BOE vs. WBOE Encoding: Table 4 presents that learning entailment weights627

(Algorithm 2) improves the knowledge graph embeddings and leads to more sig-628

nificant improvements on the macro-F1 score. WBOE (columns XX) outper-629

forms BOE (columns X) by (4.2%, 12.7%, 13.0%) in the Beijing context, and by630

(11.0%, 15.8%, 17.9%) in the Dublin context when ∆ is set to (6, 12, 18). The631

results demonstrate the positive impact of entailment weights on macro-F1 scores.632

The output of Algorithm 2 shows over 80% of the entailments in both Beijing and633

Dublin Contexts are insignificant (with absolute value of weight being less than634

0.1). This means only a small part of the entailments play an important role in de-635

termining the consistency between two snapshots. In our empirical study, WBOE636

encoding can be approximated (achieving close macro-F1 scores) by BOE en-637

coding with a manually selected subset of entailments, which however (i) needs638

an exponential number of tests w.r.t. entailment number and (ii) is not generic.639

WBOE encoding extends BOE encoding with an optimized parameterization of640

the entailment weights.641

• Feature Impact: Table 4 emphasizes extra macro-F1 score gains when increas-642

ing the number of features (data streams) as the input of the approach. For exam-643

ple, the average gain of the macro-F1 score from 1 feature to 3 features is 68.5%.644

This means incorporating semantic concept drifts and knowledge graph embed-645

dings does not impact the effectiveness of adding input features. Their benefits646

are independent.647

• Concept Drift Significance: concept drifts are characterised by 48% and 51%648

of stream updates in respectively Beijing Context and Dublin Context. We fo-649

cus on 4 levels of concept drifts, ranging from a .2 to .8 significance for any ∆650

in {6, 12, 18} cf. semantic concept drift significance (value in [0, 1]) in Figure 3.651

Level-0 does not capture any change. Figure 3 reports the proportion of sever-652
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.

City ID : Features
∆=6 hours ∆=12 hours ∆=18 hours

7 X XX 7 X XX 7 X XX
B

ei
jin

g B1 : B1 .351 .381 .399 .344 .398 .443 .261 .310 .346
B2 : B1 + B2 .398 .432 .451 .350 .404 .452 .279 .334 .370
B3 : B1 + B3 .421 .495 .513 .373 .410 .466 .282 .339 .382
B4 : B1 + B2 + B3 .501 .591 .614 .389 .428 .487 .286 .348 .407

Avg. Improvement (%) X: 13.2 XX: 18.5 X: 12.8 XX: 27.0 X: 20.1 XX: 35.7

D
ub

lin

D1 : D1 .455 .491 .516 .387 .399 .444 .321 .339 .389
D2 : D1 + D2 .534 .580 .691 .499 .521 .556 .361 .401 .501
D3 : D1 + D3 .601 .666 .705 .513 .569 .647 .371 .441 .550
D4 : D1 + D2 + D3 .659 .810 .924 .533 .635 .836 .601 .699 .748

Avg. Improvement (%) X: 12.5 XX: 24.6 X: 9.4 XX: 26.9 X: 12.9 XX: 34.1

Table 4: Macro-F1 Scores in Beijing and Dublin Contexts without Knowledge Graph
Embeddings (7), with BOE Knowledge Graph Embeddings (X) and WBOE Knowledge
Graph Embeddings (XX) (Evaluation of Algorithm 2 and 3).

ity levels in concept drifts for Beijing Context and Dublin Context e.g., 7% are653

level-.4 for Beijing while 19% are level-.8 for Dublin. Although macro-F1 scores654

clearly declined by increasing the severity level of concept drift e.g., from 96%655

(level-.2) to 21% (level-.8) in Dublin Context, knowledge graph embeddings has656

shown to significantly boost macro-F1 scores. More interestingly the more severe657

concept drift the higher improvement, i.e., (average) 36% to 56% on level-.4 to658

.8. Thus integrating semantics is a way forward to build machine learning mod-659

els which are robust to changes, potential erroneous sensor data and significant660

concept drifts.661

• Model Consistency Impact: Figures 4 and 5 report macro-F1 scores of the662

forecasting tasks on High and Low Concept Drift versions of the Dublin and Bei-663

jing problems, noted by HCD and LCD. 85% and 15% of snapshots are impacted664

by concept drifts respectively in HCD and LCD.665

Algorithm 1 and 3 are evaluated with 3 settings of (ε, σmin, κ): (i) consistent666

model with (.9, .9, .1), (ii) mixed model with (.5, .5, .5), (iii) inconsistent model667

with (.1, .1, .9). N = 1, 500. Figure 4 (resp. 5) reports that prediction with con-668

sistent (resp. inconsistent) samples, outperforms models with inconsistent (resp.669

consistent) samples, by about 318% (resp. 456%) and 254% (resp. 322%) in670

respectively Beijing and Dublin for LCD (resp. HCD). Prediction with consis-671

tent and inconsistent samples corresponds to using (38) and (37) to calculation672

the sample weight ωij respectively. These results confirm the importance of (i)673

inferring concept drifts and concept drift significance (by Algorithm 1), and (ii)674

semantic prediction with consistent vectors (by Algorithm 3).675

27



0 0.2 0.4 0.6 0.8

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Beijing	
  	
  	
  	
  	
  	
  	
  Dublin Beijing	
  	
  	
  	
  	
  	
  	
  Dublin Beijing	
  	
  	
  	
  	
  	
  	
  Dublin Beijing	
  	
  	
  	
  	
  	
  	
  Dublin Beijing	
  	
  	
  	
  	
  	
  	
  Dublin

Semantic	
  Concept	
  Drift	
  Significance	
  (value	
  in	
  [0,1])

[2
nd

	
  y	
  
Ax
is]
	
  A
ve
ra
ge
	
  Im

pr
ov
em

en
t	
  o
f	
  

Ac
cu
ra
cy
	
  u
sin

g	
  S
em

an
tic
	
  Em

be
dd

in
gs
	
  (%

)

[1
st
	
  y	
  
Ax
is]
	
  P
ro
po

rt
io
n/
Ac
cu
ra
cy
	
  (%

) Dublin:	
  Prop.	
  of	
  Concept	
  Drift	
  (1st	
  y	
  Axis)
Beijing:	
  Prop.	
  of	
  Concept	
  Drift	
  (1st	
  y	
  Axis)
Dublin:	
  Acc.	
  No	
  Sem.	
  embeddings	
   (1st	
  y	
  Axis)
Beijing:	
  Acc.	
  No	
  Sem.	
  embeddings	
   (1st	
  y	
  Axis)
Dublin:	
  Acc.	
  Improvement	
  (2nd	
  y	
  Axis)
Beijing:	
  Acc.	
  Improvement	
   (2nd	
  y	
  Axis)

Figure 3: Concept Drift Significance Test: Forecasting Macro-F1 Scores (as a proxy for
accuracy) - Evaluation of Algorithm 1 and 3).

6.4. Comparison with Baselines676

We evaluate our final linear score function trained with the semantic concept677

drift analysis and the embeddings with the following baselines whose optimum678

hyperparameters are set via grid searching:679

i) Stochastic Gradient Descent (SGD) on a neural network perceptron (Hyper-680

parameters for both Beijing and Dublin context: logistic regression loss, L2681

regularization, no early stopping, 1 hidden layer, 128 units in the hidden682

layer, ReLU non-linear function, a learning rate of 0.01). Implementation683

documentation6;684

ii) Logistic Regression (LR) on a linear model (Hyperparameters for both Bei-685

jing and Dublin contexts: logistic regression loss, newton-cg solver, L2 reg-686

ularization). Implementation documentation7;687

6https://pytorch.org/docs/stable/nn.html
7https://scikit-learn.org/stable/modules/generated/sklearn.

linear_model.LogisticRegression.html
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Figure 4: The Impact of Model Consistency on Forecasting the Macro-F1 Scores, for
Low Concept Drift Streams where 15% of Snapshots are Impacted by Concept Drifts
(Evaluation of Algorithm 1 and 3).

iii) Random Forest (RF) (Hyperparameters with number of trees in forest: 104688

and 76 for the Beijing context and the Dublin context respectively, max fea-689

tures for splitting a node: 34 and 21 for the Beijing context and the Dublin690

context respectively, and bootstrap and max number of levels in each decision691

tree: 18 for both contexts). Implementation documentation8;692

iv) A method addressing concept drifts in stream learning: Adaptive-Size Hoeffding693

Tree (ASHT) [23] (Hyperparameters are the default ones for both Beijing and694

Dublin contexts). Implementation documentation9;695

v) A method addressing concept drifts in stream learning: Leveraging Bagging696

(LB) [26] (Hyperparameters with L2 regularization for both Beijing and Dublin697

contexts). Implementation documentation10;698

vi) Long Short-Term Memory (LSTM), a state-of-the-art Recurrent Neural Net-699

work for time-series forecasting [49] (Hyperparameters for the Beijing con-700

text: batch size of 32, an architecture of 2 layers, 25 units in each layer, 100701

epochs for training, with no dropout; hyperparameters for the Dublin con-702

8https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

9https://github.com/scikit-multiflow/scikit-multiflow/
10https://github.com/scikit-multiflow/scikit-multiflow/
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Figure 5: The Impact of Model Consistency on Forecasting the Macro-F1 Scores, for
High Concept Drift streams where 85% of Snapshots are Impacted by Concept Drifts
(Evaluation of Algorithm 1 and 3).

text: batch size of 32, an architecture of 2 layers, 50 units for each layer, 200703

epochs for training, a dropout of 0.25). Implementation documentation11;704

vii) Auto-Regressive Integrated Moving Average (ARIMA), a standard time-705

series forecasting model [50] (Hyperparameters for both Beijing and Dublin706

contexts: disp is set to False, transparams is set to True, trend includes con-707

stant, solver is set to newton). Implementation documentation12;708

We adopted the above baselines as they are state-of-the-art for stream learning709

tasks. They are all approaches that learn a representation in some way, with dif-710

ferent methodologies. As we do not want to be biased towards a particular repre-711

sentation learning paradigm we did inclusive experiments with them, and mainly712

evaluate the impact of semantics, and our knowledge graph embeddings approach713

on such approaches. To this end, we add semantic component (by Algorithm 1-2)714

to the machine learning models SGD, LR, RF, ASHT and LB (by Algorithm 3),715

and compare the semantic enhanced (denoted by prefix S- in Figure 6) with the716

original as well as LSTM and ARIMA. ARIMA uses one stream variable: The717

air quality level in Beijing and the bus delay level in Dublin, while SGD, LSTM,718

ASHT and LB use all the streams with an optimized memory size, i.e., the number719

of recent snapshots (i.e., B4 andD4 in Table 4). Results with optimum parameters720

11https://pytorch.org/docs/master/generated/torch.nn.LSTM.html
12https://www.statsmodels.org/stable/index.html
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for Algorithm 1-3 are reported.721

Figures 6 and 7 emphasis that our semantic enhanced models outperformed722

the baselines, especially in the Dublin Context. S-SGD, S-LR, S-RF, S-ASHT and723

S-LB outperform their original models by 21.37%, 20.5%, 18.81%, 13.21% and724

12.37% (40.0%, 47.3%, 24.6%, 21.6% and 15.0%) respectively w.r.t. the Beijing725

Context (Dublin Context). Among them, S-SGD which adopts a simple linear726

score function performs the best. S-ASTH and S-LB, although equipped with727

both knowledge graph embeddings and statistic learning strategies (cf. Section728

2.2) for concept drifts, do not outperform S-SGD. Meanwhile, S-SGD’s average729

macro-F1 score is 7.03% (17.79%) higher than LSTM (ARIMA) in the Beijing730

Context, and 18.8% (43.6%) higher in the Dublin Context. The enhancement731

by semantic reasoning and embeddings is more significant in the Dublin Context732

than in the Beijing Context. One potential reason is the difference of the ontology733

expressiveness: the Beijing Context adopts DL ALC while the Dublin Context734

adopts DL EL++ (cf. Lessons Learnt).735

More interestingly, classic learning models do not generalise as well as the736

models that are enhanced by semantic reasoning and embeddings. The later mod-737

els show to be more robust with less variance. The experiments also demonstrate738

that semantic consistency and inconsistency matters more than recentness during739

learning.740

6.5. Lessons Learnt741

Adding semantic reasoning and embeddings to classic ML models has clearly742

shown the positive impact on the macro-F1 scores and the stability, especially in743

presence of concept drifts. Simple ML models (e.g., the linear score function)744

which are fast to train can achieve higher macro-F1 scores than complex models745

(e.g., LSTM) when semantics are added. Our study also finds that the attentions746

(through weights) to different entailments in comparing two snapshots, w.r.t. a747

specific target, are different. Learning weighted bag of entailments (WBOE) ben-748

efits understanding overall semantics of all the entailments.749

Meanwhile, ontology expressiveness and axiom numbers are critical as they750

drive and control the semantics of data in streams. They determine the entailments751

that can be inferred, which further impact the knowledge graph embeddings in-752

cluding the entailment vectors, the entailment weights and the consistent vector.753

The more semantic axioms the streams have, the more robust the model is, and754

hence the higher macro-F1 score it achieves. Lightweight semantics such as RDF755

Schema would highly limit the scope of our model given the omission of inconsis-756

tency checking (cf. Figures 4-5). On the other hand considering more expressive757
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Figure 6: [Beijing Context] Baseline Comparison of Forecasting Macro-F1 Score (Eval-
uation of Algorithm 1-3), where ∆ = 6. Best results are from the semantic enhanced
models S-SGD, S-LR, S-RF, S-ASHT and S-LB. In particular S-SGB with a score of .62
is achieving the best results overall.

semantics would strongly impact the entailment vector computation, as they re-758

quire an underlying reasoning to be applied, i.e., entailments rely on reasoning759

over the TBox.760

7. Conclusion and Future Work761

In this work, we proposed an approach to encoding knowledge in ontology762

streams with schema-enabled knowledge graph embeddings, through a novel com-763

binations of ABox entailment vectors, entailment weights and a consistency vec-764

tor, alongside a general framework of coupling such schema-enabled embeddings765

with supervised stream learning algorithms to learn prediction models which are766

robust to concept drifts.767

Interestingly, our approach is adaptable and flexible to any machine learn-768

ing classification algorithms for streaming learning. Our overall prediction algo-769

rithm (Algorithm 3) is agnostic to these classification algorithms, which capture770

the temporal dependencies of snapshots through our proposed schema-enabled771

knowledge graph embeddings, among which, the construction of entailment vec-772
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Figure 7: [Dublin Context] Baseline Comparison of Forecasting Macro-F1 Score (Eval-
uation of Algorithm 1-3), where ∆ = 6. Best results are from the semantic enhanced
models S-SGD, S-LR, S-RF, S-ASHT and S-LB. In particular S-ASHT with a score of
.93 is achieving the best results overall.

tors and consistency vectors is based on ontological reasoning, while the entail-773

ment weights are learned iteratively (Algorithm 2).774

Another insight is that, in order to check the consistency between two snap-775

shots, only a small part (less than 20%) of ABox entailments play an important776

role. However, the performance of consistent models and that of inconsistent777

models have significant difference — the former outperforms the latter by over778

300%.779

Our work sheds some lights on some of the blind spots of stream learning.780

Besides demonstrating accurate prediction with concept drifts in Dublin and Bei-781

jing forecasting applications, experiments have shown that embedding expressive782

ontologies with different weights on different entailments is a promising way to-783

wards outperforming state-of-the-art approaches.784

In the future work, we will (i) investigate the impact of ontologies with dif-785

ferent levels of expressiveness on on stream learning; (ii) extend the approach to786

incorporate symbolic knowledge (such as ontologies) in other relevant prediction787

contexts, such as transfer learning and zero-shot learning. Furthermore, our work788

might be useful for future work on applications of stream learning, such as au-789
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tonomous driving, which require high accuracy of stream learning in the presence790

of sudden and disruptive changes .791
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[4] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia, A survey on806

concept drift adaptation, ACM Computing Surveys (CSUR) 46 (4) (2014)807

44.808

[5] J. Coble, D. J. Cook, Real-time learning when concepts shift, in: Proceed-809

ings of the 13th International Florida Artificial Intelligence Research Society810

Conference, 2000, pp. 192–196.811

[6] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes, B. Pfahringer, Effi-812

cient online evaluation of big data stream classifiers, in: Proceedings of the813

21st ACM SIGKDD International Conference on Knowledge Discovery and814

Data Mining, ACM, 2015, pp. 59–68.815

[7] Z. Huang, H. Stuckenschmidt, Reasoning with multi-version ontologies: A816

temporal logic approach, in: International Semantic Web Conference, 2005,817

pp. 398–412.818

34



[8] Y. Ren, J. Z. Pan, Optimising Ontology Stream Reasoning with Truth Main-819

tenance System, in: Proc. of the ACM Conference on Information and820

Knowledge Management (CIKM 2011), 2011.821

[9] Y. Ren, J. Z. Pan, I. Guclu, M. Kollingbaum, A Combined approach to In-822

cremental Reasoning for EL Ontologies, in: Proc. of the 10th International823

Conference on Web Reasoning and Rule Systems (RR2016), 2016.824
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