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Abstract. Scalable query answering over Description Logic (DL) based
ontologies plays an important role for the success of the Semantic Web. Towards
tackling the scalability problem, we propose a decomposition-based approach to
optimizing existing OWL DL reasoners in evaluating conjunctive queries in OWL
DL ontologies. The main idea is to decompose a given OWL DL ontology into a
set of target ontologies without duplicated ABox axioms so that the evaluation of
a given conjunctive query can be separately performed in every target ontology by
applying existing OWL DL reasoners. This approach guarantees sound and com-
plete results for the category of conjunctive queries that the applied OWL DL
reasoner correctly evaluates. Experimental results on large benchmark ontolo-
gies and benchmark queries show that the proposed approach can significantly
improve scalability and efficiency in evaluating general conjunctive queries.

1 Introduction

Scalable query answering over Description Logic (DL) based ontologies plays an im-
portant role for the success of the Semantic Web (SW). On the one hand, the W3C
organization proposed the standard Web Ontology Language (OWL)1 to represent on-
tologies in the SW, which is based on DLs and provides shared vocabularies for different
domains. On the other hand, ontology query engines are expected to be scalable enough
to handle the increasing semantic data that the Web provides.

OWL DL is the most expressive species in the OWL family that is decidable in terms
of consistency checking. Though the decidability of conjunctive query answering in
OWL DL is still an open problem, many OWL DL reasoners implement decision proce-
dures for some categories of conjunctive queries (CQs) for which decidability is known,
e.g., for CQs that have a kind of tree-shape or CQs that do not contain non-distinguished
variables (i.e. existentially quantified variables). To name a few, Pellet [14] is a well-
known OWL DL reasoner that supports general CQs that have a kind of tree-shape

1 http://www.w3.org/TR/owl-semantics/
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(i.e. do not contain cycles through non-distinguished variables); KAON2 [11] is another
well-known OWL DL reasoner that supports CQs without non-distinguished variables.
These reasoners still suffer from the scalability problem and call for optimizations to
make them scale to larger ABoxes or more complex TBoxes.

To make existing OWL DL reasoners more scalable, we propose a decomposition-
based approach to optimizing conjunctive query answering in OWL DL (see Section 4).
Basically, the approach computes explicit answers (i.e. facts that satisfy the given CQ)
first and then identifies candidate answers and target ontologies that are sufficient for
checking whether candidate answers are indeed answers to the query. Different target
ontologies have no common ABox axioms but may have common TBox axioms. The
verification of whether a candidate answer is an answer is delegated to an existing OWL
DL reasoner. This approach guarantees sound and complete results for the categories of
CQs that the OWL DL reasoner correctly evaluates. For the categories of CQs that the
OWL DL reasoner cannot handle, this approach still returns all candidates and results
in an unsound but complete evaluation.

We implement the proposed approach and conduct experiments on LUBM [8] and
UOBM [10] ontologies (see Section 5). Experimental results on all benchmark CQs
given in [8,10] show that the proposed approach can significantly improve scalability
and efficiency in evaluating general CQs.

Related Work. There are approaches to conjunctive query answering that have certain
contributions to the scalability problem. Motik et al. [12] propose a resolution-based
approach, implemented in KAON2 [11], to evaluating CQs without non-distinguished
variables. This approach reduces the problem of conjunctive query answering to the
problem of reasoning in disjunctive datalog programs; the latter problem has more scal-
able solutions for handling large ABoxes. Currently KAON2 does not support nominals,
which are allowed in OWL DL. Dolby et al. [2] propose a summarization and refine-
ment approach to instance retrieval, which is later adapted to evaluating CQs without
non-distinguished variables by adding some optimizations for retrieving role instances
[3]. This approach improves scalability because it works on a summarization of the
ABox, but it does not support nominals either. Pan and Thomas [13] propose a seman-
tic approximation approach to OWL DL. The approach converts an OWL DL ontology
to a DL-Lite [1] ontology, which allows CQs to be evaluated in polynomial time. The
above approaches, however, do not support or may not correctly evaluate CQs with
non-distinguished variables.

The idea of decomposition has been exploited in managing large ontologies. The
result of decomposing an ontology is usually a set of subsets of axioms in the ontol-
ogy. Stuckenschmidt and Klein [15] propose a method for decomposing all concepts in
an ontology to facilitate visualization of the ontology. This method does not concern
ontology reasoning. Cuenca Grau et al. [6] propose a method for decomposing an on-
tology into a set of modules such that all inferences about the signature contained in
a module can be made locally. The method focuses on TBoxes and does not concern
conjunctive query answering. Guo and Heflin [7] propose a method for decomposing an
ABox into possibly overlapped subsets. Only instance retrieval of atomic concepts/roles
can be correctly performed in separate resulting subsets together with the whole TBox.
Compared with the above methods, the primary distinction of our proposed approach is
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that it yields target ontologies without duplicated ABox axioms and ensures conjunctive
query answering to be correctly performed in separate target ontologies.

2 Preliminaries

OWL DL and Conjunctive Query Answering. OWL DL corresponds to DL
SHOIN . We assume that the reader is familiar with OWL DL and thus we do not
describe it in detail, but recall that an OWL DL ontology O = (OT ,OA) consists of a
terminological box (TBox)OT and an assertional box (ABox)OA. The TBox OT con-
sists of a finite set of concept inclusion axioms C � D, transitivity axioms Trans(R)
and role inclusion axioms R � S, where C and D are OWL DL concepts, and R and S
roles. The ABox OA consists of a finite set of concept assertions C(a), role assertions
R(a, b), equality assertions a ≈ b and inequality assertions a �≈ b, where C is an OWL
DL concept, R a role, and a and b individuals.

We briefly introduce the direct model-theoretic semantics for an OWL DL
ontologyO. An interpretation I = (ΔI , ·I) consists of a domain ΔI and a function ·I
that maps every atomic concept A to a set AI ⊆ ΔI , every atomic role R to a binary
relation RI ⊆ ΔI ×ΔI , and every individual a to aI ∈ ΔI . I is called a model of O
if every axiom in O is satisfied by I. O is consistent or satisfiable iff it has a model.

A conjunctive query (CQ) is of the form q(−→x ) ← ∃−→y .conj(−→x ,−→y ,−→c ) or simply
q(−→x )← conj(−→x ,−→y ,−→c ), where q(−→x ) is the head of q, conj(−→x ,−→y ,−→c ) is the body of
q,−→x are distinguished variables,−→y are non-distinguished variables,−→c are individuals,
and conj(−→x ,−→y ,−→c ) is a conjunction of atoms of the form A(v) or R(v1, v2) for A an
atomic concept, R an atomic role, and v, v1 and v2 variables in−→x and−→y or individuals
in−→c . Here allowing only atomic concepts/roles is not a big issue in practice as querying
against named relations is usual when people query over relational databases [13]. A
CQ is called a Boolean conjunctive query (BCQ) if it has no distinguished variables.

A tuple−→t of individuals in an ontologyO is called an answer of q(−→x ) inO, denoted
by O |= q[−→x 
→ −→t ], if every model of O satisfies q[−→x 
→ −→t ], i.e. the body of q
with every variable in −→x substituted by its corresponding individual in −→t . A BCQ
q() ← conj(−→y ,−→c ) is said to have an answer 〈〉 in O if O |= q[〈〉 
→ 〈〉] (simply
denoted by O |= q). The problem of evaluating a CQ in O, i.e. computing all answers
of the CQ in O, is called a problem of conjunctive query answering.

First-order Logic. We use the standard clausal form to represent a first-order logic
program. Terms are variables, constants or functional terms of the form f(t1, . . . , tn),
where f is a function symbol of arity n and t1, ..., tn are terms. Throughout this paper,
we use (possibly with subscripts) x, y, z for variables, a, b, c for constants, and s, t for
terms. We only consider unary function symbols because only unary function symbols
occur in first-order logic programs that are translated from OWL DL ontologies. Atoms
are of the form T (t1, . . . , tn) where T is a predicate symbol of arity n and t1, . . . , tn
are terms. A literal is a positive or negative atom and a clause is a disjunction of literals.
Terms, atoms and clauses that do not contain variables are called ground.

A first-order logic program is a set of clauses in which all variables are universally
quantified. For a clause cl = ¬A1 ∨ . . . ∨ ¬An ∨ B1 ∨ . . . ∨ Bm, the set of atoms
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{A1, . . . , An} is denoted by cl−, whereas the set of atoms {B1, . . . , Bm} is denoted by
cl+. By |S| we denote the cardinality of a set S. A clause cl is called a fact if |cl−| = 0,
and said to be definite if |cl+| = 1.

A propositional program Π is a first-order logic program consisting of only ground
clauses. The set of ground atoms occurring in Π is denoted by atoms(Π).

For a first-order logic program P , the set of ground terms (resp. ground atoms)
defined from the first-order signature of P is called the Herbrand universe (resp. Her-
brand base) of P , denoted by HU(P ) (resp. HB(P )). The set of ground clauses ob-
tained by replacing all variables occurring in each clause in P with ground terms from
HU(P ) is called the primary grounding of P , denoted by G(P ). An interpretation M
of P is a set of ground atoms in HB(P ); it is a model of P if for any ground clause
cl ∈ G(P ) such that cl− ⊆ M , cl+ ∩M �= ∅; it is a minimal model of P if there is
no model M ′ of P such that M ′ ⊂ M . P is satisfiable iff it has a model. Given a CQ
q(−→x ) ← conj(−→x ,−→y ,−→c ), a tuple −→t of constants is called an answer of q(−→x ) in P ,
denoted by P |= q[−→x 
→ −→t ], if every model of P satisfies q[−→x 
→ −→t ].

The first-order logic program P translated from a SHOIN ontology may contain
the equality predicate ≈, which is interpreted as a congruence relation and different
from ordinary predicates. This difference is not captured by the above first-order seman-
tics. However, the equality predicate≈ can be explicitly axiomatized via a well-known
transformation from [5]. Let E(P ) denote the first-order logic program consisting of the
following clauses: (1) t ≈ t, for each ground term t ∈ HU(P ); (2) ¬(x ≈ y) ∨ y ≈ x;
(3) ¬(x ≈ y)∨¬(y ≈ z)∨x ≈ z; (4) ¬(x ≈ y)∨f(x) ≈ f(y), for each function sym-
bol f occurring in P ; (5)¬T (x1, . . . , xi, . . . , xn)∨¬(xi ≈ yi)∨T (x1, . . . , yi, . . . , xn),
for each predicate symbol T other than ≈ occurring in P and each position i. Append-
ing E(P ) to P allows to treat ≈ as an ordinary predicate, i.e., M is a model of P that
interprets≈ as a congruence relation, iff for any ground clause cl ∈ G(P ∪ E(P )) such
that cl− ⊆M , cl+ ∩M �= ∅.

3 The Proposed Decomposition-Based Approach

Throughout this section, byO = (OT ,OA) we denote a given OWL DL ontology. We
assume that the given ontologyO is consistent and treatO as a set of axioms.

3.1 The Basic Idea of the Proposed Approach

We use a BCQ Q : q() ← p1(−→y1,−→c1) ∧ ... ∧ pn(−→yn,−→cn) to show the basic idea of our
approach. The approach to checking if O |= q consists of two phases.

In the first phase, we first translate O to a first-order logic program P such that
O |= q iff P ∪ {¬p1(−→y1 ,−→c1 ) ∨ ... ∨ ¬pn(−→yn,−→cn)} is unsatisfiable (see Subsection 3.2),
then consider transforming P to a proposition program Π such that P ∪{¬p1(−→y1,−→c1)∨
... ∨ ¬pn(−→yn,−→cn)} is unsatisfiable iff Π ∪ InstBCQ(Π , Q) ∪ {¬wQ()} is unsatisfiable,
where wQ a new predicate symbol corresponding to Q and not occurring in Π , and
InstBCQ( Π , Q) is a set of ground clauses instantiated from the clause ¬p1(−→y1 ,−→c1) ∨
...∨¬pn(−→yn,−→cn)∨wQ() based on Π . We develop a basic method for extracting a target
ontology Orel ⊆ O such that Π ∪ InstBCQ(Π, Q) ∪ {¬wQ()} is unsatisfiable only if
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Orel |= q (note that this impliesO |= q only ifOrel |= q). Since Π may be infinite due
to presence of function symbols in P , we instead transform P to a finite variant Π ′ of
Π (see Subsection 3.3), such that the target ontology O′rel ⊆ O extracted from Π ′ ∪
Inst†BCQ(Π ′, Q) ∪ {¬wQ()} by using a similar method satisfies Orel ⊆ O′rel, where

Inst†BCQ is a variant of InstBCQ. It should be noted that P and Π ′ are independent of
any given query, so this phase (i.e., computing P and Π ′) can be performed offline.

In the second phase (see Subsection 3.4), we check if there exists a ground sub-
stitution σ such that {p1(−→y1,−→c1), ..., pn(−→yn,−→cn)}σ is a set of ground atoms occurring
in definite ground facts in P . If such ground substitution exists, we conclude that
O |= q; otherwise, we extract the aforementioned target ontology O′rel from Π ′ ∪
Inst†BCQ(Π ′, Q) ∪ {¬wQ()} and conclude that O |= q iff O′rel |= q.

From the above descriptions, we can see that our approach is correct, i.e., O |= q
iff there is a ground substitution σ such that {p1(−→y1 ,−→c1), ..., pn(−→yn,−→cn)}σ is a set of
ground atoms occurring in definite ground facts in P , or O′rel |= q.

Due to the space limitation, we do not provide proofs of lemmas and theorems in
this paper, but refer the interested reader to our technical report2.

3.2 Translating to First-Order Logic

Since a direct translation from SHOIN to first-order clauses may incur exponential
blowup [9], we apply the well-known structural transformation [11,9] to O before
translatingO to first-order clauses. By Θ(ax) we denote the result of applying structural
transformation to an axiom ax, and by Θ(O) we denote

⋃
ax∈O Θ(ax). As structural

transformation is well-known, we do not give its definition here but refer the reader to
[11,9] or our technical report2.

Throughout this section, we use O† to denote Θ(O) if not otherwise specified and
treat O† as a set of axioms as well. By Ξ(ax) we denote the result of translating an
axiom ax inO† to a set of first-order clauses using the standard methods (see [9] or our
technical report2 for details). By Ξ(O†) we denote

⋃
ax∈O† Ξ(ax), and by Ξ ′(O†) we

denote Ξ(O†) ∪ E(Ξ(O†)) if some equational atom s ≈ t occurs positively in Ξ(O†),
or Ξ(O†) otherwise. Recall that E(Ξ(O†)) is used to axiomatize the equality predicate
in Ξ(O†) (see Section 2).

The following lemma shows that the problem of evaluating a BCQ in O can be
reduced to a satisfiability problem about Ξ ′(O†). This lemma is similar to existing
results given in [11,9].

Lemma 1. For a BCQ q()← p1(−→y1,−→c1) ∧ ... ∧ pn(−→yn,−→cn) in O, O |= q iff Ξ ′(O†) ∪
{¬p1(−→y1,−→c1) ∨ ... ∨ ¬pn(−→yn,−→cn)} is unsatisfiable.

Example 1. In our running example, we consider an ontology O = {Man �≤1

hasFather �∃hasFather.Man � Human, Man(a1), hasFather(a1, a2)}. By applying
the structural transformation, we obtain O† = {Man �≤1 hasFather, Man � ∃
hasFather.Man, Man � Human, Man(a1), hasFather(a1, a2)}. By translating O† to

2 http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/
decompose-long.pdf

http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/decompose-long.pdf
http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/decompose-long.pdf
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first-order clauses, we obtain Ξ(O†) = {cl1, ..., cl6}. Since y1 ≈ y2 occurs positively
in Ξ(O†), we have Ξ ′(O†) = {cl1, ..., cl13} ∪ {t ≈ t | t ∈ HU(Ξ(O†))}.
cl1 : ¬Man(x) ∨ ¬hasFather(x, y1) ∨ ¬hasFather(x, y2) ∨ y1 ≈ y2

cl2 : ¬Man(x) ∨ hasFather(x, f(x)) cl3 : ¬Man(x) ∨Man(f(x))

cl4 : ¬Man(x) ∨ Human(x) cl5 : Man(a1) cl6 : hasFather(a1, a2)

cl7 : ¬(x ≈ y) ∨ y ≈ x cl8 : ¬(x ≈ y) ∨ ¬(y ≈ z) ∨ x ≈ z cl9 : ¬(x ≈ y) ∨ f(x) ≈ f(y)

cl10 : ¬Man(x) ∨ ¬(x ≈ y) ∨Man(y) cl11 : ¬hasFather(x, y) ∨ ¬(x ≈ z) ∨ hasFather(z, y)

cl12 : ¬hasFather(x, y) ∨ ¬(y ≈ z) ∨ hasFather(x, z) cl13 : ¬Human(x) ∨ ¬(x ≈ y) ∨ Human(y)

3.3 Approximate Grounding of the First-Order Logic Program

According to Lemma 1, we need to address a satisfiability problem about Ξ ′(O†). This
can be done by considering a propositional program that is transformed from Ξ ′(O†)
and has the same set of minimal models as Ξ ′(O†) has. We extend the well-known
intelligent grounding (IG) technique [4] which computes, in a fixpoint-evaluation man-
ner, a semantically equivalent propositional program containing only derivable ground
atoms from a function-free first-order logic program. By generalizing the idea of the IG
technique, we define a method for grounding a general first-order logic program, called
reduced grounding and defined below.

Definition 1 (Reduced Grounding). For a first-order logic program P , the reduced
grounding of P , denoted by Gr(P ), is the union of two sets of ground clauses Π1∪Π2,
where Π1 = {cl ∈ P | cl is a definite ground fact}, and Π2 is the least fixpoint of Π(n)

such that Π(0) = ∅ and for n > 0, Π(n) = {cl σ | cl ∈ P, σ is a ground substitution
such that cl−σ ⊆ atoms(Π(n−1) ∪Π1), cl+σ ⊆ HB(P ) and cl+σ∩atoms(Π1) = ∅}.

Lemma 2. Let P be a first-order logic program in which the equality predicate ≈ has
been axiomatized. Then Gr(P ) is a subset of G(P ) and has the same set of minimal
models as P has.

In the following theorem, we show a method that uses Gr(Ξ ′(O†)) to check if O |= q
for a BCQ Q : q()← p1(−→y1 ,−→c1 ) ∧ ... ∧ pn(−→yn,−→cn). By InstBCQ(Π, Q) we denote the
result of instantiating the clause cl : ¬p1(−→y1,−→c1) ∨ ... ∨ ¬pn(−→yn,−→cn) ∨ wQ() based on
a propositional program Π , i.e., InstBCQ(Π, Q) = {cl σ | σ is a ground substitution
such that cl−σ ⊆ atoms(Π)}, where wQ is a predicate symbol corresponding to Q
and not occurring in Π . The introduction of InstBCQ(Gr(Ξ ′(O†)), Q) enables the
checking of O |= q to be performed in a propositional program, while the introduction
of wQ facilitates extracting a target ontology w.r.t. Q.

Theorem 1. For a BCQ Q : q() ← p1(−→y1 ,−→c1) ∧ ... ∧ pn(−→yn,−→cn) in O, O |= q iff
Gr(Ξ ′(O†)) ∪ InstBCQ(Gr(Ξ ′(O†)), Q) ∪ {¬wQ()} is unsatisfiable.

Based on the above theorem, we develop a basic method that could improve the perfor-
mance in evaluating a BCQ Q : q()← p1(−→y1 ,−→c1) ∧ ... ∧ pn(−→yn,−→cn) inO. This method
first extracts a relevant subset Πrel of Gr(Ξ ′(O†)) ∪ InstBCQ(Gr(Ξ ′(O†)), Q) ∪
{¬wQ()} such that Πrel is unsatisfiable iff Gr(Ξ ′(O†)) ∪ InstBCQ(Gr(Ξ ′(O†)), Q) ∪
{¬wQ()} is unsatisfiable, then identifies a subsetOrel of axioms in O† from Πrel such
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that Πrel is unsatisfiable only ifOrel |= q, and finally checks ifOrel |= q. By Theorem
1, we have O |= q only if Orel |= q. Since Orel ⊆ O† and O |= q iff O† |= q, we also
haveO |= q if Orel |= q.

However, the basic method cannot be realized in general as Gr(Ξ ′(O†)) can be infi-
nite. We therefore consider a mapping function on ground terms occurring in a propo-
sitional program Π such that the range of this function is finite. We call a mapping
function λ : terms(Π) 
→ terms(Π), where terms(Π) is the set of ground terms
occurring in Π , an equality-and-functional-term-collapsed mapping function (simply
eft-mapping function) for Π , if for every functional term f1(...fn(a)) (where n > 1)
occurring in Π , λ(f1(...fn(a))) = λ(fn(a)), and for every equational atom s ≈ t
occurring positively in Π , λ(s) = λ(t).

We naturally extend a mapping function λ on ground terms to other first-order ob-
jects, i.e., by λ(α), λ(cl), λ(A) and λ(P ) we respectively denote the results obtained
from an atom α, a clause cl, a set A of atoms and a first-order logic program P by
replacing every ground term t occurring in it with λ(t).

It is clear that, when a propositional program Π is infinite but the number of con-
stants, predicate symbols and function symbols occurring in Π is finite, λ(Π) is finite
for any eft-mapping function λ for Π . Even when Π is finite, λ(Π) can be much smaller
than Π because the subset of ground clauses in Π that form a congruence relation is
collapsed in λ(Π).

By Inst′BCQ(Π, Q, λ) we denote the result of instantiating the clause cl : ¬p1(−→y1,
−→c1)∨...∨¬pn(−→yn,−→cn)∨wQ() based on a propositional program Π and a mapping func-
tion λ, i.e., Inst′BCQ(Π, Q, λ) = {cl σ | σ is a ground substitution such that λ(cl−)σ ⊆
atoms(Π)}, where wQ is a predicate symbol corresponding to Q and not occurring in
Π . We revise the basic method by replacing Gr(Ξ ′(O†)) with a finite superset Πsup

of λ(Gr(Ξ ′(O†))), where λ is an eft-mapping function for Gr(Ξ ′(O†)). The revised
method first extracts a relevant subset Πrel of Πsup∪Inst′BCQ(Πsup, Q, λ)∪{¬wQ()},
then computes the setOrel of axioms ax inO† such that λ(cl σ) ∈ Πrel for some clause
cl ∈ Ξ(ax) and some ground substitution σ, and finally checks if Orel |= q.

Consider the extraction of a relevant subset Πrel mentioned above. Our extraction
method is based on the notion of connected component (see Definition 2 below). Simply
speaking, a connected component of a propositional program Π is a subset of Π such
that any two clauses in it have common ground atoms. This notion has been used to
confine the search space in solving SAT problems because an unsatisfiable propositional
program must have a maximal connected component that is unsatisfiable.

Definition 2 (Connected Component). Let Π be a propositional program. Two
ground clauses cl and cl′ are called connected in Π if there exists a sequence of clauses
cl0 = cl, cl1, . . . , cln = cl′ in Π such that cli−1 and cli have common ground atoms
for any 1 ≤ i ≤ n. A connected component Πc of Π is a subset of Π such that any
two clauses cl and cl′ in Πc are connected in Πc. Πc is called maximal if there is no
connected component Π ′c of Π such that Πc ⊂ Π ′c.

The basic idea for extracting Πrel is that when Πsup∪Inst′BCQ(Πsup, Q, λ)∪{¬wQ()}
is unsatisfiable, the maximal connected component of Πsup ∪ Inst′BCQ(Πsup, Q, λ) ∪
{¬wQ()} where wQ() occurs is also unsatisfiable. To obtain a smaller unsatisfiable
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subset, we extend the basic idea by removing a subset Πur from Πsup first and then
extracting the maximal connected component Πrel of (Πsup ∪ Inst′BCQ(Πsup, Q, λ)∪
{¬wQ()}) \ Πur where wQ() occurs. The detailed description and the correctness of
the method are shown in the following theorem.

Theorem 2. Let Q : q() ← p1(−→y1,−→c1) ∧ ... ∧ pn(−→yn,−→cn) be a BCQ, λ be an eft-
mapping function for Gr(Ξ ′(O†)), Πsup be a superset of λ(Gr(Ξ ′(O†))) and Π ′ =
Πsup ∪ Inst′BCQ(Πsup, Q, λ) ∪ {¬wQ()}. Let Πur be a subset of Π ′ such that for all
clauses cl ∈ Πur, cl+ contains at least one ground atom not occurring in Π ′ \ Πur

and Πrel be the maximal connected component of Π ′ \ Πur where wQ() occurs. Let
Orel = {ax ∈ O† | there exists a clause cl ∈ Ξ(ax) and a ground substitution σ such
that λ(cl σ) ∈ Πrel}. Then O |= q iff Orel |= q.

Based on the above theorem, we develop an algorithm to compute a superset of
λ(Gr(Ξ ′(O†))) for some eft-mapping function λ. This algorithm, denoted by Approx-
Ground(O†), acceptsO† and returns a triple (Π,Sdf ,S), where Sdf and S are two sets
of sets of ground atoms and Π is a superset of λ(Gr(Ξ ′(O†))) for some eft-mapping
function λ that can be constructed from Sdf and S. Since the algorithm is rather techni-
cal, we only explains the basic idea here and refer the interested reader to our technical
report2 for technical details.

The output Sdf is actually the set of sets of constants such that for any constant a in
any C ∈ Sdf , there exists an equality assertion a ≈ b inO† for some constant b ∈ C. The
output S is actually the set of sets of ground terms whose functional depth is at most
one, such that for any ground term s in any C ∈ S, there exists a ground term t ∈ C
such that the equational atom s ≈ t appears in the execution of the algorithm. Both
Sdf and S are used to merge ground terms that may occur in the same equational atom
occurring positively in Gr(Ξ ′(O†)), making the output Π smaller. We call an element
of Sdf or S a congruence class.

The algorithm does not directly compute an eft-mapping function λ for Gr(Ξ ′(O†)),
because such mapping function can be constructed from Sdf and S. By map(t, Sdf , S)
we denote a function HU(Ξ ′(O†)) 
→ HU(Ξ ′(O†)) based on Sdf and S, recursively
defined as follows, where a and b are constants, and s and t ground terms.

◦ map(f1(...fn(a)),Sdf ,S) = map(fn(a),Sdf ,S), where n > 1;
◦ map(f(a),Sdf ,S) = map(f(b), ∅,S), where b = min(C) if a ∈ C for some C ∈ Sdf , or

b = a otherwise;
◦ map(a,Sdf ,S) = map(b, ∅,S), where b = min(C) if a ∈ C for some C ∈ Sdf , or b = a

otherwise;
◦ map(s, ∅,S) = t, where t = min(C) if s ∈ C for some C ∈ S , or t = s otherwise.

We naturally extend the function map to other first-order objects, i.e., by map(α, Sdf ,
S), map(cl, Sdf , S), map(A, Sdf , S) and map(P , Sdf , S) we respectively denote the
results obtained from an atom α, a clause cl, a set A of atoms and a first-order logic
program P by replacing every ground term t occurring in it with map(t,Sdf ,S).

We call a mapping function λ : HU(Ξ ′(O†)) 
→ HU′(Ξ(O†)) induced from
the function map w.r.t. Sdf and S if λ(t) = map(t,Sdf ,S) for all ground terms
t ∈ HU(Ξ ′(O†)). The first goal of the algorithm is to ensure the mapping function
λ induced from map w.r.t. Sdf and S to be an eft-mapping function for Gr(Ξ ′(O†)),
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input
O†

merge constants occurring
−−−−−−−−−−−−−−−−−−−→
in equality assertions in O†

get
Sdf

instantiate clauses from Ξ ′(O†)
−−−−−−−−−−−−−−−−−−−−−−−−→

in a fixpoint-evaluation manner
get
S,Π

Fig. 1. The main steps for approximately grounding Ξ ′(O†)

i.e., ensure map(s,Sdf ,S) = map(t,Sdf ,S) for all equational atoms s ≈ t occurring
positively in Gr(Ξ ′(O†)). The second goal of the algorithm is to return a superset of
λ(Gr(Ξ ′(O†))). To achieve the above two goals, the algorithm works in two main steps,
as shown in Figure 1.

In the first step, the algorithm places any two constants a and b that occur in the same
equality assertion in O† into the same congruence class C and adds C to Sdf . After this
step, Sdf will not be changed anymore.

In the second step, the algorithm instantiates clauses from Ξ ′(O†) in a fixpoint-
evaluation manner to generate a superset of λ(Gr(Ξ ′(O†))), where λ denotes a mapping
function induced from map w.r.t. Sdf and S.

Before giving a fixpoint-like characterization of a superset of λ(Gr(Ξ ′(O†))), we
need to introduce a restriction on O†. We call O† congruence-complete if (1) a ≈ b ∈
O† implies b ≈ a ∈ O†; (2) a ≈ b ∈ O† and b ≈ c ∈ O† imply a ≈ c ∈ O†; (3)
a ≈ b ∈ O† and A(a) ∈ O† imply A(b) ∈ O†; (4) a ≈ b ∈ O† and R(a, c) ∈ O†

imply R(b, c) ∈ O†; and (5) a ≈ b ∈ O† and R(c, a) ∈ O† imply R(c, b) ∈ O†.
Let Π1 denote the set of definite ground facts in Ξ ′(O†). By induction on the level n

of Π(n) given in Definition 1, we can show that, if Π is a subset of λ(G(Ξ ′(O†))) such
that (*) λ(cl σ) ∈ Π for any clause cl ∈ Ξ ′(O†) and any ground substitution σ such
that λ(cl−σ) ⊆ atoms(Π∪λ(Π1)) and every ground atom in λ(cl+σ)∩atoms(λ(Π1))
contains ground terms that are functional or occur in S, then Π ∪ λ(Π1) is a superset
of λ(Gr(Ξ ′(O†))) when O† is congruence-complete. We refer the interested reader to
our technical report2 to see the proof of the above conclusion, a counterexample on why
the restriction on congruence-completeness is needed, as well as a simple method for
makingO† congruence-complete when Θ(O) is not congruence-complete.

We in what follows assume thatO† is congruence-complete. Under this assumption,
we refine the second goal of the algorithm to finding a subset Π of λ(G(Ξ ′(O†))) that
satisfies the above condition (*). To achieve this goal, the second step of the algorithm
adds λ(cl σ) to Π for any clause cl ∈ Ξ ′(O†) and ground substitution σ such that (i)
λ(cl−σ) ⊆ atoms(ΠP∪λ(Π1)) and (ii) every ground atom in λ(cl+σ)∩atoms(λ(Π1))
contains ground terms that are functional or occur in S. Meanwhile, any equational
atom s ≈ t occurring positively in cl σ is handled by placing s and t into the same con-
gruence class C and by adding C to S. In order to achieve the first goal of the algorithm,
f(s) and f(t) for f a function symbol occurring in Ξ(O†) are merged similarly as s
and t, because the clause ¬(s ≈ t) ∨ f(s) ≈ f(t), instantiated from the clause of the
form (4) in Section 2, may belong to Gr(Ξ ′(O†)).

The following lemma shows the correctness and the complexity of the algorithm.

Lemma 3. Let (Π,Sdf ,S) be returned by ApproxGround(O†) and λ be a mapping
function induced from the function map w.r.t. Sdf and S. Then: (1) λ(Gr(Ξ ′(O†))) ⊆ Π
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and λ is an eft-mapping function for Gr(Ξ ′(O†)); (2) ApproxGround(O†) works in
time polynomial in sm and |Π | is polynomial in s, where m is the maximum number in
number restrictions in O and s is the size of O.

Based on the above lemma, we can use the result (Π,Sdf ,S) of ApproxGround(O†)
to compute a subset Orel of O† such that O |= q iff Orel |= q for a BCQ q() ←
conj(−→y ,−→c ), by applying the method given in Theorem 2.

Before ending this subsection, we show the result of ApproxGround(O†) for the
ontologyO† given in Example 1 (note that O† is congruence-complete).

Example 2 (Example 1 continued). ApproxGround(O†) returns a triple (Π,Sdf ,S),
where Π = {cl′1, ..., cl′30}, Sdf = ∅ and S = {{a2, f(a1)}}.

cl′1 : Man(a1) cl′2 : hasFather(a1, a2)

cl′3 : ¬Man(a1) ∨ ¬hasFather(a1, a2) ∨ ¬hasFather(a1, a2) ∨ a2 ≈ a2
cl′4 : ¬Man(a2) ∨ ¬hasFather(a2, f(a2)) ∨ ¬hasFather(a2, f(a2)) ∨ f(a2) ≈ f(a2)
cl′5 : ¬Man(f(a2)) ∨ ¬hasFather(f(a2), f(a2)) ∨ ¬hasFather(f(a2), f(a2)) ∨ f(a2) ≈ f(a2)

cl′6 : ¬Man(a1) ∨ hasFather(a1, a2) cl′7 : ¬Man(a2) ∨ hasFather(a2, f(a2))
cl′8 : ¬Man(f(a2)) ∨ hasFather(f(a2), f(a2)) cl′9 : ¬Man(a1) ∨Man(a2)
cl′10 : ¬Man(a2) ∨Man(f(a2)) cl′11 : ¬Man(f(a2)) ∨Man(f(a2))

cl′12 : ¬Man(a1) ∨ Human(a1) cl′13 : ¬Man(a2) ∨ Human(a2) cl′14 : ¬Man(f(a2)) ∨ Human(f(a2))
cl′15 : a1 ≈ a1 cl′16 : a2 ≈ a2 cl′17 : f(a2) ≈ f(a2)

cl′18 : ¬(a2 ≈ a2) ∨ a2 ≈ a2 cl′19 : ¬(a2 ≈ a2) ∨ f(a2) ≈ f(a2)
cl′20 : ¬(f(a2) ≈ f(a2)) ∨ f(a2) ≈ f(a2) cl′21 : ¬(a2 ≈ a2) ∨ ¬(a2 ≈ a2) ∨ a2 ≈ a2

cl′22 : ¬(f(a2) ≈ f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ f(a2) ≈ f(a2)

cl′23 : ¬Man(a2) ∨ ¬(a2 ≈ a2) ∨Man(a2) cl′24 : ¬Man(f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨Man(f(a2))

cl′25 : ¬hasFather(a1, a2) ∨ ¬(a2 ≈ a2) ∨ hasFather(a1, a2)
cl′26 : ¬hasFather(a2, f(a2)) ∨ ¬(a2 ≈ a2) ∨ hasFather(a2, f(a2))

cl′27 : ¬hasFather(a2, f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ hasFather(a2, f(a2))
cl′28 : ¬hasFather(f(a2), f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ hasFather(f(a2), f(a2))
cl′29 : ¬Human(a2) ∨ ¬(a2 ≈ a2) ∨ Human(a2)
cl′30 : ¬Human(f(a2)) ∨ ¬(f(a2) ≈ f(a2)) ∨ Human(f(a2))

3.4 Computing All Answers with the Help of the Grounding

In this subsection, we present a method for computing all answers of a general CQ by
using Ξ(O†) and the result of ApproxGround(O†).

For a propositional program Π , two sets Sdf and S of sets of ground terms occurring
in Π , and a CQ Q : q(−→x ) ← p1(−→x1,−→y1 ,−→c1) ∧ ... ∧ pn(−→xn,−→yn,−→cn), where −→x is the
union of −→x1, ...,−→xn, by InstCQ(Π, Q,Sdf ,S) we denote the result of instantiating the
clause cl : ¬p1(−→x1,−→y1,−→c1) ∨ ... ∨ ¬pn(−→xn,−→yn,−→cn) ∨ wQ(−→x ) based on Π , Sdf and
S, where wQ is a predicate symbol corresponding to Q and not occurring in Π , i.e.,
InstCQ(Π, Q,Sdf ,S) = {cl σ | σ is a ground substitution such that all ground atoms
in map(cl−,Sdf ,S)σ occur in Π and −→x σ is a tuple of constants}. For example, for
Π,Sdf and S given in Example 2 and a CQ Q : q(x) ← Man(x) ∧ hasFather(x, y),
InstCQ(Π, Q,Sdf ,S) = {¬Man(a1)∨¬hasFather(a1, a2)∨wQ(a1)}∪{¬Man(a2)∨
¬hasFather(a2, f(a2)) ∨ wQ(a2)}. With the above denotation, the following lemma
gives a necessary condition that an answer of a CQ in O should satisfy.

Lemma 4. Let (Π,Sdf ,S) be returned by ApproxGround(O†). For a CQ Q :
q(−→x ) ← conj(−→x ,−→y ,−→c ) in O, a tuple of constants −→t is an answer of Q in O only if
map(wQ(−→t ), Sdf , S) occurs in InstCQ(Π, Q,Sdf ,S).



156 J. Du et al.

The following lemma gives a sufficient condition that ensures a tuple−→t of constants to
be an answer of a CQ Q : q(−→x )← conj(−→x ,−→y ,−→c ) in O, where q[−→x 
→ −→t ,−→y 
→ −→s ]
denotes the body of q with every variable in −→x and −→y respectively substituted by its
corresponding ground terms in −→t and −→s .

Lemma 5. For a CQ Q : q(−→x ) ← conj(−→x ,−→y ,−→c ) in O, a tuple −→t of constants is an
answer of Q inO if there exists a tuple−→s of ground terms such that every ground atom
occurring in q[−→x 
→ −→t ,−→y 
→ −→s ] is satisfied by all models of Ξ ′(O†).

Based on the above two lemmas, we can identify a set of candidate answers of a CQ
Q : q(−→x ) ← conj(−→x ,−→y ,−→c ) in O. Afterwards, we may, for every candidate an-
swer −→t , compute a subset of axioms in O† to check if O |= q[−→x 
→ −→

t ] by ap-
plying the method given in Theorem 2. However, handling candidate answers one by
one is inefficient because it needs to extract, for each candidate answer −→t , a rele-
vant subset of Π ∪ InstCQ(Π, Q,Sdf ,S) ∪ {map(¬wQ(−→t ),Sdf ,S)}; such compu-
tation is quite costly. To improve the efficiency, we extract all relevant subsets from
Π ∪ InstCQ(Π, Q,Sdf ,S) ∪ {map(¬wQ(−→t ),Sdf ,S) | −→t is a candidate answer} in
one pass, then from each extracted subset, identify a subset Orel of axioms in O† and
evaluate Q overOrel by applying an OWL DL reasoner.

The algorithm for query answering is given in Figure 2, where the inputA can be the
set of ground atoms occurring in definite ground facts in Ξ(O†). We explain how the
algorithm works. Lines 1–2 respectively compute a set Ans of explicit answers and a
set Cands of candidate answers of Q inO based on Lemma 5 and Lemma 4. Line 3 de-
composes Π† = Π ∪ InstCQ(Π, Q,Sdf ,S)∪{map(¬wQ(−→t ),Sdf ,S) | −→t ∈ Cands}
to a set of disjoint subsets from which target ontologies can be extracted. The subproce-
dure Decompose(Π†) first filters the largest subset Π0 of Π† such that for all clauses
cl ∈ Π0, cl+ has at least one ground atom not occurring in Π† \ Π0, then returns
the set of maximal connected components of Π† \ Π0. Basically, Π0 is the greatest

fixpoint of Π
(n)
0 such that Π

(0)
0 = Π† and for n > 0, Π

(n)
0 = {cl ∈ Π

(n−1)
0 |

cl+ \ atoms(Π† \ Π
(n−1)
0 ) �= ∅} (see our technical report2 for how to realize the

decomposition process). Lines 4–6 handle every maximal connected component Πrel

of Π† \ Π0: if any ground atom over wQ does not occur in Πrel, Πrel is irrelevant
to Q and thus neglected; otherwise, a subset Orel of O† is extracted from Πrel, and
all answers of Q in Orel are added to Ans (the evaluation of Orel of O† is realized
in TraditionalEvaluate, which applies an OWL DL reasoner). Note that different ex-
tracted ontologies have no common ABox axioms because ABox axioms correspond
to ground atoms in Π† \Π0 and different maximal connected components of Π† \Π0

have no common ground atoms.

Example 3 (Example 2 continued). Given a CQ Q : q(x)← Man(x)∧hasFather(x, y)
in O given in Example 1, we show how DecompBasedEvaluate(Q,A, Π,Sdf ,S)
works, whereA is the set of ground atoms occurring in definite ground facts in Ξ(O†),
i.e., A = {Man(a1), hasFather(a1, a2)}, and Π,Sdf ,S are given in Example 2.
Line 1 in Figure 2 sets Ans as {a1}. Line 2 sets Cands as {a2}. Line 3 computes
Π† = Π ∪ InstCQ(Π, Q,Sdf ,S) ∪ {map(¬wQ(−→t ),Sdf ,S) | −→t ∈ Cands} = {cl′1,
. . . , cl′33} and calls Decompose(Π†), where cl′1, . . . , cl′30 are given in Example 2, cl′31 is
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Algorithm 1. DecompBasedEvaluate(Q,A, Π,Sdf ,S)

In: A CQ Q : q(−→x ) ← p1(−→x1,−→y1,−→c1) ∧ ... ∧ pn(−→xn,−→yn,−→cn), a setA of ground atoms satisfied by all models of
Ξ′(O†) and the results Π,Sdf ,S returned by ApproxGround(O†).

Out: The set of answers of Q inO.
1. Ans := {−→x σ | σ is a ground substitution such that {p1(−→x1,−→y1,−→c1), . . . , pn(−→xn,−→yn,−→cn)}σ ⊆ A} and −→x σ

is a tuple of constants};
2. Cands := {−→x σ | σ is a ground substitution such that map(wQ(−→x σ),Sdf , S) occurs in InstCQ(Π, Q, Sdf ,

S) and−→x σ is a tuple of constants} \ Ans;
3. RSets := Decompose(Π ∪ InstCQ(Π, Q,Sdf ,S) ∪ {map(¬wQ(−→t ),Sdf ,S) | −→t ∈ Cands});
4. for each Πrel ∈ RSets such that some ground atoms over wQ occur in Πrel do

5. Orel := {ax ∈ O† | there exists a clause cl ∈ Ξ(ax) and a ground substitution σ such that
map(cl σ,Sdf ,S) ∈ Πrel};

6. Ans := Ans ∪ TraditionalEvaluate(Q,Orel);
7. return Ans;

Fig. 2. A decomposition-based algorithm for evaluating a CQ

¬Man(a1)∨¬hasFather(a1, a2)∨wQ(a1), cl′32 is¬Man(a2)∨¬hasFather(a2, f(a2))∨
wQ(a2) and cl′33 is ¬wQ(a2). It can be checked that the filtered set Π0 of Π† is {cl′12,
cl′13, cl′14, cl′29, cl′30, cl′31} and the remaining set has a single maximal connected compo-
nent. Hence Decompose(Π†) returns {{Πrel}}, where Πrel = Π†\Π0. Since wQ(a2)
occurs in Πrel, line 5 in Figure 2 is executed, yielding Orel = {Man �≤1 hasFather,
Man � ∃hasFather.Man, Man(a1), hasFather(a1, a2)}. Note that Orel is a subset of
O+ from which the axiom Man � Human is removed. By applying an OWL DL rea-
soner, we can check that a2 is the unique answer of Q in Orel, so Ans is updated to
{a1, a2} in line 6 and finally returned by DecompBasedEvaluate(Q, A, Π , Sdf , S).

In the remainder of this section, we assume that the OWL DL reasoner applied in
our approach is sound and complete for the category of given CQs, i.e., the subpro-
cedure TraditionalEvaluate is correct. The following theorem shows the correctness
of DecompBasedEvaluate.

Theorem 3. Let Q : q(−→x ) ← conj(−→x ,−→y ,−→c ) be a CQ, A be a set of ground atoms
satisfied by all models of Ξ ′(O†), (Π,Sdf ,S) be returned by ApproxGround(O†).
Then DecompBasedEvaluate(Q,A, Π,Sdf ,S) returns the set of answers of Q in O.

3.5 Optimization by Computing More ABox Entailments

Based on Figure 2 (line 1), we can see that if we obtain more definite ground facts of
Ξ(O†), we can compute more explicit answers of a given CQ; thus, we can further im-
prove the performance of our approach. We therefore present an important optimization
that computes more entailments of O† before calling ApproxGrounding(O†).

Basically, the optimization computes a set A of ground atoms from the set of
definite clauses in Ξ(Θ(O)) such that the functional depth of every ground term
occurring in A is at most one. Recall that Θ(O) is the result of applying struc-
tural transformation to O. We call such subset A the bounded entailment set of
Θ(O), which is defined as the least fixpoint of A(n) such that A(0) = ∅ and for
n > 0, A(n) =

⋃
{cl+σ | cl ∈ DS(Ξ ′(Θ(O))), σ is a ground substitution such that
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cl−σ ⊆ A(n−1), cl+σ ⊆ HB(Ξ(Θ(O))) and depth(cl σ) ≤ 1}, where depth(cl)
denotes the maximum functional depth of all ground terms occurring in a ground clause
cl, and DS(Ξ ′(Θ(O))) denotes the set of all definite clauses in Ξ ′(Θ(O)).

Let A be the bounded entailment set of Θ(O). Since A is a set of ground atoms in
the least model of DS(Ξ ′(Θ(O)) and the least model of DS(Ξ ′(Θ(O))) is a subset
of every model of Ξ ′(Θ(O)), every ground atom in A is satisfied by all models of
Ξ ′(Θ(O)). Let AC be the subset of A that contains only constants. When Θ(O) ∪AC

has equality assertions, some equational atoms must occur positively in Ξ(Θ(O)), so
E(Ξ(Θ(O))) ⊆ DS(Ξ ′(Θ(O)). It follows that Θ(O) ∪ AC is congruence-complete.
In the remainder of this section, we assume thatO† = Θ(O)∪AC . Since every ground
atom in AC is satisfied by all models of Θ(O), Lemma 1 and whatever follows from
Lemma 1 still hold when O† = Θ(O) ∪AC .

To evaluate a CQ Q in O, we now call DecompBasedEvaluate(Q, A, Π ,
Sdf , S), where A is the bounded entailment set of Θ(O) and (Π,Sdf ,S) are returned
by ApproxGround(O†). Theorem 4 shows that the optimization also guarantees sound
and complete results. Example 4 illustrates that the optimization does take effect in our
running example.

Theorem 4. Let Q : q(−→x ) ← conj(−→x ,−→y ,−→c ) be a CQ, A be the bounded entailment
set of Θ(O), (Π,Sdf ,S) be returned by ApproxGround(O†) and Ans be returned by
DecompBasedEvaluate(Q,A, Π,Sdf ,S). Then Ans is the set of answers of Q in O.

Example 4 (Example 3 continued). For the ontology O given in Example 1, since
Ξ ′(Θ(O)) = {cl1, ..., cl13} ∪ {t ≈ t | t ∈ HU(Ξ(O†))}, where cl1, ..., cl13 are
given in Example 1, we have DS(Ξ ′(Θ(O))) = Ξ ′(Θ(O)). We can compute the
bounded entailment setA of Θ(O) as {Man(a1), Man(f(a1)), Man(a2), Man(f(a2)),
Human(a1), Human(f(a1)), Human(a2), Human(f(a2)), hasFather(a1, a2),
hasFather(a1, f(a1)), hasFather(a2, f(a2)), hasFather(f(a1), f(a2)), a2 ≈ f(a1),
f(a1) ≈ a2, a1 ≈ a1, f(a1) ≈ f(a1), a2 ≈ a2, f(a2) ≈ f(a2)}. By append-
ing to Θ(O) the set AC of ground atoms in A that contains only constants, we
obtain O† = {Man �≤1 hasFather, Man � ∃hasFather.Man, Man � Human,
Man(a1), Man(a2), Human(a1), Human(a2), hasFather(a1, a2), a1 ≈ a1, a2 ≈ a2}.
ApproxGround(O†) returns (Π,Sdf ,S), where Π = {cl′1, . . . , cl′11, cl′13, . . . , cl′30}
(see cl′1, ..., cl

′
30 in Example 2), Sdf = ∅ and S = {{a2, f(a1)}}. Consider again

the CQ Q : q(x) ← Man(x) ∧ hasFather(x, y) given in Example 3. By calling
DecompBasedEvaluate(Q, A, Π , Sdf , S), we get Ans = {a1, a2} in line 1 and
Cands = ∅ in line 2, thus we obtain the set of answers of Q inO without calling OWL
DL reasoners.

To summarize, our decomposition-based approach to conjunctive query answering
works as follows. In the offline phase, we compute the bounded entailment set A
of Θ(O) and set O† as Θ(O) ∪ {ax ∈ A | ax contains only constants}, then
call ApproxGround(O†), obtaining (Π,Sdf ,S). In the online phase, for every com-
ing CQ Q, we call DecompBasedEvaluate(Q, A, Π , Sdf , S), obtaining all answers
of Q.
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4 Experimental Evaluation

We implemented the proposed approach in GNU C++, using MySQL as the back-end
SQL engine. The implemented system3 is called DecomBaR (abbr. for Decomposition-
Based Reasoner). It maintains ABox axioms and ground atoms in the approximate
grounding in databases, maintains ground clauses in the approximate grounding in disk
files, and calls Pellet [14] (version 2.0.0-rc6)4 to evaluate CQs over extracted ontolo-
gies. All our experiments were conducted on a machine with 2GHz Intel Pentium Dual
CPU and 2GB RAM, running Windows XP, where the maximum Java heap size was
set to (max) 1312MB.

4.1 Experimental Setup

We conducted experiments on Lehigh University Benchmark (LUBM) [8] and Uni-
versity Ontology Benchmark (UOBM) [10] (including UOBM-Lite and UOBM-DL)
ontologies. We used the above benchmark ontologies because they all come with bench-
mark CQs, which can provide a reasonable assessment on the effectiveness of our pro-
posed approach. By LUBMn, UOBM-Liten and UOBM-DLn we respectively denote
the instances of LUBM, UOBM-Lite and UOBM-DL that contain axioms about n uni-
versities. We specifically tested on LUBM1, LUBM10, UOBM-Lite1, UOBM-Lite10,
UOBM-DL1 and UOBM-DL10, where the former two were generated by the LUBM
data generator5, and the latter four were all downloaded from the UOBM Website6.

Before testing our approach we stored ABoxes to MySQL databases. Table 1 lists
the characteristics of the six test ontologies.

Table 1. The characteristics of test ontologies and the execution time in the offline phase

O |NC | |NR| |NI | |T | |A| |T †| |A†| Offline(sec)

LUBM1 59 16 50,253 94 100,543 105 100,543 17
LUBM10 59 16 629,568 94 1,272,575 105 1,272,575 219

UOBM-Lite1 51 43 95,010 130 245,864 151 245,864 101
UOBM-Lite10 51 43 820,208 130 2,096,973 151 2,096,973 1193
UOBM-DL1 112 44 96,081 151 260,540 210 260,587 242
UOBM-DL10 112 44 825,455 151 2,217,302 210 2,217,349 7103

Note: O = (T ,A) is a test ontology and Θ(O) = (T †,A†). NC , NR and NI are respectively
the sets of concept names, role names and individuals in O.

4.2 Experimental Results

We compared DecomBaR with the original Pellet reasoner (simply Pellet) and the
KAON2 reasoner (simply KAON2) on evaluating benchmark CQs given in [8,10]. We

3 http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/
4 http://clarkparsia.com/pellet/
5 http://swat.cse.lehigh.edu/projects/lubm/index.htm
6 http://www.alphaworks.ibm.com/tech/semanticstk/

http://www.aifb.uni-karlsruhe.de/WBS/gqi/DecomBaR/
http://clarkparsia.com/pellet/
http://swat.cse.lehigh.edu/projects/lubm/index.htm
http://www.alphaworks.ibm.com/tech/semanticstk/
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Fig. 3. The execution time (in seconds) for evaluating all benchmark CQs

implemented an interface to allow Pellet or KAON2 to read ABoxes from databases.
We did not test KAON2 on UOBM-DLn ontologies nor CQs with non-distinguished
variables as they are not supported by KAON2.

The execution time (in seconds) in the offline phase of DecomBaR is shown in the
last column of Table 1. The results for evaluating every benchmark CQ are shown in
Figure 3. The execution time about DecomBaR is the total evaluation time in the online
phase, including the time for decomposing the propositional program compiled in the
offline phase and the time for loading extracted ontologies to the called reasoner, wait-
ing the called reasoner to return and handling the returned results. The execution time
about Pellet or KAON2 is the time for query answering only, excluding the time for
ontology loading and consistency checking (as we assume that the ontology is loaded
and checked consistency offline) and the time for writing results.

Below the horizontal axis in Figure 3, “#ont” denotes the number of extracted ontolo-
gies over which Pellet is called to evaluate a test query, and “|T |max” (resp. “|A|max”)
denotes the maximum number of axioms in the TBox (resp. the ABox) of every ex-
tracted ontology. The name of a CQ is framed iff the CQ has non-distinguished vari-
ables. Above a bar, “M” means running out of memory after the displayed time, “T”
means exceeding the time limit of 1000s, and “E” means that the set of computed an-
swers is incorrect; we call any of these cases an unsuccessful evaluation. For every
benchmark CQ that both DecomBaR and Pellet (resp. KAON2) successfully evaluate,
the answers computed by DecomBaR and Pellet (resp. KAON2) coincide.
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Comparing DecomBaR with Pellet, DecomBaR is more efficient than Pellet except
for Q8 and Q15 on UOBM-DL1.7 Such exception is due to that sometimes decompo-
sition and interaction with the called reasoner introduce a significant overhead in the
execution of DecomBaR. However, when DecomBaR does not generate any candidate
answer (i.e. when #ont = 0), DecomBaR works very fast because it only needs to ex-
tract explicit and candidate answers by accessing the database through a SQL query.
For example, DecomBaR spends about 0.1s for evaluating Q8 on both UOBM-Lite1
and UOBM-Lite10, while for evaluating the same CQ Pellet spends about 180s on
UOBM-Lite1 and runs out of memory on UOBM-Lite10. Moreover, DecomBaR is
more scalable than Pellet against increasing size of ABoxes. This is because access-
ing databases through SQL queries is relatively scalable (in case #ont = 0) and ex-
tracted ontologies could have similar sizes for different size of ABoxes (in case #ont
> 0). For example, the UOBM-Lite benchmark query Q9 has an individual in the query
body, which forces InstCQ (defined in Subsection 3.4) to return similar ground clauses
and then forces the extracted ontologies to have similar sizes for UOBM-Lite1 and
UOBM-Lite10.

Comparing DecomBaR with KAON2, DecomBaR is generally more efficient (esp.
for UOBM-Liten ontologies, by orders of magnitude more efficient) than KAON2.
Moreover, the scalability of DecomBaR is comparable with that of KAON2 on
LUBMn ontologies, and is much better than that of KAON2 on UOBM-Liten on-
tologies. This shows that DecomBaR is much more scalable than KAON2 against
increasing complexity of TBoxes. It should also be mentioned that DecomBaR sup-
ports more expressive CQs than KAON2 does. In particular, KAON2 may not cor-
rectly evaluate CQs involving datatypes (e.g. the LUBM benchmark queries Q4
and Q8); this is a limitation of the resolution-based query mechanism [11] exploited
in KAON2.

5 Conclusion and Future Work

In this paper, we have proposed a decomposition-based approach to optimize conjunc-
tive query answering in OWL DL ontologies. The basic idea of the approach is to eval-
uate a CQ with the help of a precompiled propositional program: it computes explicit
answers first and then computes other answers over separate ontologies that are ex-
tracted from the precompiled propositional program. Experimental results demonstrate
the advantages of the proposed approach.

The proposed approach still has some limitations. First, it only works well on ontolo-
gies that rarely change as the offline phase is somewhat costly. We plan to upgrade the
compilation method to an incremental one to copy with ontology changes. Second, the
approach fails when some extracted ontologies are still too large to be handled by the
called reasoner. This is the reason why our implemented system DecomBaR does not
successfully evaluate six benchmark CQs in our experiments (see Figure 3). We will
tackle this limitation by exploiting the idea of summarization [2,3].

7 Here we do not compare DecomBaR and Pellet for those CQs that both DecomBaR and Pellet
do not successfully evaluate.
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