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Abstract

ABox abduction is an important aspect for abductive
reasoning in Description Logics (DLs). It finds all min-
imal sets of ABox axioms that should be added to a
background ontology to enforce entailment of a spec-
ified set of ABox axioms. As far as we know, by now
there is only one ABox abduction method in expres-
sive DLs computing abductive solutions with certain
minimality. However, the method targets an ABox ab-
duction problem that may have infinitely many abduc-
tive solutions and may not output an abductive solution
in finite time. Hence, in this paper we propose a new
ABox abduction problem which has only finitely many
abductive solutions and also propose a novel method to
solve it. The method reduces the original problem to an
abduction problem in logic programming and solves it
with Prolog engines. Experimental results show that the
method is able to compute abductive solutions in bench-
mark OWL DL ontologies with large ABoxes.

Introduction

Since the W3C organization proposed the standard Web
Ontology Language (OWL) embracing Description Logics
(DLs) as the logical underpinning, abductive reasoning in
DLs has become an attractive area. This area has been ini-
tiated by Elsenbroich, Kutz, and Sattler (2006) to support
different application scenarios. In principle, every commu-
nity interested in applying DLs to specific applications, such
as e-Science, ontology engineering, medical informatics and
computational linguistics, can easily extend the list of use
cases for abduction over DL-based ontologies (Klarman, En-
driss, and Schlobach 2011).

A DL-based ontology is composed of a TBox (storing in-
tensional information) and an ABox (storing extensional in-
formation). ABox abduction is to find all minimal sets of
ABox axioms that should be added to a background ontol-
ogy to enforce entailment of an observation (which is usu-
ally a specified set of ABox axioms). This facility is crucial
when one needs to understand why some extensional infor-
mation cannot be entailed as expected and to acquire sug-
gestions for enforcing entailment of the information.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As far as we know, by now there is only one ABox ab-
duction method (Klarman, Endriss, and Schlobach 2011) in
expressive DLs computing abductive solutions with certain
minimality. The method works on the DL ALC, which is a
fragment of OWL DL — a species of the standard OWL
corresponding to the DL SHOIN (D) (Horrocks, Patel-
Schneider, and van Harmelen 2003). The problem addressed
in the method allows abductive solutions to be expressed in
the ALE fragment of ALC, e.g., allows existential restric-
tions in solutions; thus the problem may have infinitely many
solutions. Consider an ontology containing only the follow-
ing axiom, which says that something has a person as its
parent is a person.

∃hasParent.Person " Person
There are infinitely many abductive solutions for the ob-
servation {Person(Amy)} (i.e. Amy is a person). Each ab-
ductive solution consists of a concept assertion of the form
∃hasParent.∃hasParent. . . . .Person(Amy), in which the in-
dividual is Amy and the concept is an existential restric-
tion having arbitrarily many nested ∃hasParent and the tail
Person. Since the method proposed by Klarman, Endriss,
and Schlobach (2011) needs to verify the minimality of a
potential solution after all potential solutions are computed,
it may not output any abductive solution in finite time.

To explore more practical approaches to ABox abduction,
we propose a new ABox abduction problem which is derived
from traditional abduction problems in logic programming.
Traditional abduction problems in logic programming find
all minimal sets ∆ of sentences w.r.t. a background theory T
and an observation G, such that T ∪∆ entails G and T ∪∆
is consistent (Kakas, Kowalski, and Toni 1998). The pro-
posed problem allows the background theory to be any DL-
based ontology and the observation to be a set of ABox ax-
ioms, and restricts that the abductive solution contains only
ABox axioms over a specified set of abducibles, which are
literal (i.e. atomic or negated atomic) concepts or atomic
roles. The introduction of abducibles gives users flexibility
to formulate the explanations for an observation. Restricting
abducibles to literal concepts or atomic roles ensures that the
problem has finitely many solutions.

To seek methods to solve the proposed problem, we con-
sider successful tools on abductive reasoning in logic pro-
gramming, such as two state-of-the-art abduction systems
CIFF (Mancarella et al. 2009) and A-system (Kakas, Nuffe-



len, and Denecker 2001). These tools only allow the back-
ground theory to be a normal logic program, which corre-
sponds to a plain datalog program extended with negation-
as-failure. However, OWL DL is much more expressive than
any DL fragment of normal logic programs. Hence, it is
rather restrictive to directly apply state-of-the-art abduction
systems to realize ABox abduction.

In this paper, we propose a new method for solving the
proposed problem. In principle the method works with ar-
bitrary DLs, but for simplicity we only describe the method
with SHOIQ (i.e. OWL DL without datatypes but allow-
ing qualifying number restrictions). The method consists
of several steps, including normalizing the given problem,
weakening a SHOIQ ontology (such as removing nomi-
nals), compiling a SHIQ (i.e. SHOIQ without nominals)
ontology to a disjunctive datalog program (Hustadt, Motik,
and Sattler 2007), compensating entailed rules, encoding a
disjunctive datalog program to a Prolog program, and ex-
tracting abductive solutions from the output of the encoded
Prolog program. We prove that the method guarantees the
soundness of results, and it also guarantees the completeness
when the observation has no complex role assertions and
the background theory in the normalized problem is a Horn-
SHIQ!≤ ontology without negated complex role assertions,
where a Horn-SHIQ!≤ ontology is roughly a Horn-SHIQ
ontology without maximum number restrictions or equal-
ity assertions, and a Horn-SHIQ ontology (Hustadt, Motik,
and Sattler 2007) is a SHIQ ontology that can be translated
to a First-order Horn logic program.

We conduct experiments on large benchmark ontologies.
Experimental results show that the proposed method is able
to compute abductive solutions for randomly generated ob-
servations in all test ontologies. This demonstrates that the
proposed method paves a way towards practical ABox ab-
duction in large OWL DL ontologies.

A New ABox Abduction Problem

We assume that the reader is familiar with OWL DL and
its corresponding DL SHOIQ. A SHOIQ ontology O is
composed of a TBox and an ABox, both of which are sets
of axioms. TBox axioms include concept inclusion axioms
C " D, transitivity axioms Trans(R) and role inclusion ax-
ioms R " S, whereas ABox axioms include concept asser-
tions C(a), role assertions R(a, b), negated role assertions
¬R(a, b), equality assertions a ≈ b and inequality asser-
tions a %≈ b, where C and D are SHOIQ concepts, R and
S roles, and a and b individuals. A role appearing in a quali-
fying number restriction should be simple, i.e., it has no tran-
sitive sub-roles. A role is complex iff it is not simple. O is
treated as a set of axioms in the paper.

We use the traditional semantics for SHOIQ e.g. given
in (Horrocks, Patel-Schneider, and van Harmelen 2003).
By M(ax) (resp. M(S)) we denote the set of models of
an axiom ax (resp. a set S of axioms). Then M(S) =⋂

ax∈S
M(ax) for any set S of axioms. A SHOIQ ontol-

ogy O is said to be consistent if M(O) %= ∅. A set S of
axioms is said to be entailed by O, denoted by O |= S, if
M(O) ⊆ M(S).

In the area of abductive reasoning in logic programming,
an abductive solution is often restricted in a pre-specified
class of sentences called abducibles, so as to define modes
to enforce entailment of an observation (Kakas, Kowalski,
and Toni 1998). By exploring this idea, we propose a new
ABox abduction problem. That is, given an ontology O as
the background theory, a set A of abducibles which are lit-
eral concepts or atomic roles, and an observation G which
is a set of concept assertions or atomic role assertions, com-
pute all abductive solutions for (O, A,G), where an abduc-
tive solution for (O, A,G) is a (set-inclusion) minimal set
∆ of ABox axioms such that all ABox axioms in ∆ are di-
rectly composed of individuals in O and concepts/roles in A,
∆ %|= G, O ∪ ∆ |= G and O ∪ ∆ is consistent. An example
of the proposed problem is shown below.

Example 1. Let the background theory be an ontology O
where its TBox consists of the following four axioms

∃hasIQ.High " ∃hasGrade.(High ( Remarkable),
∃hasGrade.Remarkable " Good,
Winner " Player, Player " Winner ) Loser,

and its ABox consists of the following three axioms
Player(Tom), hasIQ(Tom,A), hasGrade(Tom,A).

Let the set of abducibles be A = {Remarkable, High, Good}
and the observation be G = {Good(Tom)}. Then there are
two abductive solutions for (O, A, G), namely {High(A)}
and {Remarkable(A)}.

The proposed problem (simply called Problem A) mainly
differs from the ABox abduction problem proposed by Klar-
man, Endriss, and Schlobach (2011) (simply called Problem
B) in introducing abducibles and restricting them to literal
concepts or atomic roles.

There may exist some drawbacks in Problem A. First,
when some instance of Problem B has solutions, its coun-
terpart in Problem A may not. For example, given O =
{∀hasChild.Good " Happy} and G = {Happy(Amy)},
the corresponding instance of Problem B has one abductive
solution ∀hasChild.Good(Amy) in O, but its counterpart in
Problem A has not. Second, the representation of solutions
in Problem A may be less concise than its counterpart in
Problem B. For example, given O = {∃hasFather.+ "
Person, ¬hasFather(a1, a1), Person(a2), ..., Person(an)},
A = {hasFather} and G = {Person(a1)}, the corre-
sponding instance of Problem A has n − 1 abductive so-
lutions {hasFather(a1, a2)}, ..., {hasFather(a1, an)} in O,
while its counterpart in Problem B has only one, namely
{∃hasFather.+(a1)}.

However, there exist some important merits in Problem A.
First, the number of abductive solutions is finite because the
number of possible axioms in an abductive solution is finite.
Second, the minimality of potential solutions can be sim-
ply determined by set-inclusion checking, rather than by the
complex renaming and entailment checking as in Problem
B. Since termination and efficiency are crucial for practical
ABox abduction, our work focuses on Problem A.

Computing All Abductive Solutions
Although the number of abductive solutions is finite for
the proposed problem, a search-based method is imprac-



tical because the search space is very large. Considering
that the state-of-the-art abduction systems CIFF (Mancar-
ella et al. 2009) and A-system (Kakas, Nuffelen, and De-
necker 2001) work on plain datalog programs with negation-
as-failure, we seek to adapt the methods for abductive rea-
soning in plain datalog programs to ABox abduction. To ob-
tain an adaptation without restricting the background the-
ory to DL fragments of plain datalog programs, we con-
sider the KAON2 transformation (Hustadt, Motik, and Sat-
tler 2007), which has been implemented in the KAON2 sys-
tem (http://kaon2.semanticweb.org/).

Given an extensionally reduced SHIQ ontology O, i.e.,
all concept assertions in O are over literal concepts, the
KAON2 transformation computes a disjunctive datalog pro-
gram with equality, denoted by DD(O), which is the union
of a set of function-free rules compiled from the TBox of
O by exploiting certain resolution operations and a set of
ground rules directly translated from the ABox of O. The
main properties of DD(O) are shown below.

Theorem 1 ((Hustadt, Motik, and Sattler 2007)). Let O be
an extensionally reduced SHIQ ontology. Then: (1) for
any literal concept/role assertion ax, DD(O ∪ {ax}) =
DD(O) ∪ {ax}; (2) when O has no negated complex role
assertions, O is consistent iff DD(O) is satisfiable.

In the following, an example for the result of the KAON2
transformation is shown.

Example 2. Consider ontology O given in Example 1. By
compiling O through the KAON2 system, we obtain DD(O)
which consists of the following rules (1)–(7).

Good(x) ← hasGrade(x, y),Remarkable(y). (1)
Good(x) ← hasIQ(x, y),High(y). (2)
Player(x) ← Winner(x). (3)
Loser(x) ∨ Winner(x) ← Player(x). (4)
Player(Tom) ← . (5)
hasIQ(Tom,A) ← . (6)
hasGrade(Tom,A) ← . (7)

We also define an abductive solution for (DD(O), A,
G) as a minimal set of ∆ of ABox axioms such that all
ABox axioms in ∆ are directly composed of individuals in
O and concepts/roles in A, ∆ %|= G, DD(O) ∪ ∆ |= G and
DD(O) ∪ ∆ is consistent. By Theorem 1, we have a corre-
spondence between abductive solutions for (DD(O), A, G)
and abductive solutions for (O, A, G).

Theorem 2. Let O be an extensionally reduced SHIQ on-
tology without negated complex role assertions, A a set of
literal concepts or atomic roles, and G a set of literal con-
cept assertions or atomic simple role assertions. For any set
∆ of ABox axioms, ∆ is an abductive solution for (DD(O),
A, G) iff it is an abductive solution for (O, A, G).

Based on the above theorem, we first propose a restric-
tive method for some restrictive class that allows a reduction
from the proposed problem to an abduction problem in dis-
junctive datalog, then enhance it to address the full class.

The Restrictive Method

In this subsection, let O be an extensionally reduced SHIQ
ontology without negated complex role assertions, A be a set

of literal concepts or atomic roles, and G be a set of literal
concept assertions or atomic simple role assertions. Accord-
ing to Theorem 2, we seek methods for computing abductive
solutions for (DD(O), A, G).

Considering that most state-of-the-art abduction systems
are built on Prolog engines that work on plain datalog pro-
grams, we seek to encode (DD(O), A, G) into a Prolog pro-
gram and solve it with Prolog engines. Since CIFF and A-
system currently do not guarantee termination in handling
cyclic logic programs, but DD(O) can have cycles between
predicates, we do not apply CIFF or A-system to compute
solutions for (DD(O), A, G). Instead, we apply a modern
Prolog engine, B-Prolog (http://www.probp.com/),
which exploits a linear tabling mechanism (Shen et al. 2001)
to handle cycles and guarantee termination.

Note that, when the equality predicate ≈ occurs in some
rule heads in DD(O), ≈ should be interpreted as a congru-
ence relation. In order to ensure B-Prolog to correctly han-
dle ≈, the equality should be axiomatized by adding some
standard rules e.g. given in (Fitting 1996). Let DD′(O) be
obtained from DD(O) by adding rules to axiomatize equal-
ity if ≈ occurs in some rule heads in DD(O), or be DD(O)
otherwise. Consider Example 2. Since ≈ does not occurs in
any rule head in DD(O), DD′(O) is the same as DD(O).

We briefly introduce the method for encoding (DD′(O),
A, G) into a Prolog program, which has four steps.

In the first step, all predicates P occurring in cycles in
DD′(O) are declared to be tabled. This means that the same
subgoal over P is prevented from executing multiple times
and computed facts over P are cached. Consider Example
2, Player and Winner are in cycles, so they are declared to
be tabled. Moreover, the goal predicate of the resulting Pro-
log program is also declared to be tabled for pruning explicit
non-solutions. In the second step, atomic concept/role asser-
tions in the observation G are encoded into Prolog rules. For
example, the observation {Good(Tom), Winner(Tom)} is
encoded into the following two Prolog rules, where S is an
output parameter for storing solutions, and check(S) returns
true iff there is not any cached goal(S′) such that S′ ⊆ S.

go :- goal(S), write(S), fail.
goal(S) :- a Good(′Tom′, S1), check(S1),

a Winner(′Tom′, S2), append(S1, S2, S), check(S).
In the third step, every definite rule (i.e. rule having a

single head atom) in DD′(O) is encoded into a Prolog rule.
Consider Example 2, all rules except rule (4) are encoded.
E.g., rules (2) and (6) are encoded into the following rules.

a Good(X, S) :- a hasIQ(X, Y, S1), check(S1),
a High(Y, S2), append(S1, S2, S), check(S).

a hasIQ(′Tom′,′ A′, []).
In the last step, every atomic concept/role in A is en-

coded into a Prolog rule. For example, the abducibles High
and hasIQ are encoded into the following two rules, where
ground(X) returns true iff X is a constant term.
a High(X, [(X,′ rdf :type′,′ High′)]) :- ground(X).
a hasIQ(X, Y, [(X,′ hasIQ′, Y)]) :- ground(X), ground(Y).
Let prolog(DD′(O), A, G) denote the set of lists output

by the Prolog program encoded from (DD′(O), A, G) when
executing go. Let decode(L) denote the set of concept/role
assertions decoded from a list L (treated as a set) by rewrit-
ing every element of L of the form (a, ′rdf :type′, C) to



C(a) and every element of L of the form (a,R, b) to R(a, b).
The following theorem shows the conditions where all ab-

ductive solutions for (DD(O), A, G) can be extracted from
prolog(DD′(O), A, G).

Theorem 3. If DD(O) is a plain datalog program (possi-
bly with equality), A is a set of atomic concepts/roles and
G is a set of atomic concept/role assertions, then the set of
abductive solutions for (DD(O), A, G) is the set of min-
imal sets in {decode(L) | L ∈ prolog(DD′(O), A, G),
decode(L) %|= G, O ∪ decode(L) is consistent}.

According to the above theorem, the proposed restrictive
method is to compute {decode(L) | L ∈ prolog(DD′(O),
A, G), decode(L) %|= G, O ∪ decode(L) is consistent}.
However, it only guarantees soundness and completeness of
results in a restrictive class of the proposed problem. More-
over, it is impractical when DD(O) has equational head
atoms, because in this case DD′(O) will have some rules
like P (y) ← P (x), x ≈ y for axiomatizing equality. These
rules are hard to be handled by the encoded Prolog program,
as shown in our experiments, because every predicate oc-
curring in these rules appears in cycles. Hence, we propose
a general method to address all these issues.

The General Method

To apply Prolog engines to compute abductive solutions for
(O, A, G), we need to reduce the original problem to a prob-
lem of computing abductive solutions for some (P , A′, G′),
where P is a plain datalog program, A′ is a set of atomic
concepts/roles, G′ is a set of atomic concept/role assertions.
Suppose there is a one-to-one mapping function f from sym-
bols in A′ to symbols in A. For a set ∆ of ABox axioms over
atomic concepts/roles in A′, let f(∆) simply denote a set of
ABox axioms obtained from ∆ by replacing all symbols X
in A′ with f(X). We aim to ensure that P∪∆ |= G′ implies
O ∪ f(∆) |= G for all sets ∆ of ABox axioms over atomic
concepts/roles in A′, because O ∪ f(∆) |= G implies that
some subsets of f(∆) can be abductive solutions. We pro-
pose a general method to compute abductive solutions for
(O, A, G), which is based on constructing the aforemen-
tioned (P , A′, G′) and has five steps.

Step 1. The first step is to normalize (O, A, G). First, (O,
A, G) is converted to (O†, A′, G′) by renaming non-atomic
concepts. That is, A′ is obtained from A by replacing every
negated atomic concept ¬X with a fresh atomic concept X†;
G′ is obtained from G by replacing every non-atomic con-
cept assertion C(a) with QC(a), where QC is a fresh atomic
concept for C; O† is obtained from O by adding axioms
¬X " X† and X† " ¬X for every negated atomic concept
¬X in A, and by adding axioms C " QC and QC " C for
every non-atomic concept assertion C(a) in G. Afterwards,
O† is extensionally reduced to O′. That is, O′ is obtained
from O† by replacing C(a) with two axioms QC(a) and
QC " C for every non-literal concept assertion C(a) in O†.

Example 3. Consider computing all abductive solutions for
(O, A, G), where O is the ontology given in Example 1,
A = {¬Loser} and G = {Winner(Tom)}. (O, A, G) is

normalized to (O′, A′, G′), where A′ = {Loser†}, G′ = G

and O′ = O ∪ {¬Loser " Loser†, Loser† " ¬Loser}.

Let f be a one-to-one mapping function on all symbols
X ∈ A′ such that f(X) = ¬Y if X is of the form Y †, or
f(X) = X otherwise. We have the following lemma.

Lemma 1. For any set ∆ of ABox axioms over atomic con-
cepts/roles in A′, ∆ is an abductive solution for (O′, A′, G′)
iff f(∆) is an abductive solution for (O, A, G).

Step 2. The second step is to weaken O′ so as to apply
the KAON2 transformation. Let O‡ be obtained from O′ by
replacing every nominal {a} with a fresh atomic concept Ca

and adding a concept assertion Ca(a). Since DD(O‡) may
contain equational head atoms, which introduces the neces-
sity for axiomatizing equality in DD(O‡), O‡ should be
weakened further. Let NNF(E) denote the negation normal
form of a concept E, which can be computed by standard
methods e.g. given in (Hustadt, Motik, and Sattler 2007),
and norm(O‡) denote the ontology normalized from O‡

by replacing every concept inclusion axiom C " D with
+ " NNF(¬C)D). Let O′′ be obtained from norm(O‡) by
removing all equality assertions and by replacing ≤n R.C
with + for every ≤n R.C occurring in the right hand sides
of concept inclusion axioms in norm(O‡). Then DD(O′′)
does not contain any equational head atom.

We define a SHIQ!≤ ontology O as a SHIQ ontology
such that norm(O) has not any equality assertion and does
not contain any maximum number restriction ≤n R.C in the
right hand sides of concept inclusion axioms. Obviously O′′

is a SHIQ!≤ ontology. We have the following lemma.

Lemma 2. For any set ∆ of ABox axioms over atomic con-
cepts/roles in A′, O′ ∪ ∆ |= G′ if O′′ ∪ ∆ |= G′.

Step 3. The third step is to modify DD(O′′). Since re-
dundant rules that do not affect the results of the subsequent
resolution operations have been eliminated in the KAON2
transformation, DD(O′′) may not contain all entailed defi-
nite rules. The absence of some redundant definite rules may
make the later encoded Prolog program have no results, as
shown in the following example.

Example 4. Consider the normalized problem (O′, A′, G′)
given in Example 3. The step for weakening O′ yields a
semantically equivalent ontology O′′ since O′ is already a
SHIQ!≤ ontology. By compiling O′′ through the KAON2
system, we obtain DD(O′′) which consists of the rules (1)–
(7) given in Example 2 and the following two rules.

Loser(x) ∨ Loser†(x) ← . (8)
← Loser(x), Loser†(x). (9)

The predicate Winner does not occur in heads of definite
rules in DD(O′′), thus prolog(DD(O′′), A′, G′) is empty.

We introduce two simple steps to compensate definite
rules. In step one, for every rule R in DD(O′′), all head
atoms P (x), such that there is an atomic concept P ′ such
that + " P ) P ′ ∈ O′′ and + " ¬P ) ¬P ′ ∈ O′′,
are rewritten to P ′(x) and moved to the body of R, yield-
ing a new rule R′ added to DD(O′′). In step two, for ev-
ery constraint R in DD(O′′) and every body atom P (x)
of R, such that there is an atomic concept P ′ such that
+ " P ) P ′ ∈ O′′, + " ¬P ) ¬P ′ ∈ O′′ and R is
not of the form “← P (x), P ′(x)”, P (x) is written to P ′(x)
and moved to the head of R, yielding a new rule R′ added



to DD(O′′). Consider Example 4, the following rule (10) is
added to DD(O′′) in the aforementioned two steps.

Winner(x) ← Player(x), Loser†(x). (10)
We can see that, now the Prolog program encoded from
(DD(O′′), A′, G′) will output a list [(′Tom′, ′rdf :type′,
′Loser† ′)] when executing go.

Although more definite rules can be obtained by other
resolution operations, we only compensate definite rules by
simple operations for the consideration of efficiency.

Let P denote the plain datalog program obtained from
DD(O′′) by keeping only definite rules. The following
lemma shows the relationship between P and O′.

Lemma 3. For any set ∆ of ABox axioms over atomic con-
cepts/roles in A′, O′ ∪ ∆ |= G′ if P ∪ ∆ |= G′.

Step 4. The fourth step is to encode a Prolog program
from (P , A′, G′) using the encoding method given in the
previous subsection and then execute go.

Step 5. The last step is to extract abductive solutions from
prolog(P , A′ G′). Consider an arbitrary set ∆′ of ABox ax-
ioms over concepts/roles in A such that ∆′ %|= G. It can be
seen that, all minimal subsets ∆ of ∆′ such that O ∪ ∆ is
consistent and entails G are abductive solutions for (O, A,
G). However, it is probable that these subsets of ∆′ do not
exist when O ∪ ∆′ %|= G. In contrast, consider a list L ∈
prolog(P , A′ G′), since P ∪ decode(L) |= G′, by Lemma
3, O′ ∪ decode(L) |= G′ and thus O ∪ f(decode(L)) |= G.
Hence, we do not extract abductive solutions from arbitrary
hypotheses but only from lists L in prolog(P , A′ G′) such
that decode(L) %|= G′. The following theorem shows that
this method guarantees the soundness of results.

Theorem 4. Let L be a list in prolog(P , A′ G′) such
that decode(L) %|= G′, and ∆ be a minimal subset of
f(decode(L)) such that O ∪ ∆ is consistent and entails G,
then ∆ is an abductive solution for (O, A, G).

This method also guarantees the completeness of results
in some restrictive class of the proposed problem.

Theorem 5. If O′ is a Horn-SHIQ!≤ ontology without
negated complex role assertions and G has no complex role
assertions, then every abductive solution ∆ for (O, A, G) is
a minimal subset of f(decode(L)) such that O∪∆ is consis-
tent and entails G for some list L in prolog(P , A′ G′) such
that decode(L) %|= G′.

Experimental Evaluation
We conducted experiments on thirteen benchmark ontolo-
gies with large ABoxes. The first two ontologies are Sem-
intec (about financial services) and Vicodi (about European
history). The next five are the Lehigh University Benchmark
(LUBM) (Guo, Pan, and Heflin 2005) ontologies LUBMn
(n = 1, ..., 5), where LUBMn denotes the LUBM ontol-
ogy containing the data of n universities. The above ontolo-
gies were previously used to compare different DL reason-
ers (Motik and Sattler 2006). The last six ontologies are
the University Benchmark (UOBM) (Ma et al. 2006) on-
tologies UOBM-Liten and UOBM-DLn (n = 1, 2, 3). We
could not test larger UOBM ontologies that involve more
than three universities, because B-Prolog ran out of memory

Table 1: The characteristics of test ontologies

Ontology #C #R #TA #AA #I
Semintec 60 16 219 65,240 17,941

Vicodi 194 12 223 116,181 33,238
LUBM1∼5 43 32 93 100,543∼

624,532

17,174∼

102,368

UOBM-Lite1∼3 51 43 145 245,740∼

575,380

37,704∼

71,901

UOBM-DL1∼3 69 44 206 260,900∼

607,248

37,927∼

72,059

Note: “#C” / “#R” / “#TA” / “#AA” / “#I” is the number of atomic

concepts/atomic roles/TBox axioms/ABox axioms/individuals.

when loading the Prolog programs encoded from these on-
tologies. The characteristics of all test ontologies are shown
in Table 1. All experiments were done on a PC with Pentium
Dual Core 2.60GHz CPU and 2GB RAM, running Windows
XP, where the maximum Java heap size was set to 1GB.

We first compared the general method with the restric-
tive method on handling test ontologies for which the re-
sults of the KAON2 transformation are plain datalog pro-
grams with equality. These ontologies include Semintec and
all UOBM-Liten ontologies. We randomly generated atomic
concept assertions and treated every singleton set made up
of a generated concept assertion as an observation and all
atomic concepts as abducibles. The general method success-
fully handles all observations that have abductive solutions
in one hour, but the restrictive method always exceeds 12
hours when handling any of these observations. This result
shows that the rules added to axiomatize equality are very
harmful to the efficiency of ABox abduction, because these
rules introduce cycles in the encoded Prolog program.

We then focused on the general method. For each test on-
tology, we randomly generated 40 concept assertions not en-
tailed by the ontology, out of which twenty are over atomic
concepts and the other twenty over negated atomic concepts.
For all test ontologies that have the same TBox (such as
LUBM), we generated the same set of concept assertions.
We performed two experiments for each test ontology. In
the first experiment we treated all atomic concepts as ab-
ducibles, whereas in the second one we treated all literal
concepts as abducibles. Moreover, in both experiments we
treated every singleton set made up of a generated concept
assertion as an observation. In each experiment, the imple-
mented system works in two phases. The first phase (i.e.
the preprocess phase) compiles the ontology and all obser-
vations to a Prolog program and loads it to B-Prolog. The
second phase (i.e. the query phase) handles every observa-
tion one by one for computing abductive solutions.

Some test results are shown in Table 2 due to the space
limitation. For Semintec and Vicodi, all observations are
handled successfully (i.e. their abductive solutions are com-
puted in one hour) in both experiments. For other ontologies,
all observations are handled successfully in the first exper-
iment. In the second experiment, all (resp. 29 and 16) ob-
servations are handled successfully for each LUBMn (resp.
UOBM-Liten and UOBM-DLn) ontology. All failure cases
are caused by running out of memory when B-Prolog ex-
ecutes the encoded Prolog program. It shows that the bot-
tleneck of the method lies in executing the encoded Prolog
program, which is time and memory consuming.



Table 2: The execution time (sec) for some test ontologies

The First Experiment The Second Experiment
Ontology Preprocess Max Avg Preprocess Max Avg
Semintec 21.4 47.5 6.1 21.7 47.9 7.3

Vicodi 70.1 20.2 3.6 70.8 20.6 9.9
LUBM1 35.5 3.5 0.3 35.7 3.6 1.0
LUBM5 947.9 29.3 2.4 949.2 59.8 11.1

UOBM-Lite3 217.1 71.1 7.0 224.9 71.1 11.8
UOBM-DL3 227.2 91.3 6.9 230.2 113.3 15.8

Note: “Max” / “Avg” is the maximum/average execution time for

successfully handling an observation in the query phase.

Related Work

By now there are only few works addressing abductive rea-
soning in DLs. Most of these works focus on TBox abduc-
tion, including some based on automata (Hubauer, Lam-
parter, and Pirker 2010) and others exploiting tableaux-
based algorithms (Noia, Sciascio, and Donini 2007; 2009).
Although an ABox axiom can be rewritten to a TBox ax-
iom (e.g. C(a) can be rewritten to {a} " C), the rewrit-
ing results contain nominals and cannot be handled by the
above methods. Moreover, ABox abduction mainly differs
from TBox abduction in allowing multiple individuals to ap-
pear in an abductive solution. Therefore it is very hard to
adapt methods for TBox abduction to ABox abduction.

Some other works focus on ABox abduction, including
one considering a DL-based ontology accompanying rules
(Peraldi et al. 2007) and one exploiting tableaux and reso-
lution algorithms (Klarman, Endriss, and Schlobach 2011).
The abductive reasoning method presented in (Peraldi et al.
2007) is a backward inference method. It restricts axioms
in the DL-based ontology to some special forms and does
not use a notion of minimality for abductive solutions. The
abductive reasoning method proposed in (Klarman, Endriss,
and Schlobach 2011), as described in the first section, fo-
cuses on a fragment of OWL DL and a problem framework
that cannot guarantee termination. In contrast, our proposed
method guarantees termination and certain minimality of re-
sults. It also allows the background ontology to be expressed
in arbitrary DLs. We are currently unable to empirically
compare with the above two methods because for the first
one, neither the ontology nor the system they used is pub-
licly accessible, while for the second one, no evaluation re-
sults are available.

Conclusions and Future Work

This paper proposed an ABox abduction method which is
based on reducing the original problem to an abduction
problem in logic programming. By introducing abducibles
and restricting them to literal concepts or atomic roles, the
method guarantees termination. Since the reduction is ap-
proximate, the proposed method does not guarantee the
completeness of results in some cases, but it always guar-
antees the soundness. Experimental results showed the fea-
sibility of the method in computing abductive solutions in
large ontologies with up to half a million ABox axioms.

Experimental results showed that the bottleneck of our
method lies in solving the reduced abduction problem, so in

future work we will investigate what fragments of plain dat-
alog allow for efficient computation of abductive solutions.
We also plan to refine the proposed ABox abduction prob-
lem to address the issue that allowing roles as abducibles
may probably result in too many abductive solutions.
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