
Towards Practical ABox Abduction in Large
Description Logic Ontologies

Jianfeng Du*, School of Management, Guangdong University of Foreign Studies; State Key
Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, China

Guilin Qi, School of Computer Science and Engineering, Southeast University; Key Laboratory
of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin

University,China
Yi-Dong Shen, State Key Laboratory of Computer Science, Institute of Software, Chinese

Academy of Sciences, China
Jeff Z. Pan, Department of Computing Science, The University of Aberdeen, UK

ABSTRACT
ABox abduction is an important reasoning facility in Description Logics (DLs). It finds all
minimal sets of ABox axioms, called abductive solutions, which should be added to a
background ontology to enforce entailment of an observation which is a specified set of ABox
axioms. However, ABox abduction is far from practical by now because there lack feasible
methods working in finite time for expressive DLs. To pave a way to practical ABox abduction,
this paper proposes a new problem for ABox abduction and a new method for computing
abductive solutions accordingly. The proposed problem guarantees finite number of abductive
solutions. The proposed method works in finite time for a very expressive DL, SHOIQ , which
underpins the W3C standard language OWL 2, and guarantees soundness and conditional
completeness of computed results. Experimental results on benchmark ontologies show that the
method is feasible and can scale to large ABoxes.

Keywords: ABox Abduction; Ontologies; Description Logics; Abductive Reasoning; Logic
Programming; Datalog; Prolog

1. INTRODUCTION
The W3C organization has proposed the standard Web Ontology Language (OWL), whose
newest version is OWL 2 (http://www.w3.org/TR/owl2-overview/), to model ontologies for a
wide range of applications. OWL is underpinned by Description Logics (DLs) (Baader et al.,
2003). For example, the two important species of OWL, namely OWL DL and OWL 2 DL, are
syntactic variants of two DLs ()DSHOIN and ()DSROIQ respectively (Horrocks et al.,
2003; Grau et al., 2008). With formal semantics, DLs provide a number of well-defined
reasoning facilities which widen the applicability of DL ontologies, including OWL ontologies.

Besides standard reasoning facilities proposed in the DL handbook (Baader et al., 2003)
such as checking whether a DL ontology is consistent and checking whether an axiom is entailed
by a DL ontology, some non-standard reasoning facilities have been proposed as well. A well-
known non-standard reasoning facility, called axiom pinpointing (Baader & Peñaloza, 2007;
Schlobach & Cornet, 2003) or justification computing (Kalyanpur et al., 2007), is to compute

minimal sets of axioms responsible for an entailment of a DL ontology. This facility is used to
explain why some axioms are entailed by a DL ontology and suggest solutions to remove these
entailments. Corresponding to this facility, another well-known non-standard reasoning facility,
usually referred to as abduction or abductive reasoning (Elsenbroich et al., 2006), is to compute
minimal sets of axioms that should be added to a background ontology to enforce entailment of
an observation which is a set of axioms. This facility is used to explain why some axioms are not
entailed by a DL ontology and suggest solutions to enforce these entailments.

Since a DL ontology is composed of a TBox, which stores intensional knowledge, as well
as an ABox, which stores extensional knowledge, there are two sub-facilities for abductive
reasoning in DLs. One is TBox abduction, the other is ABox abduction. They differ from each
other on the kinds of information that is allowed to appear in computed results. For TBox
abduction, only concepts, roles or TBox axioms (e.g. concept or role inclusion axioms) are
allowed. For ABox abduction, only ABox axioms (e.g. concept or role assertions) are allowed.
ABox abduction has its unique characteristics and cannot be treated as axiom pinpointing or
solved by existing methods for TBox abduction. See this in the following example.

Example 1. Let the background ontology O consist of the following four TBox axioms

.∃Clever Diligent isRewardedCompetition� � ,
.∃isRewardedCompetition Extraordinary� ,

Extraordinary Person� ,
Person Extraordinary Ordinary� � ,

and the following two ABox axioms
 (), ()Person Tom Clever Tom .
The first TBox axiom says that someone who is clever and diligent will be rewarded in some
competition. The second TBox axiom says that someone rewarded in some competition is
extraordinary. The third TBox axiom says that someone extraordinary is a person. The last TBox
axiom says that a person is extraordinary or ordinary. The first ABox axiom says that Tom is a
person, while the second one says that Tom is clever. When we are informed that Tom is
extraordinary, we may want to know why this happens. However, the current ontology O does
not entail ()Extraordinary Tom , so we cannot find explanations in O through axiom
pinpointing. In this situation, we need to introduce a hypothesis which is a set of axioms absent
in O such that the union of it and O entails ()Extraordinary Tom . For example, we can
introduce a hypothesis { ()}Diligent Tom , then { ()}∪O Diligent Tom entails

()Extraordinary Tom . However, existing methods for TBox abduction cannot directly be
applied to compute this hypothesis, because these methods do not consider nominals and the
hypothesis involves a nominal { }Tom . This example shows that we need particular methods for
ABox abduction that are different from existing methods for axiom pinpointing or TBox
abduction.

By now there are only few methods for ABox abduction. One known method is based on
backward inference (Peraldi et al., 2007). It restricts axioms in the given ontology to some
special forms. Moreover, it does not guarantee any minimality for computed results. Another
known method is based on some complex tableaux and resolution techniques (Klarman et al.,
2011). It works on the DL ALC which is a fragment of SHOIN , the DL corresponding to
OWL DL. ALC is obtained from SHOIN by disallowing number restrictions, nominals,

inverse roles, role inclusion axioms and transitivity axioms. Moreover, the method proposed in
(Klarman et al., 2011) does not guarantee termination because it allows arbitrarily many nested
existential/value restrictions appearing in computed results. Consider an ontology consisting of
only the following axiom, which says that something has a person as its parent is a person.

.∃hasParentPerson Person�
The method will compute infinitely many results for the observation that Amy is a person (i.e.
{ ()}Person Amy). Each result consists of a single concept assertion of the form

. . . ()∃ ∃ …hasParent hasParent Person Amy , in which the concept is an existential restriction
having arbitrarily many nested ∃hasParent . Note that the ultimate results computed by the
method should have certain minimality, while the method always computes all candidate results
that may not be minimal before selecting out ultimate ones. Hence the method will not terminate
even when there are finitely many ultimate results but infinitely many candidate results. The
present situation for ABox abduction urges us to develop practical methods, which should be
able to efficiently (at least in finite time) compute minimal results for expressive DLs.

To ensure all minimal results to be computed in finite time, we need to guarantee that there
are only finitely many minimal results. Thus, we first propose a new problem for ABox
abduction. This problem aims to compute minimal sets of ABox axioms, called abductive
solutions, which should be added to a DL ontology to make a given observation entailed by the
ontology, where all ABox axioms in an abductive solution are composed of individual names in
the ontology and user-specified predicates. The user-specified predicates, called abducible
predicates, can be arbitrary concepts or roles, but the number of abducible predicates that can be
used should be finite so that the number of abductive solutions is finite. The introduction of
abducible predicates will give users flexibility to formulate the explanations for an observation.

To seek methods to solve the proposed problem, we consider successful tools on abductive
reasoning in logic programming (Kakas et al., 1998), such as two state-of-the-art abduction
systems CIFF (Mancarella et al., 2009) and A -system (Kakas et al., 2001). These tools are built
on modern Prolog engines, but they only allow the background theory to be a normal logic
program, which corresponds to a plain datalog program extended with negation-as-failure.
However, the DLs that underpin OWL, such as SHOIN (OWL DL without datatypes) and
SROIQ (OWL 2 DL without datatypes), do not contain negation-as-failure and cannot be
directly translated to plain datalog due to the presence of existential restrictions. For example, the
axiom .A r B∃� can only be translated to a first-order rule : () : (,) ()x A x y r x y B y∀ →∃ ∧ which
is not in plain datalog, because plain datalog programs do not contain function symbols or
existentially quantified variables, while function symbols must be introduced when eliminating
the existentially quantified variable y . Hence, we propose a reduction based method for ABox
abduction. It first reduces the proposed problem for ABox abduction to a traditional abduction
problem in logic programming in which the background theory is a plain datalog program, then
extracts true results from the abductive solutions for the reduced abduction problem. This
method can not only work for very expressive DLs including SHOIN and SROIQ but also
make use of efficient techniques in modern Prolog engines. Since the reduction is approximate
and cannot guarantee semantic equivalence, the method cannot guarantee completeness, i.e.,
some abductive solutions may be missed, but it still guarantees soundness, i.e., all output results
are actually abductive solutions. We present the method with SHOIQ which underpins both
OWL DL and OWL 2 DL.

To verify the practicality of the proposed method, we conduct experiments on a series of
benchmark ontologies that have large ABoxes, including those previously used to compare
modern DL reasoners (Motik & Sattler, 2006) and those coming from the well-known University
Benchmark (UOBM) (Ma et al., 2006). Experimental results on these ontologies show that the
proposed method works well for hundreds of abducible predicates and up to half a million ABox
axioms. This demonstrates that the proposed method paves a way towards practical ABox
abduction in large DL ontologies.

The remainder of this paper is organized as follows. After providing preliminaries in the next
section, in section 3 we formalize the proposed problem for ABox abduction. Then in section 4,
we describe two methods for the proposed problem, with the latter one taken as our
recommendation. In section 5, we present our experimental evaluation on the recommended
method. Before concluding, we discuss related work in section 6.

This paper is significantly extended from a conference paper (Du et al., 2011). First of all, in
(Du et al., 2011) only literal concepts or atomic roles are allowed as abducible predicates. This
paper allows arbitrary concepts or roles as abducible predicates. Secondly, this paper considers
negated roles which are neglected in (Du et al., 2011). For example, the concept .r A∃ and the
negated role r¬ can be used as abducible predicates here but cannot in (Du et al., 2011).
Moreover, negated role assertions of the form (,)r a b¬ can be used as observations here but
cannot in (Du et al., 2011). Thirdly, both the restricted method and the general method that are
proposed in (Du et al., 2011) are revised in this paper. The main revisions come from handling
arbitrary concepts or roles (including negated roles), which requires more elaborate techniques.
Finally, more experimental results and complete proofs of theoretical results are supplemented.

2. PRELIMINARIES
In this section, we introduce the DL SHOIQ and disjunctive datalog, both of which express
background theories that we consider. Moreover, we also introduce a method for compiling
SHIQ to disjunctive datalog (Hustadt et al., 2007) and a method for axiomatizing equality
(Fitting 1996), both of which are highly related to our proposed method.

2.1 The Description Logic SHOIQ
Description Logics (DLs) (Baader et al., 2003) are logical foundations of OWL. SHOIQ is a
very expressive DL that underpins OWL DL and OWL 2 DL, since OWL DL is a syntactic
variant of ()DSHOIN (Horrocks et al., 2003) and OWL 2 DL is a syntactic variant of

()DSROIQ (Grau et al., 2008). Throughout this paper, we use the DL syntax of SHOIQ as it
is more compact.

Let RN be a set of role names. A SHOIQ role (simply a role) is either some Rr N∈
(atomic role) or an inverse role r− for Rr N∈ . Let ()r r−=Inv and ()r r− =Inv for Rr N∈ . Let

CN be a set of concept names and IN a set of individual names. The sets RN , CN and IN are
mutually disjoint. The set of SHOIQ concepts is the smallest set recursively defined as follows.
Each CA N∈ (atomic concept) or each { }a (nominal) where Ia N∈ is a SHOIQ concept. For
SHOIQ concepts C and D , roles r and s , and a nonnegative integer n , the following
concepts are also SHOIQ concepts: � (top concept), ⊥ (bottom concept), C¬ (negation),
C D� (conjunction), C D� (disjunction), .r C∃ (existential restriction), .r C∀ (value

restriction), .n s C≤ and .n s C≥ (qualifying number restrictions). A concept or a role is said to be
literal if it is atomic or negated atomic.

A SHOIQ ontology consists of a SHOIQ TBox and a SHOIQ ABox. A SHOIQ
TBox T is a finite set of TBox axioms, including concept inclusion axioms C D� , role
inclusion axioms r s� and transitivity axioms ()rTra , where C and D are SHOIQ concepts,
and r and s are roles. It is required that r s∈T� imply () ()r s ∈TInv Inv� , while

()r ∈TTra imply (())r ∈TTra Inv , for any roles r and s . Let *� denote the reflexive-
transitive closure of � . A role r is said to be transitive if ()s ∈TTra for some role s such that

*s r� and *r s� . r is said to be simple if there is no transitive role s such that *s r� . r is
said to be complex if it is not simple. To guarantee decidability of SHOIQ , it is required that
any role s used in qualifying number restrictions .n s C≤ or .n s C≥ be simple. A SHOIQ
ABox A is a finite set of ABox axioms, including concept assertions ()C a , role assertions

(,)r a b , equality assertions a b≈ and inequality assertions a b≈/ , where C is a SHOIQ
concept, r is a literal role, and a and b are individual names in IN . When C is a literal (resp.
atomic or negated atomic) concept, ()C a is said to be a literal (resp. atomic or negated) concept
assertion. When r is a literal (resp. atomic or negated atomic) role, (,)r a b is said to be a literal
(resp. atomic or negated) role assertion.

An interpretation (,)= ∆ gI II consists of a set ∆I , called the domain of I , and a function
gI that maps every concept name A to a set A ⊆ ∆I I , every role name r to a binary relation
r ⊆ ∆ ×∆I I I , and every individual name a to a ∈∆I I . The interpretation is extended to
arbitrary SHOIQ concepts according to the left part of Table 1, where | |S denotes the
cardinality of a set S , and to inverse roles by defining ()r IInv as {(,) | (,) }x y y x r∈ I . An
interpretation I is said to satisfy an axiom ax or be a model of ax , if the corresponding
condition given in the right part of Table 1 holds. By ()axM (resp. ()SM) we denote the set of
models of an axiom ax (resp. a set S of axioms). Then () ()

ax S

S ax
∈

= IM M for any set S of

axioms. A SHOIQ ontology O is said to be consistent if () ≠ ∅M O . A set S of axioms is
said to be entailed by O , denoted by | S=O , if () ()S⊆M O M .

Table 1: The syntax and semantics of SHOIQ
Syntax Semantics TBox Conditions
� ∆I C D� C D⊆I I

⊥ ∅ ()rTra ()r r+ =I I

{ }a aI

 r s� r s⊆I I

C¬ \ C∆ I I

C D� C D∩I I ABox Conditions
C D� C D∪I I ()C a a C∈I I

.r C∃ { : (,) }x y x y r y C∈∆ ∃ ∈ ∧ ∈∣I I I
 (,)r a b (,)a b r∈I I I

.r C∀ { : (,) }x y x y r y C∈∆ ∀ ∈ ⇒ ∈∣I I I

 (,)r a b¬ (,)a b r∈/I I I

.n s C≤ { |{ (,) } | }x y C x y s n∈∆ ∈ ∈ ≤∣ ∣I I I

 a b≈ a b=I I

.n s C≥ { |{ (,) } | }x y C x y s n∈∆ ∈ ∈ ≥∣ ∣I I I

 a b≈/ a b≠I I

2.2 Disjunctive Datalog and Plain Datalog
An atom is of the form 1(T v , …,)nv , where T is a predicate and the arguments 1v , …, nv are
variables or constants. When T is the equality predicate ≈ , 1 2(,)T v v is also called an equational
atom, usually written as 1 2v v≈ . A rule is of the form 1 1, ,n mα α β β∨…∨ ← … , where iα and iβ
are atoms, 1α , …, nα are called head atoms of the rule, and iβ , …, mβ are called body atoms
of the rule. The set of head atoms of a rule R is denoted by ()Rhead , while the set of body
atoms of R is denoted by ()Rbody . A rule R is called a constraint if | () | 0R =head ; called a
fact if | () | 0R =body ; called definite if | () | 1R =head . A fact 1 nα α∨…∨ ← can simply be
written as 1 nα α∨…∨ . A rule is said to be safe if every variable occurring in a head atom also
occur in some body atom. A disjunctive datalog program (Eiter et al., 1997) is a finite set of safe
rules. A disjunctive datalog program with equality is a disjunctive datalog program in which
some equational atoms occur in rule heads. A plain datalog program (with equality) is a
disjunctive datalog program (with equality) that has only definite rules and constraints.

An atom or a rule is ground if it has no variables. A ground instance of an atom α (resp. a
rule R) is a ground atom (resp. a ground rule) obtained from α (resp. R) by replacing all
variables with constants. Given a disjunctive datalog program with equality P , the set of all
ground instances of atoms in P obtained by replacing all variables with constants occurring in
P is called the Herbrand base of P , denoted by ()PHB . The set of all ground instances of rules
in P obtained by replacing all variables with constants occurring in P is denoted by ()G P .

A Herbrand interpretation (simply interpretation) M of P is a subset of ()PHB . M is
called a Herbrand model (simply model) of P if (i) ()r M⊆body implies ()r M∩ ≠∅head
for every ground rule ()r∈G P , and (ii) the equality predicate ≈ can be interpreted as a
congruence relation in M , i.e., ≈ is reflexive (a a M≈ ∈ for all constants a occurring in M),
symmetric (a b M≈ ∈ implies b a M≈ ∈) and transitive (a b M≈ ∈ and b c M≈ ∈ imply
a c M≈ ∈), and 1(, , , ,)i nT a a a M… … ∈ and i ia b M≈ ∈ imply 1(, , , ,)i nT a b a M… … ∈ for every
predicate T occurring in P . P is said to be satisfiable if it admits at least one model. A ground
atom α is said to be entailed by P , denoted by | α=P , if α is in all models of P . A set S of
ground atoms is said to be entailed by P , denoted by | S=P , if | α=P for all Sα ∈ .

2.3 Compiling from SHIQ to Disjunctive Datalog
The DL SHIQ is almost as expressive as SHOIQ except that nominals are disallowed. There
is a well-known method (Hustadt et al., 2007) for compiling an extensionally reduced SHIQ
ontology to a disjunctive datalog program with equality, where a SHIQ ontology is said to be
extensionally reduced if for all concept assertions ()C a in the ABox, C is a literal concept, and
for all role assertions (,)r a b in the ABox, r is not an inverse role or the negation of some
inverse role. Since this method has been implemented in the KAON2 system
(http://kaon2.semanticweb.org/), we call it the KAON2 method.

Given an extensionally reduced SHIQ ontology O whose TBox is T and whose ABox is
A , the KAON2 method compiles O to a disjunctive datalog program with equality, denoted by

()ODD , through the following six steps.
In the first step, every transitivity axiom ()s ∈TTra is removed and concept inclusion

axioms of the form . .(.)r C s s C∀ ∀ ∀� are added to T , for all roles r such that *s r� and all
concepts C appearing in T . This step is the standard method for eliminating transitivity axioms
and will yield an ALCHIQ ontology ()Ω O , such that ()Ω O is consistent if O is consistent,
and when O has no negated role assertions on complex roles, O is consistent if ()Ω O is
consistent (Hustadt et al., 2007).

In the second step, the TBox of ()Ω O is translated into a set of first-order clauses, using
standard transformation methods from first-order logic. This step involves eliminating existential
quantifiers by Skolemization and may introduce function symbols.

In the third step, the set of clauses obtained in the second step is saturated by adding non-
redundant logical consequences. This step takes up to exponential time w.r.t. the size of T . For
an arbitrary atom (possibly an equational atom) in the saturated set of non-redundant clauses, its
arguments can be variables or functional terms of the form ()f x , where f is a function symbol
introduced in the second step.

In the fourth step, any functional term ()f x occurring in the resulting set of clauses in the
third step is rewritten to a new variable fx The resulting set of clauses is then syntactically
transformed to a set of rules. To make the resulting rules safe, auxiliary atoms of the form

()HU x , ()fHU x or (,)f fS x x are added to rule bodies if necessary. For example, the rule
() (), (,)f f fB x A x S x x← is rewritten from (()) ()B f x A x← , while the rule
() () ()A x B x HU x∨ ← is rewritten from () ()A x B x∨ . We denote the set of rules computed in

this step by ()Γ T , which has no functional terms.
In the fifth step, a set of ground facts of the form ()HU a , ()fHU a or (,)f fS a a is

constructed, which are instantiated for all individual names a occurring in A and all function
symbols f introduced in the second step. We denote this set by ()∆ O .

In the last step, A is directly translated to a set of ground facts or ground constraints. More
precisely, ABox axioms of the form ()A a (resp. (,)r a b or a b≈) are translated to ground facts

()A a (resp. (,)r a b or a b≈), while ABox axioms of the form ()A a¬ (resp. (,)r a b¬ or a b≈)
are translated to ground constraints ()A a← (resp. (,)r a b← or a b← ≈). We denote this set by

()Ξ A .
Let ()ODD be defined as () () ()Γ ∪Ξ ∪∆T A O . We have the following theorem.

Theorem 1 ((Hustadt et al., 2007)). Let O be an extensionally reduced SHIQ ontology.
Then: (1) for any literal concept assertion or literal role assertion ax ,

({ }) () { }ax ax∪ = ∪O ODD DD ; (2) when O has no negated role assertions on complex roles, O
is consistent if and only if ()ODD is satisfiable.

In the following, an example for the KAON2 method is shown.

Example 2 Consider the ontology O given in Example 1. By compiling O through the
KAON2 system, we obtain ()ODD which consists of the following rules (1)–(6).

() (), ()x x x←Extraordinary Clever Diligent . (1)
() (,), ()x x y y←Extraordinary isRewarded Competition . (2)

() ()x x←Person Extraordinary . (3)
() () ()x x x∨ ←Extraordinary Ordinary Person . (4)

()←Person Tom . (5)
()←Clever Tom . (6)

2.4 Equality Axiomatization
Our proposed method needs to call a Prolog engine to solve the reduced abduction problem in
which the background theory is a plain datalog program. Since equational atoms occurring in
rule heads have special semantics and existing Prolog engines do not particularly handle this
semantics, we need to treat the equality predicate as an ordinary predicate through a standard
method for axiomatizing equality (Fitting, 1996). This method is described below.

Let ()π P denote the disjunctive datalog program obtained from a disjunctive datalog
program with equality P by replacing the equality predicate ≈ with a new ordinary predicate
eq , and ≈P denote the plain datalog program consisting of the following rules.

(,)eq a a ← . for every constant a occurring in P (7)
(,) (,)eq y x eq x y← . (8)
(,) (,), (,)eq x z eq x y eq y z← . (9)

1 1(, , , ,) (, , , ,), (,)i n i n i iT x y x T x x x eq x y… … ← … … . for every
predicate T occurring in P except ≈ and every position i in T

(10)

The group of rules (7) ensures that eq is reflexive. Rule (8) ensures that eq is symmetric. Rule
(9) ensures that eq is transitive. The group of rules (10) ensures that for every model M of

()π P and every predicate T occurring in P except ≈ , 1(, , , ,)i nT a a a M… … ∈ and
(,)i ieq a b M∈ imply 1(, , , ,)i nT a b a M… … ∈ . It is clear that M is a model of P if and only if

M is an interpretation of ()π ≈∪P P such that ()r M⊆body implies ()r M∩ ≠∅head for all
rules (())r π ≈∈ ∪G P P . The disjunctive datalog program without equality ()π ≈∪P P , in which
the equality predicate does not appear, is said to be obtained from P by axiomatizing equality.

3. A NEW PROBLEM FOR ABOX ABDUCTION
We derive a new problem for ABox abduction from the area of logic-based abduction (Eiter &
Gottlob, 1995; Kakas et al., 1998). In this area, an abduction problem is usually defined as a
problem of computing all minimal sets ∆ of sentences w.r.t. a background theory T and an
observation G , such that ∆ does not entail G , but T ∪∆ entails G and T ∪∆ is consistent. A
computed set ∆ is often restricted to a special pre-specified class of sentences called abducibles,
so as to provide appropriate modes to enforce entailment of an observation (Kakas et al., 1998).
Inspired from this idea, we propose the following problem for ABox abduction, in which
abducible predicates are introduced to give users flexibility to formulate the explanations for an
observation.

Definition 1 (ABox Abduction). Given a DL ontology O , a finite set A of abducible
predicates which are arbitrary concepts or roles, and an observation G which is a finite set of
concept or role assertions, an abductive solution for (, ,)A GO is a subset-minimal (simply
minimal) set ∆ of ABox axioms such that all ABox axioms in ∆ are directly composed of
individual names in O and concepts or roles in A , | G∆ ≠ , | G∪∆ =O and ∪∆O is consistent.
The ABox abduction problem defined by (, ,)A GO is to compute all abductive solutions for
(, ,)A GO .

A simple example of the proposed problem is shown below.

Example 3. Consider the ontology O given in Example 1. Let the set of abducible predicates
be {A = Clever , Diligent , }Extraordinary and the observation be { ()}G = Extraordinary Tom .
Then there is only one abductive solution for (O , A ,)G , namely { ()}Diligent Tom .
{ ()}Extraordinary Tom is not an abductive solution because { ()}| G=Extraordinary Tom .
{ ()Clever Tom , ()}Diligent Tom is not either because it is not minimal.

The proposed problem (simply called problem A) mainly differs from the problem proposed
in (Klarman et al., 2011) (simply called problem B) in using a finite set of abducible predicates.
In problem B, abductive solutions can be on an infinite set of ALE concepts or roles, where
ALE is a DL obtained from ALC by disallowing non-atomic negation and disjunction. In
problem A, abductive solutions can be on more expressive DL concepts. The current problem A
has extended its original one proposed in the conference paper (Du et al., 2011) by allowing
arbitrary concepts or roles as abducible predicates and negated role assertions as observations.
Problem A may be inferior to problem B when abducible predicates are not appropriately set. On
the one hand, when an instance of problem B has abductive solutions, its counterpart of problem
A may not have. For example, given { . }= ∀O hasChildGood Happy� and

{ ()}G = Happy Amy , the corresponding instance of problem B has an abductive solution in O ,
namely { . ()}∀hasChildGood Amy , but its counterpart of problem A has not unless

.∀hasChildGood is set as an abductive predicate. On the other hand, the representation of
abductive solutions in problem A may be less concise than its counterpart in problem B. For
example, given { .= ∃O �hasFather Person� , 1 1(,)a a¬hasFather , 2()aPerson , ...,

()}naPerson , { }A = hasFather and 1{ ()}G a= Person , the corresponding instance of problem
A has 1n − abductive solutions 1 2{ (,)}a ahasFather , ..., 1{ (,)}na ahasFather in O , while its
counterpart of problem B has only one, i.e. 1{ . ()}a∃ �hasFather .

Despite of the above potential disadvantages, problem A has intrinsic merits that are lacking
in problem B. First, the number of abductive solutions is finite because the number of possible
axioms in an abductive solution is at most 2| || | | || |c I r IA N A N+ , where cA , rA and IN are
respectively the set of concepts in A , the set of roles in A , and the set of individual names in O .
Second, the minimality of candidate abductive solutions can be simply determined by set-
inclusion checking, rather than by the complex renaming and entailment checking which are
used in the method for problem B (Klarman et al., 2011). Since termination and efficiency are

crucial for practical ABox abduction, we propose problem A as the fundamental problem for
practical ABox abduction.

4. COMPUTING ALL ABDUCTIVE SOLUTIONS
Although the number of abductive solutions is finite, a brute-force search method for computing
all abductive solutions is impractical because the search space, namely the set of candidate
solutions, has a size exponential in 2| || | | || |c I r IA N A N+ . Hence we consider state-of-the-art
abduction systems, such as CIFF (Mancarella et al., 2009) and A -system (Kakas et al., 2001).
These systems compute minimal results in a top-down manner, recursively using goals to direct
the search and prune search space. To adapt the top-down manner to computing abductive
solutions in ABox abduction, we need to confine the background ontology as a syntactic variant
of a plain datalog program, because existing practical methods for computing minimal results,
such as the ones implemented in CIFF and A -system, only work on plain datalog programs with
negation-as-failure. To make the adaptation work for common DLs (e.g. SHOIQ) that cannot
be translated to plain datalog, we consider approximate translations which are derived from the
KAON2 method (Hustadt et al., 2007). As described in subsection 2.3, the KAON2 method
compiles an extensionally reduced SHIQ ontology O to a disjunctive datalog program with
equality ()ODD .

Let P be a disjunctive datalog program (possibly with equality), A be a set of atomic
concepts or atomic roles, and G be a set of atomic concept assertions or atomic role assertions.
Corresponding to Definition 1, we also define an abductive solution for (P , A ,)G as a
minimal set of ∆ of ground atoms such that all ground atoms in ∆ are directly composed of
constants in P and predicates in A , | G∆ ≠ , | G∪∆ =P and ∪∆P is consistent, where atomic
concepts and atomic roles are treated as predicates, and atomic concept assertions and atomic
role assertions are treated as ground atoms. By Theorem 1, we have a correspondence between
abductive solutions for (()ODD , A ,)G and abductive solutions for (O , A ,)G , as shown in
Theorem 2. Note that an abductive solution for (()ODD , A ,)G may contain constants not
corresponding to individual names in O , i.e. the constants of the form fa introduced in the fifth
step of the KAON2 method (see subsection 2.3), thus Theorem 2 only considers abductive
solutions for (()ODD , A ,)G that are ABox axioms; this means that all constants appearing in
these abductive solutions correspond to individual names in O .

Theorem 2. Let O be an extensionally reduced SHIQ ontology without negated role
assertions on complex roles, A a set of atomic concepts or atomic roles, and G a set of atomic
concept assertions or atomic role assertions on simple roles, then for any set ∆ of ABox axioms,
∆ is an abductive solution for (()ODD , A ,)G if and only if it is an abductive solution for (O ,
A ,)G .
Proof. We show that (*) for any set ∆ of ABox axioms on concepts or roles in A , ()∪∆ODD is
satisfiable and entails G ⇔ ∪∆O is consistent and entails G . (⇐) Since ∪∆O is consistent,

()∪∆ODD is satisfiable, so () ()∪∆ = ∪∆O ODD DD is also satisfiable. Let ax be any ABox
axiom in G . Since | { }ax∪∆ =O , { }ax∪∆∪ ¬O is inconsistent. Since { }ax∪∆∪ ¬O does not
contain any negated role assertion on complex roles, ({ })ax∪∆∪ ¬ODD is unsatisfiable. Hence,

() { } ({ })ax ax∪∆ ∪ ¬ = ∪∆∪ ¬O ODD DD is also unsatisfiable, and thus () | { }ax∪∆ =ODD . It

follows that () | G∪∆ =ODD . (⇒) Since ()∪∆ODD is satisfiable, () ()∪∆ = ∪∆O ODD DD is
also satisfiable, so ∪∆O is satisfiable. Let ax be any ABox axiom in G . Since

() | { }ax∪∆ =ODD , () { }ax∪∆∪ ¬ODD is unsatisfiable, so
({ }) () { }ax ax∪∆∪ ¬ = ∪∆∪ ¬O ODD DD is also unsatisfiable. Since { }ax∪∆∪ ¬O does not

contain any negated role assertion on complex roles, { }ax∪∆∪ ¬O is inconsistent, so
| { }ax∪∆ =O . It follows that | G∪∆ =O .

(1) Let ∆ be an abductive solution for (O , A ,)G , then | G∆ ≠ and ∪∆O is consistent
and entails G . By (*), ()∪∆ODD is consistent and entails G . Suppose ∆ is not an abductive
solution for (()ODD , A ,)G , then there is an abductive solution ′∆ for (()ODD , A ,)G such
that ′∆ ⊂ ∆ . By (*) again, ′∪ ∆O is consistent and entails G . Moreover, | G′∆ ≠ and all
concepts or roles occurring in ′∆ are in A , contradicting that ∆ is an abductive solution for (O ,
A ,)G .

(2) Let ∆ be a set of ABox axioms and an abductive solution for (()ODD , A ,)G , then
| G∆ ≠ and ()∪∆ODD is consistent and entails G . By (*), ∪∆O is consistent and entails G .

Suppose ∆ is not an abductive solution for (O , A ,)G , then there is an abductive solution ′∆
for (O , A ,)G such that ′∆ ⊂ ∆ . By (*) again, () ′∪∆ODD is consistent and entails G .
Moreover, | G′∆ ≠ and all concepts or roles occurring in ′∆ are in A , contradicting that ∆ is an
abductive solution for (()ODD , A ,)G . W

The above theorem shows that for some restricted class of the proposed problem, the
original problem can be reduced to the problem of computing all abductive solutions in the
reduced disjunctive datalog program with equality. Hence, we first propose a method for this
restricted class, and then extend it to address the full class of the proposed problem.

4.1. The Method for the Restricted Class
Throughout this subsection, let O denote an extensionally reduced SHIQ ontology without
negated role assertions on complex roles, A a set of atomic concepts or atomic roles, and G a
set of atomic concept assertions or atomic role assertions on simple roles. In order to compute
abductive solutions for (O , A ,)G , by Theorem 2 we seek methods for computing abductive
solutions for (()ODD , A ,)G .

Considering that two state-of-the-art abduction systems CIFF (Mancarella et al., 2009) and
A -system (Kakas et al., 2001) are built on Prolog engines, we intend to encode the problem of
computing all abductive solutions for (()ODD , A ,)G into a Prolog program and solve it with
Prolog engines. Note that we do not directly apply CIFF or A -system to solve the abduction
problem on (()ODD , A ,)G , because currently CIFF and A -system cannot guarantee
termination in handling cyclic logic programs, whereas ()ODD can have cycles between
predicates (e.g., the disjunctive datalog program given in Example 2 has a cycle on predicates
Person and Extraordinary). Hence, we turn to encode the abduction problem on (()ODD , A ,

)G into a Prolog program and apply a state-of-the-art Prolog engine, B-Prolog
(http://www.probp.com/), to solve it. B-Prolog supports linear tabling (Shen et al., 2001), which
is an efficient way to guarantee termination in handling cycles.

The equality predicate ≈ should be axiomatized when it occurs in some rule heads in
()ODD , because B-Prolog does not treat it as a congruence relation. As described in subsection

2.4, the equality predicate ≈ can be axiomatized by using a standard method (Fitting, 1996). Let
()′ ODD be obtained from ()ODD by axiomatizing equality if necessary. That is, ()′ ODD is

converted from ()ODD using the method described in subsection 2.4, if the equality predicate ≈
occurs in some rule heads in ()ODD , or is directly copied from ()ODD otherwise. Consider
Example 2. Since the equality predicate does not occurs in any rule head in ()ODD , ()′ ODD is
the same as ()ODD .

In the following, we present a method for encoding (()′ ODD , A ,)G into a Prolog program,
which consists of four steps.

In the first step, the observation G is encoded into a Prolog rule with a nullary head atom
go , where every ground atom Gα ∈ is encoded as a body atom with an extra argument, which
is a list storing a set of ground atoms that are added to ()′ ODD to enforce entailment of α . A
list L is of the form 1[,...,]nt t , where it is of the form (,"rdf:type", p_A)a or (, p_r,)a b . It can be
decoded into a set of ABox axioms 1{ ,..., }nt t′ ′ , denoted by ()Ldecode , where it′ is rewritten
from it by rewriting (,"rdf:type",p_T)a to a concept assertion ()T a and (,p_r,)a b to a role
assertion (,)r a b . Note that every predicate in ()′ ODD is rewritten to a Prolog predicate with the
prefix "p_", because the Prolog syntax capitalizes the first letter for variables only. Following
the first body atom encoded from ground atoms in G , a body atom of the form ()check L is
added to the encoded Prolog rule, where ()check L returns true if and only if none of the subsets
of L has been output, which is used to prune non-minimal sets of added ground atoms. Then,
following every other body atom encoded from ground atoms in G , two body atoms of the form

1 2(, ,)union L L L and ()check L are added to the encoded Prolog rule, where 1 2(, ,)union L L L sets
L as the union of 1L and 2L and returns true, which is used to yield the union of all sets of
added ground atoms. Following all the above body atoms, two body atoms ()output L and fail
are also added to the encoded Prolog rule, where ()output L outputs L and returns true, while
fail forces the Prolog engine to enumerate all possible instantiations of extra arguments when
go is called. For example, the observation { ()Extraordinary Tom , ()}Person Tom is encoded
into the following Prolog rule.

:- go 1 1p_Extraordinary(Tom",), (")L check L ,

2 1 2p_Person("Tom",), (, ,), (), (),L union L L L check L output L fail .
In the second step, every definite rule in ()′ ODD is encoded into a Prolog rule. In more

details, every atom α occurring in ()′ ODD is encoded into a Prolog atom with an extra
argument, which is a list storing a set of ground atoms that are added to ()′ ODD to enforce
entailment of a ground instance of α . When α has variables, the extra argument is written as a
variable because the corresponding list is different for different ground instances of α , otherwise
the extra argument is written as the empty list [] since α ← is a ground fact in ()′ ODD and α
is entailed by ()′ ODD . Likewise, following the first body atom (resp. every other body atom)
encoded from body atoms in the original rule in ()′ ODD , a body atom of the form ()check L
(resp. two body atoms of the form 1 2(, ,)union L L L and ()check L) is added to the encoded

Prolog rule. Consider Example 2, all rules except rule (4) are encoded in this step. For example,
rules (2), (3) and (6) are encoded into the following Prolog rules.

1 1p_Extraordinary(,) :- p_isRewarded(, ,), ()X L X Y L check L ,

2 1 2p_Competition(,), (, ,), ()Y L union L L L check L .
p_Person(,) :- p_Extraordinary(,), ()X L X L check L .
p_Clever("Tom",[]) .
In the third step, every predicate T in A is encoded into a Prolog rule, which consists of a

head atom and n body atoms, specifying that adding a ground atom to ()′ ODD enforces
entailment of this ground atom, where 1n = if T is an atomic concept, or 2n = if T is an
atomic role. The head atom is composed by T and 1n + arguments, where the last argument is a
singleton list storing an atom on T . Every body atom is of the form ()dom X , which ensures X
to be a constant in ()′ ODD . For example, the abducible predicates Diligent and isRewarded
are encoded into the following two rules.

p_Diligent(,[(,"rdf:type","Diligent")]) :- () X X dom X .
p_isRewarded(, ,[(,"isRewar ded",)]) :- (), () X Y X Y dom X dom Y .
In the last step, all Prolog predicates occurring in cycles in the set of generated Prolog rules

are declared to be tabled predicates. Declaring a Prolog predicate to be tabled means that any
Prolog atom on this predicate is prevented from calling multiple times. The declaration of tabled
predicates is supported by B-Prolog. This is a crucial step for guaranteeing termination when
calling Prolog atoms in the encoded Prolog program.

There are two remarks on the aforementioned encoding method. First, rules in ()′ ODD that
have more than one head atom cannot be encoded into Prolog rules, thus they are ignored.
Second, although constraints in ()′ ODD can be encoded into Prolog rules with some special
treatments, they are only used to determine whether an output solution is consistent with the
background theory. Since this consistency checking implemented in B-Prolog is based on brute-
force search and is generally less efficient than consistency checking in modern DL reasoners,
constraints in ()′ ODD are also ignored and consistency checking is performed by calling
external DL reasoners.

Let (()′ Oprolog DD , A ,)G denote the set of lists output by the Prolog program encoded
from (()′ ODD , A ,)G when calling go . The following theorem shows that all abductive
solutions for (()ODD , A ,)G can be extracted from (()′ Oprolog DD , A ,)G when ()′ ODD is a
plain datalog program.

Theorem 3. If ()ODD is a plain datalog program (possibly with equality), then the set of
abductive solutions for (()ODD , A ,)G is the set of minimal sets in
{ () | (()L L ′∈ Odecode prolog DD , A ,)G , () |L G≠decode , ()L∪O decode is consistent}.
Proof. Note that ()′ ODD is a plain datalog program without equality. The encoded Prolog
program searches and only outputs all lists L such that () ()L′ ∪ODD decode entails G and
every ground atom in ()Ldecode is on atomic concepts or atomic roles in A . It must output all
minimal ones among all these lists. Let { () (()S L L ′= ∈∣ Odecode prolog DD , A ,)G ,

() |L G≠decode , ()L∪O decode is consistent}.

(1) Let ∆ be a minimal set in S , then ∆ is a set of ground atoms on atomic concepts or
atomic roles in A such that () | G′ ∪∆ =ODD , i.e., () | G∪∆ =ODD . Since ∪∆O is consistent,
by Theorem 1, () ()∪∆ = ∪∆O ODD DD is satisfiable. Hence, ∆ is an abductive solution for
(()ODD , A ,)G .

(2) Let ∆ be an abductive solution for (()ODD , A ,)G , then () | G′ ∪∆ =ODD and there is
not any proper subset ′∆ of ∆ such that () | G′ ′∪∆ =ODD . Hence, there is a list L output by the
encoded Prolog program such that ()L = ∆decode . By Theorem 2, ∆ is also an abductive
solution for (O , A ,)G , thus ∪∆O is consistent. Suppose ∆ is not a minimal set in S . Since

| G∆ ≠ and ∪∆O is consistent, there must be a minimal set ′∆ in S such that ′∆ ⊂ ∆ . But then
by (1), ′∆ is an abductive solution for (()ODD , A ,)G , contradiction. W

Based on Theorem 2 and Theorem 3, we can obtain a method which computes the set of all
minimal sets in { () (()L L ′∈∣ Odecode prolog DD , A ,)G , () |L G≠decode , ()L∪O decode is
consistent} that are also sets of ABox axioms. The resulting set is actually the complete set of
abductive solutions. However, this method only guarantees sound and complete results for a
restricted class of the proposed problem. Moreover, it is impractical when ()ODD has equational
head atoms. In this case, axiomatizing equality is needed, implying that ()′ ODD will have some
rules like () (),T y T x x y← ≈ . These rules are hard to handle by the encoded Prolog program
since every predicate occurring in them appear in cycles. Our experimental results also confirm
that these rules easily make ABox abduction fail. In the next subsection, we propose a general
method to tackle all the above issues.

4.2. The Method for the Full Class
Throughout this subsection, let O denote an arbitrary SHOIQ ontology, A a finite set of
arbitrary concepts or roles, and G a finite set of concept assertions or role assertions. That is,
(O , A ,)G represents the full class of the proposed problem where SHOIQ is treated as the
most expressive DL.

The key idea for applying Prolog engines to compute abductive solutions for (O , A ,)G is
to transform (O , A ,)G to some (P , 'A , ')G which can be encoded to a Prolog program using
the method described in the previous subsection, i.e., P is a plain datalog program, 'A is a set
of atomic concepts or atomic roles, and 'G is a set of atomic concept assertions or atomic role
assertions. Suppose there is a one-to-one mapping function f that maps concepts or roles in 'A
to concepts or roles in A . Given a set ∆ of ABox axioms on concepts or roles in 'A , by ()f ∆
we simply denote the set of ABox axioms obtained from ∆ by replacing every concept or role T
occurring in ∆ with ()f T . Suppose | G′∪∆ =P implies () |f G∪ ∆ =O for all sets ∆ of ABox
axioms on concepts or roles in 'A , then for every set ∆ of ABox axioms on concepts or roles in

'A such that | G′∪∆ =P , some subsets of ()f ∆ can possibly be abductive solutions for (O , A ,
)G . Hence, we can first compute all sets ∆ of ABox axioms on concepts or roles in 'A such that

| G′∪∆ =P by the Prolog program encoded from (P , 'A , ')G , then extract abductive solutions
for (O , A ,)G from ()f ∆ .

Based on the above idea, we develop a method for computing abductive solutions for (O ,
A ,)G . In order to transform (O , A ,)G to (P , 'A , ')G such that (*) | G′∪∆ =P implies

() |f G∪ ∆ =O for all sets ∆ of ABox axioms on concepts or roles in 'A , we need to normalize
(O , A ,)G to (′O , 'A , ')G first, where ′O is an extensionally reduced ontology, 'A is a set of
atomic concepts or atomic roles, and G′ is a set of atomic concept assertions or atomic role
assertions. Since this is a normalization step, we also need to ensure that for all sets ∆ of ABox
axioms on concepts or roles in 'A , ∆ is an abductive solution for (′O , 'A , ')G if and only if

()f ∆ is an abductive solution for (O , A ,)G , where f is a one-to-one mapping function from
concepts or roles in 'A to concepts or roles in A . Then, in order to convert (′O , 'A , ')G to (P ,

'A , ')G , we consider existing methods for transforming DLs to plain datalog. The KAON2
method is the best choice because it has efficient implementation and preserves consequences
when compiling very expressive DLs to disjunctive datalog. To apply the KAON2 method, we
need to weaken ′O to a SHIQ ontology. Moreover, we require that the disjunctive datalog
program compiled by the KAON2 method should have no equational head atoms; otherwise the
axiomatization of equality is needed and will introduce many cyclic rules that heavily impair the
efficiency of subsequent steps. Hence, we weaken ′O to ′′O such that ()′′ODD can be computed
by the KAON2 method and has no equational head atoms. As a weakening step, we need to
ensure that | G′′ ′∪∆ =O implies | G′ ′∪∆ =O for all sets ∆ of ABox axioms on concepts or
roles in 'A . Afterwards, we compile ()′′ODD from ′′O and then modify it to a plain datalog
program P by removing non-definite rules and adding more definite rules to make the ultimate
results more complete. To achieve the aforementioned condition (*), we need to ensure that

| G′∪∆ =P implies | G′ ′∪∆ =O for all sets ∆ of ABox axioms on concepts or roles in 'A .
To summarize, the proposed method for computing all abductive solutions for (O , A ,)G

consists of five steps. In the first step, (O , A ,)G is normalized to (′O , 'A , ')G . In the second
step, ′O is weakened to ′′O . In the third step, ′′O is compiled to ()′′ODD and ()′′ODD is then
modified to P . In the fourth step, a Prolog program is encoded from (P , 'A , ')G using the
method described in the previous subsection, and then go is called. In the last step, abductive
solutions for (O , A ,)G are extracted from ()Ldecode for every list L output by the encoded
Prolog program. More details on these steps are given in the following.

4.2.1 Normalizing (, ,)A GO
In the first step, we need to normalize (O , A ,)G to (′O , A′ ,)G′ such that for all sets ∆ of
ABox axioms on concepts or roles in A′ , ∆ is an abductive solution for (′O , A′ ,)G′ if and
only if ()f ∆ is an abductive solution for (O , A ,)G , where f is a one-to-one mapping
function from concepts or roles in A′ to concepts or roles in A . To achieve this goal, ′O may
not be kept as a SHOIQ ontology. For example, suppose r¬ is a role in A and (,)s a b¬ is a
role assertion in G , where both r and s are atomic roles. To obtain A′ and G′ , we introduce a
fresh atomic role †

rQ¬ for r¬ and another fresh atomic role sQ¬
P for s¬ . To make G′ hold, we

need to guarantee the traditional forward inference from ABox axioms on A′ to G′ . This
inference involves an inference from ABox axioms on A′ to ABox axioms on A , an inference
from ABox axioms on A to G , and an inference from G to G′ . Hence, we need to introduce

two axioms †
rQ r¬ ¬� and ss Q¬¬ P� for †

rQ¬ and sQ¬
P , respectively, to make the inference from

ABox axioms on A′ to G′ work.
We call an axiom of the form s r¬� or s r¬ � (where s and r are non-negated roles) a

negated role inclusion axiom. A SHOIQ ontology does not include negated role inclusion
axioms, thus ′O may not be expressed in SHOIQ . We extend the semantics of SHOIQ to
the semantics of SHOIQ with negated role inclusion axioms. We say an interpretation I
satisfies s r¬� if s r∩ =∅I I ; satisfies s r¬ � if s r∪ = ∆I I I . Then a model of ′O is still
defined as an interpretation that satisfies all axioms in ′O .

The pseudo-code for this step is given in Algorithm 1 below. Line 1 eliminates all inverse
roles in O and G . Lines 3–16 normalize A to A′ by introducing a set of fresh predicates
(which are atomic concepts or roles) and adding axioms that maintain the correspondence
between fresh predicates and original predicates. Lines 17–24 normalize G to G′ in a similar
way as normalizing A . Lines 25–28 compute ′O that is the union of an ontology extensionally
reduced from O and the set of previously added axioms.

Algorithm 1. Normalize(O , A , G)
Input: A SHOIQ ontology O , a set A of concepts or roles, and a set G of concept or role
assertions.
Output: An extensionally reduced SHOIQ ontology ′O possibly with negated role inclusion
axioms, a set A′ of atomic concepts or atomic roles, and a set G′ of atomic concept or role
assertions.
1: for each role assertion of the form (,)r a b− or (,)r a b−¬ in G or O where r is an atomic

role do Replace (,)r a b− with (,)r b a and (,)r a b−¬ with (,)r b a¬ ;
2: ′←∅O ; A′ ←∅ ; G′ ←∅ ;
3: for each concept or role T in A do
4: if T is of the form r− where r is an atomic role then
5: †{ }

r
A A Q −′ ′← ∪ where †

r
Q − is a fresh atomic role;

6: †{ }
r

Q r−
−′ ′← ∪O O � ;

7: else if T is of the form r¬ where r is an atomic role then
8: †{ }rA A Q¬′ ′← ∪ where †

rQ¬ is a fresh atomic role;
9: †{ }rQ r¬′ ′← ∪ ¬O O � ;
10: else if T is of the form r−¬ where r is an atomic role then
11: †{ }

r
A A Q −¬
′ ′← ∪ where †

r
Q −¬

 is a fresh atomic role;
12: †{ }

r
Q r−

−

¬
′ ′← ∪ ¬O O � ;

13: else if T is of the form C where C is not an atomic concept then
14: †{ }CA A Q′ ′← ∪ where †

CQ is a fresh atomic concept;
15: †{ }CQ C′ ′← ∪O O � ;
16: else { }A A T′ ′← ∪ ;
17: for each concept assertion or role assertion ax in G do
18: if ax is of the form (,)r a b¬ where r is an atomic role then

19: { (,)}rG G Q a b¬′ ′← ∪ P where rQ¬
P is a fresh atomic role;

20: { }rr Q¬′ ′← ∪ ¬ PO O � ;
21: else if ax is of the form ()C a where C is not an atomic concept then
22: { ()}CG G Q a′ ′← ∪ P where CQP is a fresh atomic concept;
23: { }CC Q′ ′← ∪ PO O � ;
24: else { }G G ax′ ′← ∪ ;
25: for each ABox axiom ax in O do
26: if ax is of the form ()C a where C is not a literal concept then
27: { ()} { }C CQ a Q C′ ′← ∪ ∪O O � where CQ is a globally unique fresh atomic

concept for C ;
28: else { }ax′ ′← ∪O O ;
29: return (, ,)A G′ ′ ′O ;

Let f be a one-to-one mapping function on all concepts or roles T A′∈ such that
()f T r−= if T is of the form †

r
Q − , ()f T r= ¬ if T is of the form †

rQ¬ , ()f T r−= ¬ if T is of
the form †

r
Q −¬

, ()f T C= if T is of the form †
CQ , or ()f T T= otherwise. By ()f ∆ we simply

denote the set of ABox axioms obtained from a set ∆ of ABox axioms by replacing every
concept or role T occurring in ∆ with ()f T . Let (, ,)A G′ ′ ′O be returned by Normalize(O , A ,
G), then we have the following lemma.

Lemma 1 For any set ∆ of ABox axioms on concepts or roles in A′ , ∆ is an abductive solution
for (′O , A′ ,)G′ if and only if ()f ∆ is an abductive solution for (O , A ,)G .
Proof. Let †O and †G be obtained from O and G by replacing (,)r a b− with (,)r b a and

(,)r a b−¬ with (,)r b a¬ for every atomic role r , then clearly †(O , A , †)G has the same set of
abductive solutions as (O , A ,)G has. Let ∆ be an arbitrary set of ABox axioms on concepts or
roles in A′ . We only need to show that ∆ is an abductive solution for (′O , A′ ,)G′ if and only if

()f ∆ is an abductive solution for †(O , A , †)G .
Let h be a one-to-one mapping function on all concepts or roles T appearing in †G such

that ()h T r= ¬ if T is of the form rQ¬
P , ()h T C= if T is of the form CQP , or ()h T T= otherwise.

We first show that (*) for any axiom ()T t G′∈
r

 and any set ∆ of ABox axioms on concepts or
roles in A′ , †| () () | ()()T t f h T t′∪∆ = ⇔ ∪ ∆ =

r r
O O . For any interpretation I , by t

r I we simply
denote (,)a bI I when t

r
 is a pair made up of a and b , or denote aI when t

r
 is a singleton a .

(⇒) Suppose | ()T t′∪∆ =
r

O . Consider an arbitrary model I of † ()f∪ ∆O . I can be
expanded to a model ′I of ′∪ ∆O such that () ()T h T h T′ ′= =I I I for every concept or role T
appearing in G′ , and a a′ =I I for every individual a in O . Since | ()T t′∪∆ =

r
O , we have

t T′ ′∈
r I I and thus ()t h T∈

r I I . It follows that † () | ()()f h T t∪ ∆ =
r

O . (⇐) Suppose
† () | ()()f h T t∪ ∆ =

r
O . Consider an arbitrary model I of ′∪ ∆O . Let ′I be the projection of I
on the signature of † ()f∪ ∆O , then ′I is a model of † ()f∪ ∆O , () ()h T h T T′ = ⊆I I I for

every concept or role T appearing in G′ , and a a′ =I I for every individual a in O . Since
† () | ()()f h T t∪ ∆ =

r
O , we have ()t h T′ ′∈

r I I and thus t T∈
r I I . It follows that | ()T t′∪∆ =

r
O .

Suppose ∆ is an abductive solution for (′O , A′ ,)G′ , then | ax′∪∆ =O for all ax G′∈ . By
(*) we have † () |f ax∪ ∆ =O for all †ax G∈ . ()f ∆ must be an abductive solution for †(O , A ,

†)G . Otherwise, since ′∪ ∆O is consistent and so is † ()f∪ ∆O , there must exist ()f′∆ ⊂ ∆
such that † | ax′∪∆ =O for all †ax G∈ . By (*) we have () |f ax−′ ′∪ ∆ =O for all ax G′∈ . But
then ()f − ′∆ ⊂ ∆ , contradicting that ∆ is an abductive solution for (′O , A′ ,)G′ .

Suppose ∆ is an abductive solution for †(O , A , †)G , then † | ax∪∆ =O for all ax G∈ . By
(*) we have () |f ax−′∪ ∆ =O for all ax G′∈ . ()f − ∆ must be an abductive solution for (′O , A′ ,

)G′ . Otherwise, since † ∪∆O is consistent and so is ()f −′∪ ∆O , there must exist ()f −′∆ ⊂ ∆
such that | ax′ ′∪∆ =O for all ax G′∈ . By (*) we have † () |f ax′∪ ∆ =O for all †ax G∈ . But
then ()f ′∆ ⊂ ∆ , contradicting that ∆ is an abductive solution for †(O , A , †)G . W

An example for this step is given below.

Example 4 Consider computing all abductive solutions for (O , A ,)G , where O is the
ontology given in Example 1, { }A = ¬Extraordinary and { ()}G = Ordinary Tom . (O , A ,)G
is normalized to (′O , A′ ,)G′ , where †{ }A ¬′ = ExtraordinaryQ , G G′ = and

†{ }¬′ = ∪ ¬�O O ExtraordinaryQ Extraordinary .

4.2.2 Weakening O′
In the second step, we need to weaken ′O to ′′O such that ()′′ODD can be computed by the
KAON2 method and has no equational head atoms. To do this, we first eliminate nominals,
negated role inclusion axioms and equality assertions, then standardize every concept inclusion
axiom C D� to ()C D¬� NNF� � ⊺, and finally remove all maximum number restrictions
from every standardized axiom, where ()ENNF denotes the negation normal form of a concept
E , which can be computed by standard methods e.g. given in (Hustadt et al., 2007). Note that
there will be no equational head atom introduced when translating ()C D¬� NNF� � to first-
order rules, if ()C D¬NNF � has no maximum number restrictions.

The pseudo-code for this step is given in Algorithm 2 below. Lines 1–3 eliminate nominals
by introducing fresh atomic concepts. Line 4 eliminates negated role inclusion axioms. By now
′O becomes a SHIQ ontology. Line 5 eliminates equality assertions. Lines 6–8 further rewrite

every concept inclusion axiom C D� to a semantically equivalent axiom ()C D¬� NNF� �
and eliminate all maximum number restrictions .n R E≤ occurring in the right hand side of the
resulting axiom, so that ′O becomes a SHIQ ontology such that ()′ODD does not contain any
equational head atom.

Algorithm 2. Weaken(′O)
Input: An extensionally reduced SHOIQ ontology ′O possibly with negated role inclusion

axioms.

Output: A SHIQ ontology ′′O .
1: for each nominal { }a occurring in ′O do
2: Replace { }a with aC where aC is a globally unique fresh atomic concept;
3: { ()}aC a′ ′← ∪O O ;
4: for each negated role inclusion axiom ax in ′O do { }ax′ ′←O O � ;
5: for each equality assertion ax in ′O do { }ax′ ′←O O � ;
6: for each concept inclusion axiom C D� in ′O do
7: Replace it with ()C D¬� NNF� � ;

8:
Replace .n R E≤ with � for every maximum number restriction .n R E≤ occurring in

the right hand side of ()C D¬� NNF� � ;
9: return ′O ;

Let ()Onorm denote the ontology obtained from an ontology O by replacing every
concept inclusion axiom C D� with ()C D¬� NNF� � . We call a SHIQ ontology O a

≤/SHIQ ontology if ()Onorm has no equality assertions and contains no maximum number
restrictions in the right hand side of any concept inclusion axiom. Let ′′O be returned by
Weaken(′O), then ′′O is a ≤/SHIQ ontology. We have the following lemma.

Lemma 2. For any set ∆ of ABox axioms on concepts or roles in A′ , | G′ ′∪∆ =O if

| G′′ ′∪∆ =O .
Proof. Let ax be an arbitrary atomic concept or role assertion in G′ . When | G′′ ′∪∆ =O ,

| { }ax′′∪∆ =O and thus { }ax′′∪∆∪ ¬O is inconsistent. Let ♯O be the ontology obtained before
line 4 and PO be the ontology obtained before line 6, then ()♯M O and ()′M O coincide on the
signature of ′O , and () ()⊆ P♯M O M O . For any concept inclusion axiom ax′ in ()POnorm , let

()w ax′ be obtained from ax′ by replacing .n R C≤ with � for every maximum number
restriction .n R C≤ occurring in the right hand side of ax′ , then () (())ax w ax′ ′⊆M M . Hence,

()(()) () () ()axax ax ax′ ′′∈′∈
′ ′ ′′= ⊆ =∩ ∩P

P
OO

M O M M M Onormnorm and thus

() { }ax∪∆∪ ¬POnorm is inconsistent. Since () () (())⊆ =P P♯M O M O M Onorm ,
{ }ax∪∆∪ ¬♯O is inconsistent. Since ()♯M O and ()′M O coincide on the signature of ′O ,

{ }ax′∪∆∪ ¬O is also inconsistent and thus | { }ax′∪∆ =O . It follows that | G′ ′∪∆ =O . W

4.2.3 Modifying ()′′ODD
In the third step, we need to compute ()′′ODD and modify it to a plain datalog program P such
that | G′∪∆ =P implies | G′ ′∪∆ =O for all sets ∆ of ABox axioms on concepts or roles in A′ .
As mentioned before, ()′′ODD is compiled from ′′O by applying the KAON2 method (Hustadt
et al., 2007). However, ()′′ODD may not contain all entailed definite rules, because the KAON2
method eliminates all redundant rules that do not impact the results of the subsequent resolution
operations. The elimination of redundant definite rules may make the Prolog program encoded
subsequently output nothing when calling go , as shown in the following example.

Example 5. Consider the normalized problem (′O , A′ ,)G′ given in Example 4. The step for
weakening ′O yields a semantically equivalent ontology ′′O since ′O is already a ≤/SHIQ
ontology. By compiling ′′O through the KAON2 system, we obtain ()′′ODD which consists of
the rules (1)–(6) given in Example 2 and the following rule.

†(), ()x x¬← ExtraordinaryExtraordinary Q . (11)
The predicate Ordinary does not occur in the head of any definite rule in ()′′ODD , thus the
Prolog program encoded from (()′′ODD , A′ ,)G′ does not output any list when called go , i.e.,

(()′′Oprolog DD , A′ ,)G′ is empty.

The above example shows that the results of some resolution operations that involve a rule
translated from an axiom of the form PP Q¬¬ P� , †

PQ P¬ ¬� or PQ P¬ ¬� may be treated as
redundant rules in the KAON2 method. These redundant rules are entailed by ()′′ODD , thus re-
adding them to ()′′ODD does not impact the models of ()′′ODD . In other words, we can add to

()′′ODD any rules that are entailed by ()′′ODD while still keeping that () | G′′ ′∪∆ =ODD
implies | G′ ′∪∆ =O for all sets ∆ of ABox axioms on concepts or roles in A′ . In this way

| G′∪∆ =P still implies | G′ ′∪∆ =O , where P is the set of definite rules in ()′′ODD .
To make the presentation concise, we only present simple resolution operations that involve

new concept names introduced in the normalization step for adding redundant rules that are
entailed by ()′′ODD . These resolution operations can make many concept names appear in heads
of definite rules, thus can compensate abductive solutions in many cases. To add more redundant
rules that are entailed by ()′′ODD , we can apply other resolution operations exploited in the
KAON2 method (Hustadt et al., 2007).

The pseudo-code for this step is given in Algorithm 3. Line 1 initializes the resulting plain
datalog program P as ()′′ODD . For every rule R in ()′′ODD , lines 3–9 add to P the hyper-
resolution result between R and as many as possible rules translated from axioms of the form

†
PQ P¬ ¬� or PQ P¬ ¬� . For every constraint R in P , lines 12–16 add to P every resolution

result between R and a rule translated from axioms of the form PP Q¬¬ P� . Line 17 keeps only
definite rules in P and returns it.

Algorithm 3. Modify(()′′ODD)
Input: A disjunctive datalog program without equality ()′′ODD .
Output: A plain datalog program without equality.
1: ()′′←P ODD ;
2: for each rule R in ()′′ODD such that | () | 0R >head do
3: for every atom of the form ()P x in ()Rhead do
4: if P is a concept name and †

PQ¬ appears in ()′′ODD then
5: Remove ()P x from the head of R and add † ()PQ x¬ to the body of R ;
6: else if P is a concept name and PQ¬ appears in ()′′ODD then
7: Remove ()P x from the head of R and add † ()PQ x¬ to the body of R ;

8: else if P is of the form †
TQ¬ or TQ¬ where T is a concept name then

9: Remove ()P x from the head of R and add ()T x to the body of R ;
10: Add to P the finally updated R ;
11: for each constraint R in P do
12: for every atom of the form ()P x in ()Rbody do
13: if P is a concept name and PQ¬

P appears in ()′′ODD then

14:
Add to P the rule obtained from R by removing ()P x from the body and

adding ()PQ x¬
P to the head;

15: else if P is of the form TQ¬
P where T is a concept name then

16:
Add to P the rule obtained from R by removing ()P x from the body and

adding ()T x to the head;
17: return { | | () | 1}R R∈ =P head ;

The following example shows the effectiveness of this step.

Example 6. Consider the disjunctive datalog program ()′′ODD given in Example 5. This step
will yield a plain datalog program P having the following rule (12), which is the resolution
result between rule (4) and rule (11).

†() (), ()x x x¬← ExtraordinaryOrdinary Person Q . (12)
We can see that now the predicate Ordinary occurs in the head of rule (12) and the Prolog
program encoded from (P , A′ ,)G′ will output a list [("Tom", "rdf:type",
p_QDagNegExtraordinary)] when executing go , where QDagNegExtraordinary stands for

†
¬ExtraordinaryQ .

Let P be returned by Modify(()′′ODD), then we have the following lemma.

Lemma 3. For any set ∆ of ABox axioms on concepts or roles in A′ , | G′ ′∪∆ =O if
| G′∪∆ =P .

Proof. Let ax be an abitrary atomic concept or role assertion in G′ . When | G′∪∆ =P ,
| { }ax∪∆ =P and thus { }ax∪∆∪ ¬P is unsatisfiable. Since every model of ()′′ODD is also a

model of P , () { }ax′′ ∪∆∪ ¬ODD is also unsatisfiable. Let ()′′Ω O be the ALCHIQ ontology
obtained from ′′O in the course of the KAON2 method, then by Theorem 1,

(() { }) (()) { } () { }ax ax ax′′ ′′ ′′Ω ∪∆∪ ¬ = Ω ∪∆∪ ¬ = ∪∆∪ ¬O O ODD DD DD is unsatisfiable and
thus () { }ax′′Ω ∪∆∪ ¬O is inconsistent. Since () (())′′ ′′⊆ ΩM O M O , { }ax′′∪∆∪ ¬O is also
inconsistent and thus | { }ax′′∪∆ =O . It follows that | G′′ ′∪∆ =O . By Lemma 2, | G′ ′∪∆ =O . W

4.2.4 Extracting Abductive Solutions from (Pprolog , A′ ,)G′ .

In the last two steps, we encode (P , A′ ,)G′ to a Prolog program, and then extract
abductive solutions for (O , A ,)G from (Pprolog , A′ ,)G′ , namely the set of lists output by
the encoded Prolog program when calling go .

There is a remark on the extraction step. Consider an arbitrary set ∆ of ABox axioms on
concepts or roles in A . It can be seen that, all minimal subsets ′∆ of ∆ such that ′∪∆O is
consistent and entails G are abductive solutions for (O , A ,)G . However, it is unlikely that
such a subset ′∆ of ∆ exists when | G∪∆ ≠O . In contrast, consider a list (L∈ Pprolog , A′ ,

)G′ , since () |L G′∪ =P decode , by Lemma 3, we have () |L G′ ′∪ =O decode and thus
(()) |f L G∪ =O decode . This implies that there probably exist some subsets ′∆ of

(())f Ldecode such that ′∪∆O is consistent and entails G . Hence, we do not extract
abductive solutions from arbitrary hypotheses but only from lists L in (Pprolog , A′ ,)G′ such
that () |L G′≠decode .

The following theorem shows that this method guarantees the soundness of results.

Theorem 4. Let L be a list in (Pprolog , A′ ,)G′ such that ()Ldecode is a set of ABox
axioms not entailing G′ , and ∆ be a minimal subset of (())f Ldecode such that ∪∆O is
consistent and entails G , then ∆ is an abductive solution for (O , A ,)G .
Proof. Since () |L G′≠decode and all ABox axioms in ()Ldecode are only on concepts or roles
in A′ , for all subsets ′∆ of (())f Ldecode , obviously | G′∆ ≠ and all ABox axioms in ′∆ are
only on concepts or roles in A . By the definition of abductive solutions, this theorem follows. W

By Theorem 2, Theorem 3 and Lemma 1, we see that this method also guarantees the

completeness of results in some restricted class of the proposed problem. This conclusion is
shown in the following theorem.

Theorem 5. If ′O is a Horn- ≤/SHIQ ontology without negated role assertions on complex roles
and G′ has no atomic role assertions on complex roles, then for every abductive solution ∆ for
(O , A ,)G , there is a list L in (Pprolog , A′ ,)G′ such that ()Ldecode is a set of ABox
axioms not entailing G′ and ∆ is a minimal subset of (())f Ldecode such that ∪∆O is
consistent and entail G .
Proof. Let ′∆ be a set of ABox axioms such that ()f ′∆ = ∆ , then by Lemma 1, ′∆ is an
abductive solution for (′O , A′ ,)G′ . Since G has no role assertions on complex roles, G′ is a
set of atomic concept assertions or atomic role assertions on simple roles. Since ′O has no
negated role assertions on complex roles and A′ is a set of atomic concepts or atomic roles, by
Theorem 2, ′∆ is also an abductive solution for (()′ODD , A′ ,)G′ . Since ′O is a ≤/SHIQ
ontology, we have () ()′′ ′=O ODD DD . Since ′O is a Horn- ≤/SHIQ ontology, ()′′ODD is a plain
datalog program without equational head atoms, thus every definite rule in ()′′ODD is also in P .
It follows that (()′Oprolog DD , A′ ,) (()G′ ′′= Oprolog DD , A′ ,) (G′ ⊆ Pprolog , A′ ,)G′ . Since
′∆ is an abductive solution for (()′ODD , A′ ,)G′ and ()′ODD does not contain any equational

head atom, by Theorem 3, ′∆ is a minimal set in { () (()L L ′∈∣ Odecode prolog DD , A′ ,)G′ ,
() |L G′≠decode , ()L′∪O decode is consistent}. Since

(()′Oprolog DD , A′ ,) (G′ ⊆ Pprolog , A′ ,)G′ , there must be a list (L∈ Pprolog , A′ ,)G′ such
that ()L ′= ∆decode . Then (())f L = ∆decode . Since ∆ is an abductive solution for (O , A ,

)G , ∆ is the unique minimal subset of (())f Ldecode such that ∪∆O is consistent and entails
G . W

The remaining problem is how to efficiently compute all minimal subsets ∆ of
(())f Ldecode such that ∪∆O is consistent and entails G , where L is a list in (Pprolog ,

A′ ,)G′ such that () |L G′≠decode . We tackle this problem by using a set-enumeration tree
whose root is (())f Ldecode . A set-enumeration tree stores all subsets of a given set and is
constructed by recursively expanding nodes from the root corresponding to the given set.
Suppose each element has a sequence number from 1 to m and we use a subset S of {1,..., }m to
represent a node in the tree, where i S∈ means that the thi element is in the node represented by
S . An example set-enumeration tree whose root is represented by {1, 2 , 3} is shown in Figure 1
(a). A node represented by {1, 2,..., , , ..., }i i j n+ (where 0 i n m≤ ≤ ≤ and jÿÿ) has exactly i
children, where the thk (1 k i≤ ≤) child is obtained from its parent by deleting the (1)thi k+ −
element, as shown in Figure 1 (b).

Figure 1: Illustrations for set-enumeration trees

To find abductive solutions for (, ,)A GO among all subsets of (())f Ldecode , the set-

enumeration tree stemming from (())f Ldecode is traversed in a depth-first manner. The
pseudo-code is given in Algorithm 4, where ()Ch ∆ returns the set of children of a subset ∆ of

(())f Ldecode in the set-enumeration tree stemming from (())f Ldecode ,
Traverse((())f Ldecode , O , G , S) returns the union of S and the set of all minimal subsets
∆ of (())f Ldecode such that ∪∆O is consistent and entails G .

Algorithm 4. Traverse(∆ , O , G , S)
Input: A set ∆ of ABox axioms, a SHOIQ ontology O , a set G of ABox axioms, and a set
S of abductive solutions previously found.
Output: A updated set of abductive solutions.
1: if ∪∆O is consistent but does not entail G then return S ;
2: S S′ ← ;
3: for each ′∆ in ()Ch ∆ do S′ ← Traverse(′∆ , O , G , S′);
4: if S S′ = and ∪∆O is consistent and ∪∆O entails G and ∆ has no subsets in S then

{ }S S′ ′← ∪ ∆ ;
5: return S′ ;

Algorithm 4 can be explained as follows. Suppose ∆ is the current node to be processed in
Algorithm 4. In case ∪∆O is consistent but does not entail G , since any descendant of ∆
cannot entail G , no descendants of ∆ can be abductive solutions (see line 1). In other cases, all
children of ∆ in the set-enumeration tree are processed recursively (see line 3). Note that, during
the traversal of a set-enumeration tree, all subsets of ∆ must have been processed after all
descendants of ∆ are processed. Hence, whether ∆ is an abductive solution can be decided after
all its descendants are processed (see line 4).

5. EXPERIMENTAL EVALUATION
We implemented both the method for the restricted class (simply called the restricted method)
and the one for the full class (simply called the general method), where Pellet (Sirin et al., 2007)
API is used to realize consistency checking and entailment checking in the course of extracting
abductive solutions from the output of B-Prolog. We conducted experiments on thirteen
benchmark ontologies that have large ABoxes. The first two ontologies are Semintec
(http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm), which is an ontology about financial
services, and Vicodi (http://www.vicodi.org/), which is an ontology on European history. The
next five are the Lehigh University Benchmark (LUBM) (Guo et al., 2005) ontologies LUBM n
(1n = , ..., 5), where LUBM n denotes the LUBM ontology containing the data of n universities.
The above ontologies have been used as benchmark ones in comparing different DL reasoners
(Motik & Sattler, 2006). The last six ontologies are the University Benchmark (UOBM) (Ma et
al., 2006) ontologies UOBM-Lite n and UOBM-DL n (1,2,3n =), where UOBM-Lite n and
UOBM-DLn denote the UOBM ontologies (OWL Lite version and OWL DL version,
respectively) containing the data of n universities. We could not test larger UOBM ontologies
that involve more universities, because B-Prolog ran out of memory when loading the Prolog
programs encoded from these ontologies. The characteristics of all test ontologies are shown in
Table 2. All experiments were conducted on a PC with Pentium Dual Core 2.60GHz CPU and
2GB RAM, running Windows XP, where the maximum Java heap size was set to 1GB. Note that
B-Prolog does not work in the Java Virtual Machine and its memory usage is not limited by the
maximum Java heap size. Our implemented system for ABox abduction, accessorial tools and
test ontologies are all available at http://jfdu.limewebs.com/abduction/.

Table 2: The characteristics of test ontologies
Ontology #C #R #TA #AA #I
Semintec 60 16 219 65,240 17,941
Vicodi 194 12 223 116,181 33,238

LUBM1~5 43 32 93 100,543 ~ 624,532 17,174 ~ 102,368
UOBM-Lite1~3 51 43 145 245,740 ~ 575,380 37,704 ~ 71,901
UOBM-DL1~3 69 44 206 260,900 ~ 607,248 37,927 ~ 72,059

Note: “#C", “#R", “#TA", “#AA" and “#I" are the numbers of concept names, role names, TBox
axioms, ABox axioms and individual names, respectively.

5.1 Results on the Restricted Method
We first compared the general method with the restricted method on handling test ontologies for
which the results obtained from the KAON2 method are plain datalog programs with equality.
These ontologies include Semintec and all UOBM-Lite n . We randomly generated forty atomic

concept assertions. We set all atomic concepts as abducible predicates and every singleton set
made up of a generated concept assertion as an observation. The general method finishes in half
an hour for all observations. But the restricted method always exceeds half a day when handling
an observation that is known to have abductive solutions from the results of the general method.
It shows that the rules added to axiomatize equality heavily impair the efficiency of ABox
abduction. This can be explained by the fact that these rules introduce cycles in the encoded
Prolog program, diffusing the search space to a huge one. Thus we do not recommend the
restricted method even when the given problem is in the corresponding restricted class.

5.2 Preparation for the General Method
We implemented the general method in a way that all observations can be handled without
starting from scratch as long as the observations are made up of literal concept assertions. Given
a test ontology O , a set A of abducible predicates and some observations made up of literal
concept assertions, the implementation works in two phases. In the first phase, O , A and the set
of all literal concepts in O are encoded into a Prolog program, which is then loaded to B-Prolog.
Since this phase is independent from specific observations made up of literal concept assertions,
we call it the preprocess phase. In the second phase, when given an observation G made up of
literal concept assertions, the implementation encodes G into a Prolog rule and combines it with
the loaded Prolog program to compute abductive solutions for (O , A ,)G . We call this phase
the query phase.

Using hypothesis is a new feature in ABox abduction which is not in traditional ABox
reasoning. The performance of the general method depends on the size of the hypothesis space
which is determined by the number of abductive predicates. To see how the performance
changes against different numbers of abductive predicates, we designed four suites of
experiments on the general method, each of which uses different numbers of abductive
predicates. For the first suite, called the allAC suite, we set all atomic concepts as abducible
predicates. For the second suite, called the allLC suite, we set all literal concepts as abducible
predicates. For the third suite, called the allEAC suite, we set as abducible predicates all atomic
concepts and all existential restrictions of the form .r P∃ where r is an atomic concept and P is
an atomic concept subsumed by the domain of r in the test ontology. For the last suite, called
the allELC suite, we set as abducible predicates all literal concepts and all existential restrictions
of the form .r C∃ where r is an atomic concept and C is a literal concept subsumed by the
domain of r in the test ontology. For all suites of experiments on a test ontology O , we
randomly generated forty concept assertions ()C a such that | ()C a≠O and | ()C a≠ ¬O , out of
which twenty are atomic concept assertions and twenty are negative ones, and set every singleton
set made up of a generated concept assertion as an observation. We did not generate ()C a such
that | ()C a=O because there is only one trivial abductive solution ∅ for (O , A , { ()})C a . We
also did not generate ()C a such that | ()C a= ¬O because there is no abductive solution for (O ,
A , { ()})C a . To see how the general method scales with increasing sizes of ABoxes, we
generated the same set of observations for different LUBM n (resp. different UOBM-Lite n or
different UOBM-DLn).

The aim of these experiments is to verify the general method in terms of efficiency and
scalability against different numbers of abducible predicates and different sizes of ABoxes. Note
that the set of abducible predicates in the allAC suite is a subset of that in the allLC or allEAC
suite, while the set of abducible predicates in the allLC or allEAC suite is a subset of that in the

allELC suite. Hence we have the following partial order on the complexity of abducible
predicates: allACÿallLC, allACÿallEAC, allLCÿallELC, allEACÿallELC. So far we cannot
verify the completeness of the general method, because the baseline method which generates and
tests all candidate abductive solutions is infeasible in traversing such a huge search space for any
test ontology. Nevertheless, we can still provide some information on the completeness. Since
Vicodi and all LUBM n are Horn- ≤/SHIQ ontologies, by Theorem 5, the general method must
compute the complete set of abductive solutions for an observation made up of atomic concept
assertions, in all suites of experiments.

5.3 Results on the General Method

Table 3: The statistics for Semintec and Vicodi
Ontology Suite #Abd Pre.Time Max.Time Avg.Time Max.Num Avg.Num
Semintec allAC 59 22.1 5.4 4.2 3 2.5
Semintec allLC 118 22.2 7.4 5.4 3 3.0
Semintec allEAC 119 24.2 4.5 3.4 3 2.5
Semintec allELC 178 24.2 4.7 4.1 3 3.0

Vicodi allAC 194 76.3 22.4 3.8 11 1.8
Vicodi allLC 388 76.5 22.3 11.2 11 3.3
Vicodi allEAC 673 78.7 480.3 16.0 212 7.2
Vicodi allELC 867 78.9 480.8 19.9 212 8.6

Note: “#Abd" is the number of abducible predicates. “Pre.Time" is the execution time (sec) of
the preprocess phase, “Max.Time" (resp. “Avg.Time") is the maximum (resp. average) execution
time (sec) for computing abductive solutions for an observation in the query phase. “Max.Num"
(resp. “Avg.Num") is the maximum (resp. average) number of computed abductive solutions for
an observation.

The test results for Semintec and Vicodi are shown in Table 3. For all suites of experiments,
the execution time of the preprocess phase is almost the same, except that the execution time for
the allEAC or allELC suite is slightly longer. Both the execution time for computing abductive
solutions for an observation and the number of computed abductive solutions increase when the
complexity of abducible predicates increases. For each suite and each observation, the
computation of abductive solutions is accomplished without running out of memory. In
particular, the maximum execution time for computing abductive solutions for an observation is
less than half a minute for almost all suites, except that for Vicodi and two suites (allEAC and
allELC), the maximum execution time is about six minutes. The reason why computing
abductive solutions takes a rather long time in some cases is that there are many abductive
solutions in these cases.

Table 4: A portion of statistics for LUBM n , UOBM-Lite n and UOBM-DL n
Ontology Suite #Abd #Succ Max.Num Avg.Num
LUBM n allAC 43 40 3 0.3
LUBM n allEC 86 40 4 1.2
LUBM n allEAC 373 40 53 5.1
LUBM n allELC 588 40 96 9.6

UOBM-Lite n allAC 51 24 9 1.5

UOBM-Lite n allEC 102 24 9 1.8
UOBM-Lite n allEAC 659 24 148 17.2
UOBM-Lite n allELC 1067 24 250 21.8
UOBM-DLn allAC 68 16 15 1.5
UOBM-DLn allEC 136 16 15 1.8
UOBM-DLn allEAC 862 16 101 9.4
UOBM-DLn allELC 1406 15 169 14.7

 Note: “#Abd" is the number of abducible predicates. “#Succ" is the number of successful
observations for which computing abductive solutions is accomplished in finite time.
“Max.Num" (resp. “Avg.Num") is the maximum (resp. average) number of computed abductive
solutions for a successful observation.

The test results for LUBM n , UOBM-Lite n and UOBM-DL n (excluding execution time)
are shown in Table 4. Since we used the same set of observations for all LUBM n (resp. all
UOBM-Lite n or all UOBM-DL n), we got the same results on all aspects except execution time
for different n . Due to limited memory, some observations cannot be properly handled in some
test cases. We call an observation a successful one if the computation of abductive solutions for
it is accomplished without running out of memory. For all suites of experiments on LUBM n , all
40 observations are successful ones. For all suites of experiments on UOBM-Lite n , 24
observations are successful ones. For almost all suites of experiments on UOBM-DL n , 16
observations are successful ones except that 15 are successful for the allELC suite. All failures
are caused by B-Prolog, which ran out of memory during executing the encoded Prolog program.

The execution time of the preprocess phase (simply preprocessing time) against different n
is shown in Figure 2. For all LUBM n or all UOBM-Lite n , the preprocessing time is almost the
same for different suites. For all UOBM-DL n , the preprocessing time for the allELC suite and
the allEAC suite is significantly longer than the preprocessing time for the allLC suite and the
allAC suite. The main reason why UOBM-DL n have different results on preprocessing time is
that they are expressed in the most expressive language among all test ontologies, while the
resolution operations between the clauses translated from complex axioms in UOBM-DL n and
the clauses used to normalize abducible predicates from existential restrictions to atomic
concepts result in much more rules in the compiled disjunctive datalog program. Regarding the
scalability against different sizes of ABoxes, the preprocessing time for LUBM n , UOBM-Lite n
or UOBM-DL n increases smoothly when n increases. The general method shows a near linear
scalability on preprocessing time.

Figure 2: The execution time of the preprocess phase

The maximum/average execution time (in the query phase) for computing abductive

solutions for a successful observation is shown in Figure 3 and Figure 4, respectively. For all
LUBM n , UOBM-Lite n or UOBM-DL n , the execution time for computing abductive solutions

for a successful observation increases when n increases and when the complexity of abducible
predicates increases. The general method shows a near linear scalability on the execution time
for computing abductive solutions against different sizes of ABoxes. For the allAC suite and the
allLC suite, the maximum execution time for computing abductive solutions for a successful
observation is relatively short and is less than eight minutes for all test ontologies. For the other
two suites, the maximum execution time for computing abductive solutions for a successful
observation is relatively long, but the average execution time is only about one tenth of the
maximum execution time. Table 4 has shown some hints for explaining why computing
abductive solutions takes a long time in some cases. The main reason is that there are many
abductive solutions in these cases.

Figure 3: The maximum execution time for computing abductive solutions for a successful
observation

Figure 4: The average execution time for computing abductive solutions for a successful
observation

5.4 Discussion
The general method for ABox abduction provides an effective way to search over

2| || | | || |(2)C I R IA N A NO + candidate abductive solutions, where | |CA , | |RA and | |IN are respectively the
number of abducible concepts, the number of abducible roles and the number of individual
names. That is, it localizes the search in small areas, each of which contains a portion of
abductive solutions. With this manner the method can efficiently compute abductive solutions in
benchmark ontologies that have large ABoxes. In particular, experimental results show that the
method works well for hundreds of abducible predicates that are concepts more complex than
literal ones. The results also show that the method scales well against different sizes of ABoxes.
We believe that the method is able to scale to much larger ABoxes provided that it works with
more memory.

It should be mentioned that we did not show the experimental results about the cases where
roles are used as abducible predicates. But we had actually conducted some of such experiments.
The results are not promising because there are usually too many abductive solutions. Recall a
simple example given in Section 3: { .= ∃O �hasFather Person� , 1 1(,)a a¬hasFather ,

2()aPerson , ..., ()}naPerson , { }A = hasFather and 1{ ()}G a= Person . There are 1n −
abductive solutions for (O , A ,)G , i.e. 1 2{ (,)}a ahasFather , ..., 1{ (,)}na ahasFather . This

example has similar nature as the test cases where atomic roles are used as abducible predicates,
thus it is not a surprise when we saw the general method did not finish and continued outputting
abductive solutions after several hours. Although the general method does not handle abducible
roles well, it can still be of practical use because abducible roles can often be substituted by
abducible predicates that are existential restrictions. Consider the aforementioned example. If the
abducible role hasFather is replaced with .∃ �hasFather in A , then there is only one
abductive solution for (O , A ,)G , i.e. { . ()}∃ � 1hasFather a , which essentially generalizes

1 2{ (,)}a ahasFather , ..., 1{ (,)}na ahasFather . Hence, we recommend using existential
restrictions rather than roles as abducible predicates.

6. RELATED WORK
Abductive reasoning in DLs was initiated by Elsenbroich et al. (2006). They classified the tasks
of abductive reasoning into two categories, namely TBox abduction and ABox abduction, and
described specific tasks in these two categories using case studies. The necessity of abductive
reasoning in DLs was reemphasized by Bada et al. (2008) to support ontology quality control.

Although abductive reasoning in DLs is important, there is still not much work in this area,
probably due to the high complexity of abductive reasoning. Computing a set-minimal abductive
solution for propositional Horn theories is already NP-hard (Selman & Levesque, 1990). It is
even harder for more general propositional theories (Eiter & Gottlob, 1995). Bienvenu (2008)
adapted this complexity result to the EL family (Baader et al., 2005) and showed that the
problem of computing a minimal set of atomic concepts 1{ ,..., }nA A such that 1 ... nA A� � is
satisfiable and subsumed by an observed atomic concept C in an ++EL TBox is NP-hard.
Considering that ++EL is a rather inexpressive DL, the complexity should be at least as high for
general DLs. Since the problem considered by Bienvenu (2008) can be treated as a problem for
ABox abduction by defining abducible predicates as atomic concepts and the observation as
{ ()}C a where a is a fresh individual, the complexity for ABox abduction is at least NP-hard.

The work on methods for TBox abduction has a longer history than that for ABox abduction.
Before the use of abductive reasoning in DLs was comprehensively discussed by Elsenbroich
et al. (2006), Colucci et al. (2004) have proposed a tableaux-based method for concept abduction
in ALN TBoxes, which computes an ALN concept H such that C H� is satisfiable and
subsumed by D in a given ALN TBox, for two given ALN concepts C and D . This method
has only been empirically verified in small-scale applications with a few hundreds of concepts
(Colucci et al., 2004; Noia et al., 2007). To support existential restrictions that are not allowed in
ALN , Noia et al. (2009) also proposed a tableaux-based method for concept abduction in SH
TBoxes. No evaluation results are available for this method. Targeting a different problem for
TBox abduction, which computes a set of concept inclusion axioms to enforce entailment of a
given concept inclusion axiom, Hubauer et al. (2010) proposed an automata-based method for
TBox abduction in EL TBoxes. Also, there are no evaluation results available for this method.
Considering that ALN , SH and EL do not support nominals, the above methods cannot
directly be applied to ABox abduction. Moreover, there is no empirical evidence that these
methods are practically feasible in handling a large number of axioms that involve nominals.
Hence, we do not consider adapting existing methods for TBox abduction to ABox abduction.

As mentioned in section 1, the work on ABox abduction is rare. Peraldi et al. (2007)
proposed a method, based on backward inference, to compute abductive solutions in a DL
ontology accompanying rules. The method has the following limitations: the axioms that can be

used are restricted to some special forms; the computed abductive solutions may not be subset-
minimal. Recently, Klarman et al. (2011) proposed a method, based on tableaux and resolution
techniques, to compute all abductive solutions in an ALC ontology. It is still unclear how to
extend this method to support more expressive DLs. Furthermore, the method does not guarantee
termination. In contrast, our proposed method guarantees termination and set-inclusion
minimality of abductive solutions; moreover, it works for SHOIQ which is much more
expressive than ALC . Currently, we are unable to empirically compare our proposed method
with the above two methods, because for the first one, neither the ontology nor the system they
used is publicly accessible, while for the second one, no evaluation results are available.

Abductive reasoning in logic programming (Kakas et al., 1998) is a relatively prolific area.
There exist mature proof procedures for abductive reasoning in logic programming. The premier
proof procedure is the SLDA procedure (Kakas & Mancarella, 1990), which extends the well-
known SLD resolution (Selective Linear Definite clause resolution) with abduction. This
procedure has been extended to the SLDNFA procedure (Denecker & Schreye, 1992) to support
normal logic programs that may contain negation-as-failure. The SLDNFA procedure has also
been extended or refined to other proof procedures such as the IFF (if-and-only-if) procedure
(Fung & Kowalski, 1997). The two state-of-the-art abduction systems CIFF (Mancarella et al.,
2009) and A -system (Kakas et al., 2001), mentioned in this paper, are built on the above proof
procedures, where CIFF is built on an extension of IFF and A -system is built on SLDNFA.
However, these abduction systems cannot solve our proposed program for ABox abduction
because they do not work for expressive DLs. Although we provide a method for reducing our
proposed problem to an abduction problem on plain datalog programs (see subsection 4.2), these
systems are still inapplicable because they currently do not guarantee termination in handling
cyclic plain datalog programs. Hence, we implement the SLDA procedure on a Prolog engine B-
Prolog, through an encoding method proposed in subsection 4.1, to solve the reduced abduction
problem. This implementation uses linear tabling (Shen et al., 2001) supported by B-Prolog to
solve the reduced problem in finite time.

7. CONCLUSION
ABox abduction is an indispensable non-standard reasoning facility in DLs, but the work on
ABox abduction is rare. What is even worse, currently no method for ABox abduction works for
very expressive DLs and computes minimal solutions in finite time. Under this situation, this
paper made the following contributions so as to pave a way to practical ABox abduction.

Firstly, the paper proposed a new problem for ABox abduction. This problem follows some
ideas from abductive reasoning in logic programming, e.g., an abductive solution, namely a
result of ABox abduction, should be subset-minimal, and introduces the notion of abducible
predicate to guarantee finite number of abductive solutions. That is, all ABox axioms in an
abductive solution should be on a finite set of abducible predicates which can be arbitrary
concepts or roles.

Secondly, the paper accordingly proposed a method for the above problem. The method is
based on a reduction from DL SHOIQ to plain datalog. That is, the abductive solutions for the
original problem which is expressed in SHOIQ are computed by reducing the original problem
to an abduction problem in plain datalog programs, and then extracting true results from
abductive solutions for the reduced abduction problem. Although the reduction may not
guarantee semantic equivalence, the proposed method still guarantees soundness and conditional
completeness of computed results.

At last, the paper also provided evaluation results on benchmark ontologies that have large
ABoxes. The results show that the method works well for hundreds of abducible predicates and
scales well against different sizes of ABoxes. To the best of our knowledge, these results are the
first evaluation results for ABox abduction on large benchmark ontologies.

As shown in our experiments, the bottleneck of the proposed method lies in solving the
reduced abduction problem. Hence, in future work we plan to investigate which fragments of
plain datalog allow for efficient computation of abductive solutions, and develop methods for
reducing the proposed problem to an abduction problem expressed in such fragments. The
proposed problem has a potential issue that there may be too many abductive solutions,
especially when roles are used as abducible predicates. We also plan to tackle this issue by
refining the proposed problem, e.g., defining stricter minimal criteria for abductive solutions.

ACKNOWLEDGEMENTS
We thank anonymous reviewers for their very useful comments and suggestions. Jianfeng Du is
partially supported by the National Natural Science Foundation of China (NSFC) grant
61005043. Guilin Qi is partially supported by NSFC grants (61003157 and 61272378), Jiangsu
Science Foundation (BK2010412), Excellent Youth Scholars Program of Southeast University,
and Doctoral Discipline Foundation for Young Teachers in the Higher Education Institutions of
Ministry of Education (No. 20100092120029). Yi-Dong Shen is partially supported by NSFC
grants 60970045 and 60833001. Jeff Z. Pan is partially funded by the K-Drive and ITA project.

REFERENCES
Baader, F., Brandt, S., & Lutz, C. (2005). Pushing the EL envelope. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI) (pp. 364–369).

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., & Patel-Schneider, P. F. (Eds.) (2003).
The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press.

Baader, F., & Peñaloza, R. (2007). Axiom pinpointing in general tableaux. In Proceedings of the
16th International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX) (pp. 11–27).

Bada, M., Mungall, C., & Hunter, L. (2008). A call for an abductive reasoning feature in owl-
reasoning tools toward ontology quality control. In Proceedings of the 5th OWLED Workshop on
OWL: Experiences and Directions.

Bienvenu, M. (2008). Complexity of abduction in the EL family of lightweight description
logics. In Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR) (pp. 220–230).

Colucci, S., Noia, T. D., Sciascio, E. D., Donini, F. M., & Mongiello, M. (2004). A uniform
tableaux-based approach to concept abduction and contraction in ALN . In Proceedings of the
17th International Workshop on Description Logics.

Denecker, M., & Schreye, D. D. (1992). SLDNFA: An abductive procedure for normal abductive
programs. In Proceedings of the Joint International Conference and Symposium on Logic
Programming (JICSLP) (pp. 686–700).

Du, J., Qi, G., Shen, Y., & Pan, J. Z. (2011). Towards practical abox abduction in large OWL DL
ontologies. In Proceedings of the 25th National Conference on Artificial Intelligence (AAAI) (pp.
1160–1165).

Eiter, T., & Gottlob, G. (1995). The complexity of logic-based abduction. Journal of the ACM,
42, 3–42.

Eiter, T., Gottlob, G., & Mannila, H. (1997). Disjunctive datalog. ACM Transactions on
Database Systems, 22, 364–418.

Elsenbroich, C., Kutz, O., & Sattler, U. (2006). A case for abductive reasoning over ontologies.
In Proceedings of the 3rd OWLED Workshop on OWL: Experiences and Directions.

Fitting, M. (1996). First-order Logic and Automated Theorem Proving (2nd ed.). Secaucus, NJ,
USA: Springer-Verlag New York, Inc.

Fung, T. H., & Kowalski, R. A. (1997). The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33, 151–165.

Grau, B. C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P. F., & Sattler, U. (2008).
OWL 2: The next step for OWL. Journal of Web Semantics, 6, 309–322.

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM : A benchmark for OWL knowledge base systems.
Journal of Web Semantics, 3, 158–182.

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to OWL:
The making of a web ontology language. Journal of Web Semantics, 1, 7–26.

Hubauer, T., Lamparter, S., & Pirker, M. (2010). Automata-based abduction for tractable
diagnosis. In Proceedings of the 23rd International Workshop on Description Logics.

Hustadt, U., Motik, B., & Sattler, U. (2007). Reasoning in description logics by a reduction to
disjunctive datalog. Journal of Automated Reasoning, 39, 351–384.

Kakas, A. C., Kowalski, R. A., & Toni, F. (1998). The role of abduction in logic programming.
In Dov M. Gabbay, C.J. Hogger, and J. A. Robinson (Ed.), Handbook of Logic in Artificial
Intelligence and Logic Programming Volume 5: Logic Programming. (pp. 235–324). Oxford
University Press.

Kakas, A. C., & Mancarella, P. (1990). Database updates through abduction. In Proceedings of
the 16th International Conference on Very Large Data Bases (VLDB) (pp. 650–661).

Kakas, A. C., Nuffelen, B. V., & Denecker, M. (2001). A -System: Problem solving through
abduction. In Proceedings of the 17th International Joint Conference on Artificial Intelligence
(IJCAI) (pp. 591–596).

Kalyanpur, A., Parsia, B., Horridge, M., & Sirin, E. (2007). Finding all justifications of OWL
DL entailments. In Proceedings of the 6th International Semantic Web Conference (ISWC) (pp.
267–280).

Klarman, S., Endriss, U., & Schlobach, S. (2011). Abox abduction in the description logic ALC .
Journal of Automated Reasoning, 46, 43–80.

Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., & Liu, S. (2006). Towards a complete OWL
ontology benchmark. In Proceedings of the 3rd European Semantic Web Conference (ESWC)
(pp. 125–139).

Mancarella, P., Terreni, G., Sadri, F., Toni, F., & Endriss, U. (2009). The CIFF proof procedure
for abductive logic programming with constraints: Theory, implementation and experiments.
Theory and Practice of Logic Programming, 9, 691–750.

Motik, B., & Sattler, U. (2006). A comparison of reasoning techniques for querying large
description logic aboxes. In Proceedings of the 13th International Conference on Logic for
Programming, Artificial Intelligence, and Reasoning (LPAR) (pp. 227–241).

Noia, T. D., Sciascio, E. D., & Donini, F. M. (2007). Semantic matchmaking as non-monotonic
reasoning: A description logic approach. Journal of Artificial Intelligence Research, 29, 269–307.

Noia, T. D., Sciascio, E. D., & Donini, F. M. (2009). A tableaux-based calculus for abduction in
expressive description logics: Preliminary results. In Proceedings of the 22nd International
Workshop on Description Logics.

Peraldi, I., Kaya, A., Melzer, S., Möller, R., & Wessel, M. (2007). Towards a media
interpretation framework for the semantic web. In Proceedings of 2007 IEEE/WIC/ACM
International Conference on Web Intelligence (WI) (pp. 374–380).

Schlobach, S., & Cornet, R. (2003). Non-standard reasoning services for the debugging of
description logic terminologies. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI) (pp. 355–362).

Selman, B., & Levesque, H. J. (1990). Abductive and default reasoning: A computational core.
In Proceedings of the 8th National Conference on Artificial Intelligence (AAAI) (pp. 343–348).

Shen, Y., Yuan, L., You, J., & Zhou, N. (2001). Linear tabulated resolution based on prolog
control strategy. Theory and Practice of Logic Programming, 1, 71–103.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics, 5, 51–53.

Jianfeng Du is an associate professor working at Guangdong University of Foreign Studies. He
received the PhD degree from the State Key Laboratory of computer science, Institute of
Software, Chinese Academy of Sciences in 2009. His main research interests include semantic
web, data mining and business intelligence. His work was published in some prestigious
conferences and journals, including IJCAI, AAAI, UAI, WWW, ISWC, and Knowledge and
Information Systems.

Guilin Qi is a professor working at Southeast University in China. He received his PhD in
Computer Science from Queen's University of Belfast in 2006. Before he moved back to China,
he has worked in Institute AIFB at University of Karlsruhe for three years. His research interests
include knowledge representation and reasoning, uncertainty reasoning, and semantic web. He
has published over 80 papers in these areas, many of which published in proceedings of major
conferences or journals. He is in the editorial board of the Journal of Web Semantics. He is an
associate editor of the Journal of Advances in Artificial Intelligence and has co-edited a special
issue of Annals of Mathematics and Artificial Intelligence. He has organized a couple of
international workshops, including C&O'08, ARea'08, ARCOE 09-10, IWOD'10. He has served
as PC members of several international conferences and workshops, such as KR'12, ECAI'12,
IJCAI'11, AAAI11-12, ESWC11-12, ISWC09-12.

Yi-Dong Shen is a professor of Computer Science in the State Key Laboratory of Computer
Science at Institute of Software, the Chinese Academy of Sciences, China. Prior to joining this
laboratory, he was a Professor at Chongqing University, China. He held visiting positions at
University of Valenciennes (France), University of Maryland (USA), University of Alberta and
Simon Fraser University (Canada), Griffith University (Australia), and Hong Kong University of
Science and Technology (China). Since 2011, he has held an appointment as adjunct professor at
Griffith University, Australia. His main research interests include knowledge representation and
reasoning, semantic web, and data mining.

Jeff Z. Pan is a senior lecturer in the Department of Computing Science at University of
Aberdeen, where he is the Deputy Director of Research of the department. He has over 100
referred publications and serves on the Editorial Board of the Journal of Web Semantics (JWS)
and the International Journal on Semantic Web and Information Systems (IJSWIS) and as
program chair of the 1st International Semantic Technology Conference, of the 1st International
Conference on Web Reasoning and Rule System, and of the Doctoral Consortiums in the 9th
International Semantic Web Conference (ISWC2010) and in the 8th Extended Semantic Web
Conference (ESWC2011) . He is a key contributor to the W3C OWL2 standard and is widely
recognized for his work on scalable and efficient ontology reasoning and query answering (see
e.g. the TrOWL Tractable OWL2 reasoning infrastructure that he leads, http://trowl.eu/).

