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ABSTRACT 
ABox abduction is an important reasoning facility in Description Logics (DLs). It finds all 
minimal sets of ABox axioms, called abductive solutions, which should be added to a 
background ontology to enforce entailment of an observation which is a specified set of ABox 
axioms. However, ABox abduction is far from practical by now because there lack feasible 
methods working in finite time for expressive DLs. To pave a way to practical ABox abduction, 
this paper proposes a new problem for ABox abduction and a new method for computing 
abductive solutions accordingly. The proposed problem guarantees finite number of abductive 
solutions. The proposed method works in finite time for a very expressive DL, SHOIQ , which 
underpins the W3C standard language OWL 2, and guarantees soundness and conditional 
completeness of computed results. Experimental results on benchmark ontologies show that the 
method is feasible and can scale to large ABoxes. 
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1. INTRODUCTION 
The W3C organization has proposed the standard Web Ontology Language (OWL), whose 
newest version is OWL 2 (http://www.w3.org/TR/owl2-overview/), to model ontologies for a 
wide range of applications. OWL is underpinned by Description Logics (DLs) (Baader et al., 
2003). For example, the two important species of OWL, namely OWL DL and OWL 2 DL, are 
syntactic variants of two DLs ( )DSHOIN  and ( )DSROIQ  respectively (Horrocks et al., 
2003; Grau et al., 2008). With formal semantics, DLs provide a number of well-defined 
reasoning facilities which widen the applicability of DL ontologies, including OWL ontologies. 

Besides standard reasoning facilities proposed in the DL handbook (Baader et al., 2003) 
such as checking whether a DL ontology is consistent and checking whether an axiom is entailed 
by a DL ontology, some non-standard reasoning facilities have been proposed as well. A well-
known non-standard reasoning facility, called axiom pinpointing (Baader & Peñaloza, 2007; 
Schlobach & Cornet, 2003) or justification computing (Kalyanpur et al., 2007), is to compute 



minimal sets of axioms responsible for an entailment of a DL ontology. This facility is used to 
explain why some axioms are entailed by a DL ontology and suggest solutions to remove these 
entailments. Corresponding to this facility, another well-known non-standard reasoning facility, 
usually referred to as abduction or abductive reasoning (Elsenbroich et al., 2006), is to compute 
minimal sets of axioms that should be added to a background ontology to enforce entailment of 
an observation which is a set of axioms. This facility is used to explain why some axioms are not 
entailed by a DL ontology and suggest solutions to enforce these entailments. 

Since a DL ontology is composed of a TBox, which stores intensional knowledge, as well 
as an ABox, which stores extensional knowledge, there are two sub-facilities for abductive 
reasoning in DLs. One is TBox abduction, the other is ABox abduction. They differ from each 
other on the kinds of information that is allowed to appear in computed results. For TBox 
abduction, only concepts, roles or TBox axioms (e.g. concept or role inclusion axioms) are 
allowed. For ABox abduction, only ABox axioms (e.g. concept or role assertions) are allowed. 
ABox abduction has its unique characteristics and cannot be treated as axiom pinpointing or 
solved by existing methods for TBox abduction. See this in the following example. 

 
Example 1.  Let the background ontology  O  consist of the following four TBox axioms 

.∃Clever Diligent isRewardedCompetition� � , 
.∃isRewardedCompetition Extraordinary� , 

Extraordinary Person� , 
Person Extraordinary Ordinary� � , 

and the following two ABox axioms 
 ( ), ( )Person Tom Clever Tom . 
The first TBox axiom says that someone who is clever and diligent will be rewarded in some 
competition. The second TBox axiom says that someone rewarded in some competition is 
extraordinary. The third TBox axiom says that someone extraordinary is a person. The last TBox 
axiom says that a person is extraordinary or ordinary. The first ABox axiom says that Tom is a 
person, while the second one says that Tom is clever. When we are informed that Tom is 
extraordinary, we may want to know why this happens. However, the current ontology O  does 
not entail ( )Extraordinary Tom , so we cannot find explanations in O  through axiom 
pinpointing. In this situation, we need to introduce a hypothesis which is a set of axioms absent 
in O  such that the union of it and O  entails ( )Extraordinary Tom . For example, we can 
introduce a hypothesis { ( )}Diligent Tom , then { ( )}∪O Diligent Tom  entails  

( )Extraordinary Tom . However, existing methods for TBox abduction cannot directly be 
applied to compute this hypothesis, because these methods do not consider nominals and the 
hypothesis involves a nominal { }Tom . This example shows that we need particular methods for 
ABox abduction that are different from existing methods for axiom pinpointing or TBox 
abduction. 
 

By now there are only few methods for ABox abduction. One known method is based on 
backward inference (Peraldi et al., 2007). It restricts axioms in the given ontology to some 
special forms. Moreover, it does not guarantee any minimality for computed results. Another 
known method is based on some complex tableaux and resolution techniques (Klarman et al., 
2011). It works on the DL ALC  which is a fragment of SHOIN , the DL corresponding to  
OWL DL. ALC  is obtained from SHOIN  by disallowing number restrictions, nominals, 



inverse roles, role inclusion axioms and transitivity axioms. Moreover, the method proposed in 
(Klarman et al., 2011) does not guarantee termination because it allows arbitrarily many nested 
existential/value restrictions appearing in computed results. Consider an ontology consisting of 
only the following axiom, which says that something has a person as its parent is a person. 

.∃hasParentPerson Person�  
The method will compute infinitely many results for the observation that Amy  is a person (i.e. 
{ ( )}Person Amy ). Each result consists of a single concept assertion of the form 

. . . ( )∃ ∃ …hasParent hasParent Person Amy , in which the concept is an existential restriction 
having arbitrarily many nested ∃hasParent . Note that the ultimate results computed by the 
method should have certain minimality, while the method always computes all candidate results 
that may not be minimal before selecting out ultimate ones. Hence the method will not terminate 
even when there are finitely many ultimate results but infinitely many candidate results. The 
present situation for ABox abduction urges us to develop practical methods, which should be 
able to efficiently (at least in finite time) compute minimal results for expressive DLs. 

To ensure all minimal results to be computed in finite time, we need to guarantee that there 
are only finitely many minimal results. Thus, we first propose a new problem for ABox 
abduction. This problem aims to compute minimal sets of ABox axioms, called abductive 
solutions, which should be added to a DL ontology to make a given observation entailed by the 
ontology, where all ABox axioms in an abductive solution are composed of individual names in 
the ontology and user-specified predicates. The user-specified predicates, called abducible 
predicates, can be arbitrary concepts or roles, but the number of abducible predicates that can be 
used should be finite so that the number of abductive solutions is finite. The introduction of 
abducible predicates will give users flexibility to formulate the explanations for an observation. 

To seek methods to solve the proposed problem, we consider successful tools on abductive 
reasoning in logic programming (Kakas et al., 1998), such as two state-of-the-art abduction 
systems CIFF (Mancarella et al., 2009) and A -system (Kakas et al., 2001). These tools are built 
on modern Prolog engines, but they only allow the background theory to be a normal logic 
program, which corresponds to a plain datalog program extended with negation-as-failure. 
However, the DLs that underpin OWL, such as SHOIN  (OWL DL without datatypes) and 
SROIQ  (OWL 2 DL without datatypes), do not contain negation-as-failure and cannot be 
directly translated to plain datalog due to the presence of existential restrictions. For example, the 
axiom .A r B∃�  can only be translated to a first-order rule : ( ) : ( , ) ( )x A x y r x y B y∀ →∃ ∧  which 
is not in plain datalog, because plain datalog programs do not contain function symbols or 
existentially quantified variables, while function symbols must be introduced when eliminating 
the existentially quantified variable y . Hence, we propose a reduction based method for ABox 
abduction. It first reduces the proposed problem for ABox abduction to a traditional abduction 
problem in logic programming in which the background theory is a plain datalog program, then 
extracts true results from the abductive solutions for the reduced abduction problem. This 
method can not only work for very expressive DLs including SHOIN  and SROIQ  but also 
make use of efficient techniques in modern Prolog engines. Since the reduction is approximate 
and cannot guarantee semantic equivalence, the method cannot guarantee completeness, i.e., 
some abductive solutions may be missed, but it still guarantees soundness, i.e., all output results 
are actually abductive solutions. We present the method with SHOIQ  which underpins both 
OWL DL and OWL 2 DL. 



To verify the practicality of the proposed method, we conduct experiments on a series of 
benchmark ontologies that have large ABoxes, including those previously used to compare 
modern DL reasoners (Motik & Sattler, 2006) and those coming from the well-known University 
Benchmark (UOBM) (Ma et al., 2006). Experimental results on these ontologies show that the 
proposed method works well for hundreds of abducible predicates and up to half a million ABox 
axioms. This demonstrates that the proposed method paves a way towards practical ABox 
abduction in large DL ontologies. 

The remainder of this paper is organized as follows. After providing preliminaries in the next 
section, in section 3 we formalize the proposed problem for ABox abduction. Then in section 4, 
we describe two methods for the proposed problem, with the latter one taken as our 
recommendation. In section 5, we present our experimental evaluation on the recommended 
method. Before concluding, we discuss related work in section 6. 

This paper is significantly extended from a conference paper (Du et al., 2011). First of all, in 
(Du et al., 2011) only literal concepts or atomic roles are allowed as abducible predicates. This 
paper allows arbitrary concepts or roles as abducible predicates. Secondly, this paper considers 
negated roles which are neglected in (Du et al., 2011). For example, the concept .r A∃  and the 
negated role r¬  can be used as abducible predicates here but cannot in (Du et al., 2011). 
Moreover, negated role assertions of the form ( , )r a b¬  can be used as observations here but 
cannot in (Du et al., 2011). Thirdly, both the restricted method and the general method that are 
proposed in (Du et al., 2011) are revised in this paper. The main revisions come from handling 
arbitrary concepts or roles (including negated roles), which requires more elaborate techniques. 
Finally, more experimental results and complete proofs of theoretical results are supplemented. 
 
2. PRELIMINARIES 
In this section, we introduce the DL SHOIQ  and disjunctive datalog, both of which express 
background theories that we consider. Moreover, we also introduce a method for compiling 
SHIQ  to disjunctive datalog (Hustadt et al., 2007) and a method for axiomatizing equality 
(Fitting 1996), both of which are highly related to our proposed method. 

 
2.1 The Description Logic SHOIQ  
Description Logics (DLs) (Baader et al., 2003) are logical foundations of OWL. SHOIQ   is a 
very expressive DL that underpins OWL DL and OWL 2 DL, since OWL DL is a syntactic 
variant of ( )DSHOIN  (Horrocks et al., 2003) and OWL 2 DL is a syntactic variant of 

( )DSROIQ  (Grau et al., 2008). Throughout this paper, we use the DL syntax of SHOIQ  as it 
is more compact. 

Let RN  be a set of role names. A SHOIQ  role (simply a role) is either some Rr N∈   
(atomic role) or an inverse role r−  for Rr N∈ . Let ( )r r−=Inv  and ( )r r− =Inv  for Rr N∈ . Let 

CN  be a set of concept names and IN  a set of individual names. The sets RN , CN  and IN  are 
mutually disjoint. The set of SHOIQ  concepts is the smallest set recursively defined as follows. 
Each CA N∈  (atomic concept) or each { }a  (nominal) where Ia N∈  is a SHOIQ  concept. For 
SHOIQ  concepts C  and D , roles r  and s , and a nonnegative integer n , the following 
concepts are also SHOIQ  concepts: �  (top concept), ⊥  (bottom concept), C¬  (negation),   
C D�  (conjunction), C D�  (disjunction), .r C∃  (existential restriction), .r C∀  (value 



restriction), .n s C≤  and .n s C≥  (qualifying number restrictions). A concept or a role is said to be 
literal if it is atomic or negated atomic. 

A SHOIQ  ontology consists of a SHOIQ  TBox and a SHOIQ  ABox. A SHOIQ   
TBox T  is a finite set of TBox axioms, including concept inclusion axioms C D� , role 
inclusion axioms r s�  and transitivity axioms ( )rTra , where C  and D  are SHOIQ  concepts, 
and r  and s  are roles. It is required that r s∈T�  imply ( ) ( )r s ∈TInv Inv� , while 

( )r ∈TTra  imply ( ( ))r ∈TTra Inv , for any roles r  and s . Let *�  denote the reflexive-
transitive closure of � . A role r  is said to be transitive if ( )s ∈TTra  for some role s  such that 

*s r�  and *r s� . r  is said to be simple if there is no transitive role s  such that *s r� . r  is 
said to be complex if it is not simple. To guarantee decidability of SHOIQ , it is required that 
any role s  used in qualifying number restrictions .n s C≤  or .n s C≥  be simple. A SHOIQ   
ABox A  is a finite set of ABox axioms, including concept assertions ( )C a , role assertions 

( , )r a b , equality assertions a b≈  and inequality assertions a b≈/ , where C  is a SHOIQ  
concept, r  is a literal role, and a  and b  are individual names in IN . When C  is a literal (resp. 
atomic or negated atomic) concept, ( )C a  is said to be a literal (resp. atomic or negated) concept 
assertion. When r  is a literal (resp. atomic or negated atomic) role, ( , )r a b  is said to be a literal 
(resp. atomic or negated) role assertion. 

An interpretation ( , )= ∆ gI II  consists of a set ∆I , called the domain of I , and a function 
gI  that maps every concept name A  to a set A ⊆ ∆I I ,  every role name r  to a binary relation 
r ⊆ ∆ ×∆I I I , and every individual name a  to a ∈∆I I . The interpretation is extended to 
arbitrary SHOIQ  concepts according to the left part of Table 1, where | |S  denotes the 
cardinality of a set S , and to inverse roles by defining ( )r IInv  as {( , ) | ( , ) }x y y x r∈ I . An 
interpretation I  is said to satisfy an axiom ax  or be a model of ax , if the corresponding 
condition given in the right part of Table 1 holds. By ( )axM  (resp. ( )SM ) we denote the set of 
models of an axiom ax  (resp. a set S  of axioms). Then ( ) ( )

ax S

S ax
∈

= IM M  for any set S  of 

axioms. A SHOIQ  ontology O  is said to be consistent if ( ) ≠ ∅M O . A set S  of axioms is 
said to be entailed by O , denoted by | S=O , if ( ) ( )S⊆M O M . 
  

Table 1: The syntax and semantics of  SHOIQ  
Syntax Semantics TBox Conditions 
�  ∆I  C D�  C D⊆I I

 
⊥  ∅  ( )rTra  ( )r r+ =I I

 
{ }a  aI

 r s�  r s⊆I I
 

C¬  \ C∆ I I
 

C D�  C D∩I I  ABox Conditions 
C D�  C D∪I I  ( )C a  a C∈I I  

.r C∃  { : ( , ) }x y x y r y C∈∆ ∃ ∈ ∧ ∈∣I I I
 ( , )r a b  ( , )a b r∈I I I

 
.r C∀  { : ( , ) }x y x y r y C∈∆ ∀ ∈ ⇒ ∈∣I I I

 ( , )r a b¬  ( , )a b r∈/I I I
 



.n s C≤  { |{ ( , ) } | }x y C x y s n∈∆ ∈ ∈ ≤∣ ∣I I I

 a b≈  a b=I I
 

.n s C≥  { |{ ( , ) } | }x y C x y s n∈∆ ∈ ∈ ≥∣ ∣I I I

 a b≈/  a b≠I I
 

 
 
2.2 Disjunctive Datalog and Plain Datalog 
An atom is of the form 1(T v  , …, )nv , where T  is a predicate and the arguments  1v , …, nv   are 
variables or constants. When T  is the equality predicate ≈ , 1 2( , )T v v  is also called an equational 
atom, usually written as 1 2v v≈ . A rule is of the form 1 1, ,n mα α β β∨…∨ ← … , where iα  and iβ  
are atoms,  1α , …, nα  are called head atoms of the rule, and  iβ , …, mβ  are called body atoms 
of the rule. The set of head atoms of a rule R  is denoted by ( )Rhead , while the set of body 
atoms of R  is denoted by ( )Rbody . A rule R  is called a constraint if  | ( ) | 0R =head ; called a 
fact if | ( ) | 0R =body ; called definite if  | ( ) | 1R =head . A fact 1 nα α∨…∨ ←  can simply be 
written as 1 nα α∨…∨ . A rule is said to be safe if every variable occurring in a head atom also 
occur in some body atom. A disjunctive datalog program (Eiter et al., 1997) is a finite set of safe 
rules. A disjunctive datalog program with equality is a disjunctive datalog program in which 
some equational atoms occur in rule heads. A plain datalog program (with equality) is a 
disjunctive datalog program (with equality) that has only definite rules and constraints. 

An atom or a rule is ground if it has no variables. A ground instance of an atom α  (resp. a 
rule R ) is a ground atom (resp. a ground rule) obtained from α  (resp. R ) by replacing all 
variables with constants. Given a disjunctive datalog program with equality P , the set of all 
ground instances of atoms in P  obtained by replacing all variables with constants occurring in 
P  is called the Herbrand base of P , denoted by ( )PHB . The set of all ground instances of rules 
in P  obtained by replacing all variables with constants occurring in P  is denoted by ( )G P . 

A Herbrand interpretation (simply interpretation) M  of P  is a subset of  ( )PHB . M  is 
called a Herbrand model (simply model) of P  if (i) ( )r M⊆body  implies ( )r M∩ ≠∅head  
for every ground rule ( )r∈G P , and (ii) the equality predicate ≈  can be interpreted as a 
congruence relation in M , i.e., ≈  is reflexive ( a a M≈ ∈  for all constants a  occurring in M ), 
symmetric ( a b M≈ ∈  implies b a M≈ ∈ ) and transitive ( a b M≈ ∈  and b c M≈ ∈  imply 
a c M≈ ∈ ), and 1( , , , , )i nT a a a M… … ∈  and i ia b M≈ ∈  imply 1( , , , , )i nT a b a M… … ∈  for every 
predicate T  occurring in P . P  is said to be satisfiable if it admits at least one model. A ground 
atom α  is said to be entailed by P , denoted by | α=P , if α  is in all models of P . A set S  of 
ground atoms is said to be entailed by P , denoted by | S=P , if | α=P  for all Sα ∈ . 
 
2.3 Compiling from SHIQ  to Disjunctive Datalog 
The DL SHIQ  is almost as expressive as SHOIQ  except that nominals are disallowed. There 
is a well-known method (Hustadt et al., 2007) for compiling an extensionally reduced SHIQ  
ontology to a disjunctive datalog program with equality, where a SHIQ  ontology is said to be 
extensionally reduced if for all concept assertions ( )C a  in the ABox, C  is a literal concept, and 
for all role assertions ( , )r a b  in the ABox, r  is not an inverse role or the negation of some 
inverse role. Since this method has been implemented in the KAON2 system 
(http://kaon2.semanticweb.org/), we call it the KAON2 method. 



Given an extensionally reduced SHIQ  ontology O  whose TBox is T  and whose ABox is 
A , the KAON2 method compiles O  to a disjunctive datalog program with equality, denoted by 

( )ODD , through the following six steps. 
In the first step, every transitivity axiom ( )s ∈TTra  is removed and concept inclusion 

axioms of the form . .( . )r C s s C∀ ∀ ∀�  are added to T , for all roles r  such that *s r�  and all 
concepts C  appearing in T . This step is the standard method for eliminating transitivity axioms 
and will yield an ALCHIQ  ontology ( )Ω O , such that ( )Ω O is consistent if O  is consistent, 
and when O  has no negated role assertions on complex roles, O  is consistent if ( )Ω O  is 
consistent (Hustadt et al., 2007). 

In the second step, the TBox of ( )Ω O  is translated into a set of first-order clauses, using 
standard transformation methods from first-order logic. This step involves eliminating existential 
quantifiers by Skolemization and may introduce function symbols. 

In the third step, the set of clauses obtained in the second step is saturated by adding non-
redundant logical consequences. This step takes up to exponential time w.r.t. the size of T . For 
an arbitrary atom (possibly an equational atom) in the saturated set of non-redundant clauses, its 
arguments can be variables or functional terms of the form ( )f x , where f  is a function symbol 
introduced in the second step. 

In the fourth step, any functional term ( )f x  occurring in the resulting set of clauses in the 
third step is rewritten to a new variable fx  The resulting set of clauses is then syntactically 
transformed to a set of rules. To make the resulting rules safe, auxiliary atoms of the form 

( )HU x , ( )fHU x  or ( , )f fS x x  are added to rule bodies if necessary. For example, the rule 
( ) ( ), ( , )f f fB x A x S x x←  is rewritten from ( ( )) ( )B f x A x← , while the rule 
( ) ( ) ( )A x B x HU x∨ ←  is rewritten from ( ) ( )A x B x∨ . We denote the set of rules computed in 

this step by ( )Γ T , which has no functional terms. 
In the fifth step, a set of ground facts of the form ( )HU a , ( )fHU a  or ( , )f fS a a  is 

constructed, which are instantiated for all individual names a  occurring in A  and all function 
symbols f introduced in the second step. We denote this set by ( )∆ O . 

In the last step, A  is directly translated to a set of ground facts or ground constraints. More 
precisely, ABox axioms of the form ( )A a  (resp. ( , )r a b  or a b≈ ) are translated to ground facts 

( )A a  (resp. ( , )r a b  or a b≈ ), while ABox axioms of the form ( )A a¬  (resp. ( , )r a b¬  or a b≈ ) 
are translated to ground constraints ( )A a←  (resp. ( , )r a b←  or a b← ≈ ). We denote this set by 

( )Ξ A . 
Let ( )ODD  be defined as ( ) ( ) ( )Γ ∪Ξ ∪∆T A O . We have the following theorem. 

 
Theorem 1 ((Hustadt et al., 2007)).  Let O  be an extensionally reduced SHIQ  ontology. 
Then: (1) for any literal concept assertion or literal role assertion ax , 

( { }) ( ) { }ax ax∪ = ∪O ODD DD ; (2) when O  has no negated role assertions on complex roles, O  
is consistent if and only if ( )ODD  is satisfiable. 
 

In the following, an example for the KAON2 method is shown. 
 



Example 2   Consider the ontology O  given in Example 1. By compiling O  through the 
KAON2 system, we obtain ( )ODD  which consists of the following rules (1)–(6). 

( ) ( ), ( )x x x←Extraordinary Clever Diligent . (1) 
( ) ( , ), ( )x x y y←Extraordinary isRewarded Competition . (2) 

( ) ( )x x←Person Extraordinary . (3) 
( ) ( ) ( )x x x∨ ←Extraordinary Ordinary Person . (4) 

( )←Person Tom . (5) 
( )←Clever Tom . (6) 

 
2.4 Equality Axiomatization 
Our proposed method needs to call a Prolog engine to solve the reduced abduction problem in 
which the background theory is a plain datalog program. Since equational atoms occurring in 
rule heads have special semantics and existing Prolog engines do not particularly handle this 
semantics, we need to treat the equality predicate as an ordinary predicate through a standard 
method for axiomatizing equality (Fitting, 1996). This method is described below. 

Let ( )π P  denote the disjunctive datalog program obtained from a disjunctive datalog 
program with equality P  by replacing the equality predicate ≈  with a new ordinary predicate 
eq , and ≈P  denote the plain datalog program consisting of the following rules. 

( , )eq a a ← . for every constant a  occurring in P  (7) 
( , ) ( , )eq y x eq x y← . (8) 
( , ) ( , ), ( , )eq x z eq x y eq y z← . (9) 

1 1( , , , , ) ( , , , , ), ( , )i n i n i iT x y x T x x x eq x y… … ← … … .  for every 
predicate T  occurring in P  except ≈  and every position i  in T  

(10) 

The group of rules (7) ensures that eq  is reflexive. Rule (8) ensures that eq  is symmetric. Rule 
(9) ensures that eq  is transitive. The group of rules (10) ensures that for every model M  of 

( )π P  and every predicate T  occurring in P  except ≈ , 1( , , , , )i nT a a a M… … ∈  and 
( , )i ieq a b M∈  imply 1( , , , , )i nT a b a M… … ∈ . It is clear that M  is a model of P  if and only if 

M  is an interpretation of ( )π ≈∪P P  such that ( )r M⊆body  implies ( )r M∩ ≠∅head  for all 
rules ( ( ) )r π ≈∈ ∪G P P . The disjunctive datalog program without equality ( )π ≈∪P P , in which 
the equality predicate does not appear, is said to be obtained from P  by axiomatizing equality. 
 
3. A NEW PROBLEM FOR ABOX ABDUCTION 
We derive a new problem for ABox abduction from the area of logic-based abduction (Eiter & 
Gottlob, 1995; Kakas et al., 1998). In this area, an abduction problem is usually defined as a 
problem of computing all minimal sets ∆  of sentences w.r.t. a background theory T  and an 
observation G , such that ∆  does not entail G , but T ∪∆  entails G  and T ∪∆  is consistent. A 
computed set ∆  is often restricted to a special pre-specified class of sentences called abducibles, 
so as to provide appropriate modes to enforce entailment of an observation (Kakas et al., 1998). 
Inspired from this idea, we propose the following problem for ABox abduction, in which 
abducible predicates are introduced to give users flexibility to formulate the explanations for an 
observation. 



 
Definition 1 (ABox Abduction).   Given a DL ontology O , a finite set A  of abducible 
predicates which are arbitrary concepts or roles, and an observation G  which is a finite set of 
concept or role assertions, an abductive solution for ( , , )A GO  is a subset-minimal (simply 
minimal) set ∆  of ABox axioms such that all ABox axioms in ∆  are directly composed of 
individual names in O  and concepts or roles in A , | G∆ ≠ , | G∪∆ =O  and ∪∆O is consistent. 
The ABox abduction problem defined by ( , , )A GO  is to compute all abductive solutions for 
( , , )A GO . 
 

A simple example of the proposed problem is shown below. 
 
Example 3.   Consider the ontology O  given in Example 1. Let the set of abducible predicates 
be {A = Clever , Diligent , }Extraordinary  and the observation be { ( )}G = Extraordinary Tom . 
Then there is only one abductive solution for (O , A , )G , namely { ( )}Diligent Tom . 
{ ( )}Extraordinary Tom  is not an abductive solution because { ( )}| G=Extraordinary Tom . 
{ ( )Clever Tom , ( )}Diligent Tom  is not either because it is not minimal. 
 

The proposed problem (simply called problem A) mainly differs from the problem proposed 
in (Klarman et al., 2011) (simply called problem B) in using a finite set of abducible predicates. 
In problem B, abductive solutions can be on an infinite set of ALE  concepts or roles, where 
ALE  is a DL obtained from ALC  by disallowing non-atomic negation and disjunction. In 
problem A, abductive solutions can be on more expressive DL concepts. The current problem A 
has extended its original one proposed in the conference paper (Du et al., 2011) by allowing 
arbitrary concepts or roles as abducible predicates and negated role assertions as observations. 
Problem A may be inferior to problem B when abducible predicates are not appropriately set. On 
the one hand, when an instance of problem B has abductive solutions, its counterpart of problem 
A may not have. For example, given { . }= ∀O hasChildGood Happy�  and 

{ ( )}G = Happy Amy , the corresponding instance of problem B has an abductive solution in O , 
namely { . ( )}∀hasChildGood Amy , but its counterpart of problem A has not unless 

.∀hasChildGood  is set as an abductive predicate. On the other hand, the representation of 
abductive solutions in problem A may be less concise than its counterpart in problem B. For 
example, given { .= ∃O �hasFather Person� , 1 1( , )a a¬hasFather , 2( )aPerson , ..., 

( )}naPerson , { }A = hasFather  and 1{ ( )}G a= Person , the corresponding instance of problem 
A has 1n −  abductive solutions 1 2{ ( , )}a ahasFather , ..., 1{ ( , )}na ahasFather  in O , while its 
counterpart of problem B has only one, i.e. 1{ . ( )}a∃ �hasFather . 

Despite of the above potential disadvantages, problem A has intrinsic merits that are lacking 
in problem B. First, the number of abductive solutions is finite because the number of possible 
axioms in an abductive solution is at most 2| || | | || |c I r IA N A N+ , where cA , rA  and IN  are 
respectively the set of concepts in A , the set of roles in A , and the set of individual names in O . 
Second, the minimality of candidate abductive solutions can be simply determined by set-
inclusion checking, rather than by the complex renaming and entailment checking which are 
used in the method for problem B (Klarman et al., 2011). Since termination and efficiency are 



crucial for practical ABox abduction, we propose problem A as the fundamental problem for 
practical ABox abduction. 
 
4. COMPUTING ALL ABDUCTIVE SOLUTIONS 
Although the number of abductive solutions is finite, a brute-force search method for computing 
all abductive solutions is impractical because the search space, namely the set of candidate 
solutions, has a size exponential in 2| || | | || |c I r IA N A N+ . Hence we consider state-of-the-art 
abduction systems, such as CIFF (Mancarella et al., 2009) and A -system (Kakas et al., 2001). 
These systems compute minimal results in a top-down manner, recursively using goals to direct 
the search and prune search space. To adapt the top-down manner to computing abductive 
solutions in ABox abduction, we need to confine the background ontology as a syntactic variant 
of a plain datalog program, because existing practical methods for computing minimal results, 
such as the ones implemented in CIFF and A -system, only work on plain datalog programs with 
negation-as-failure. To make the adaptation work for common DLs (e.g. SHOIQ ) that cannot 
be translated to plain datalog, we consider approximate translations which are derived from the 
KAON2 method (Hustadt et al., 2007). As described in subsection 2.3, the KAON2 method 
compiles an extensionally reduced SHIQ  ontology O  to a disjunctive datalog program with 
equality ( )ODD . 

Let P  be a disjunctive datalog program (possibly with equality), A  be a set of atomic 
concepts or atomic roles, and G  be a set of atomic concept assertions or atomic role assertions. 
Corresponding to Definition 1, we also define an abductive solution for (P , A , )G  as a 
minimal set of ∆  of ground atoms such that all ground atoms in ∆  are directly composed of 
constants in P  and predicates in A , | G∆ ≠ , | G∪∆ =P  and ∪∆P  is consistent, where atomic 
concepts and atomic roles are treated as predicates, and atomic concept assertions and atomic 
role assertions are treated as ground atoms. By Theorem 1, we have a correspondence between 
abductive solutions for ( ( )ODD , A , )G  and abductive solutions for (O , A , )G ,  as shown in 
Theorem 2. Note that an abductive solution for ( ( )ODD , A , )G  may contain constants not 
corresponding to individual names in O ,  i.e. the constants of the form fa  introduced in the fifth 
step of the KAON2 method (see subsection 2.3),  thus Theorem 2 only considers abductive 
solutions for ( ( )ODD , A , )G  that are ABox axioms; this means that all constants appearing in 
these abductive solutions correspond to individual names in O . 
 
Theorem 2.  Let O  be an extensionally reduced SHIQ  ontology without negated role 
assertions on complex roles, A  a set of atomic concepts or atomic roles, and G  a set of atomic 
concept assertions or atomic role assertions on simple roles, then for any set ∆  of ABox axioms, 
∆  is an abductive solution for ( ( )ODD , A , )G  if and only if it is an abductive solution for (O , 
A , )G .  
Proof. We show that (*) for any set ∆  of ABox axioms on concepts or roles in A , ( )∪∆ODD  is 
satisfiable and entails G ⇔ ∪∆O  is consistent and entails G . (⇐ ) Since ∪∆O  is consistent, 

( )∪∆ODD  is satisfiable, so ( ) ( )∪∆ = ∪∆O ODD DD  is also satisfiable. Let ax  be any ABox 
axiom in G . Since | { }ax∪∆ =O , { }ax∪∆∪ ¬O  is inconsistent. Since { }ax∪∆∪ ¬O  does not 
contain any negated role assertion on complex roles, ( { })ax∪∆∪ ¬ODD  is unsatisfiable. Hence, 

( ) { } ( { })ax ax∪∆ ∪ ¬ = ∪∆∪ ¬O ODD DD is also unsatisfiable, and thus ( ) | { }ax∪∆ =ODD . It 



follows that ( ) | G∪∆ =ODD . (⇒ ) Since ( )∪∆ODD  is satisfiable, ( ) ( )∪∆ = ∪∆O ODD DD  is 
also satisfiable, so ∪∆O  is satisfiable. Let ax  be any ABox axiom in G . Since 

( ) | { }ax∪∆ =ODD , ( ) { }ax∪∆∪ ¬ODD  is unsatisfiable, so 
( { }) ( ) { }ax ax∪∆∪ ¬ = ∪∆∪ ¬O ODD DD  is also unsatisfiable. Since { }ax∪∆∪ ¬O  does not 

contain any negated role assertion on complex roles, { }ax∪∆∪ ¬O  is inconsistent, so 
| { }ax∪∆ =O . It follows that | G∪∆ =O . 

(1) Let ∆  be an abductive solution for (O , A , )G , then | G∆ ≠  and ∪∆O  is consistent 
and entails G . By (*), ( )∪∆ODD  is consistent and entails G . Suppose ∆  is not an abductive 
solution for ( ( )ODD , A , )G , then there is an abductive solution ′∆  for  ( ( )ODD , A , )G  such 
that ′∆ ⊂ ∆ . By (*) again, ′∪ ∆O  is consistent and entails G . Moreover, | G′∆ ≠  and all 
concepts or roles occurring in ′∆  are in A , contradicting that ∆  is an abductive solution for (O , 
A , )G . 

(2) Let ∆  be a set of ABox axioms and an abductive solution for ( ( )ODD , A , )G , then 
| G∆ ≠  and ( )∪∆ODD  is consistent and entails G . By (*), ∪∆O  is consistent and entails G . 

Suppose ∆  is not an abductive solution for (O , A , )G , then there is an abductive solution ′∆  
for (O , A , )G  such that ′∆ ⊂ ∆ . By (*) again, ( ) ′∪∆ODD  is consistent and entails G . 
Moreover, | G′∆ ≠  and all concepts or roles occurring in ′∆  are in A , contradicting that ∆  is an 
abductive solution for ( ( )ODD , A , )G . W  
 

The above theorem shows that for some restricted class of the proposed problem, the 
original problem can be reduced to the problem of computing all abductive solutions in the 
reduced disjunctive datalog program with equality. Hence, we first propose a method for this 
restricted class, and then extend it to address the full class of the proposed problem. 
 
4.1. The Method for the Restricted Class 
Throughout this subsection, let O  denote an extensionally reduced SHIQ  ontology without 
negated role assertions on complex roles, A  a set of atomic concepts or atomic roles, and G  a 
set of atomic concept assertions or atomic role assertions on simple roles. In order to compute 
abductive solutions for (O , A , )G , by Theorem 2 we seek methods for computing abductive 
solutions for ( ( )ODD , A , )G . 

Considering that two state-of-the-art abduction systems CIFF (Mancarella et al., 2009)  and 
A -system (Kakas et al., 2001)  are built on Prolog engines, we intend to encode the problem of 
computing all abductive solutions for ( ( )ODD , A , )G  into a Prolog program and solve it with 
Prolog engines. Note that we do not directly apply CIFF or A -system to solve the abduction 
problem on ( ( )ODD , A , )G , because currently CIFF and A -system cannot guarantee 
termination in handling cyclic logic programs, whereas ( )ODD  can have cycles between 
predicates (e.g., the disjunctive datalog program given in Example 2 has a cycle on predicates 
Person  and Extraordinary ). Hence, we turn to encode the abduction problem on ( ( )ODD , A , 

)G  into a Prolog program and apply a state-of-the-art Prolog engine, B-Prolog 
(http://www.probp.com/), to solve it. B-Prolog supports linear tabling (Shen et al., 2001), which 
is an efficient way to guarantee termination in handling cycles. 



The equality predicate ≈  should be axiomatized when it occurs in some rule heads in 
( )ODD , because B-Prolog does not treat it as a congruence relation. As described in subsection 

2.4, the equality predicate ≈  can be axiomatized by using a standard method (Fitting, 1996). Let 
( )′ ODD  be obtained from ( )ODD  by axiomatizing equality if necessary. That is, ( )′ ODD  is 

converted from ( )ODD  using the method described in subsection 2.4, if the equality predicate ≈  
occurs in some rule heads in ( )ODD , or is directly copied from ( )ODD  otherwise. Consider 
Example 2. Since the equality predicate does not occurs in any rule head in ( )ODD , ( )′ ODD  is 
the same as ( )ODD . 

In the following, we present a method for encoding ( ( )′ ODD , A , )G  into a Prolog program, 
which consists of four steps. 

In the first step, the observation G  is encoded into a Prolog rule with a nullary head atom 
go , where every ground atom Gα ∈  is encoded as a body atom with an extra argument, which 
is a list storing a set of ground atoms that are added to ( )′ ODD  to enforce entailment of α . A 
list L  is of the form 1[ ,..., ]nt t , where it  is of the form ( ,"rdf:type", p_A)a  or ( , p_r, )a b . It can be 
decoded into a set of ABox axioms 1{ ,..., }nt t′ ′ , denoted by ( )Ldecode , where it′  is rewritten 
from it  by rewriting ( ,"rdf:type",p_T)a  to a concept assertion ( )T a  and ( ,p_r, )a b  to a role 
assertion ( , )r a b . Note that every predicate in ( )′ ODD  is rewritten to a Prolog predicate with the 
prefix "p_", because the Prolog syntax capitalizes the first letter for variables only. Following 
the first body atom encoded from ground atoms in G , a body atom of the form ( )check L  is 
added to the encoded Prolog rule, where ( )check L  returns true if and only if none of the subsets 
of L  has been output, which is used to prune non-minimal sets of added ground atoms. Then, 
following every other body atom encoded from ground atoms in G , two body atoms of the form 

1 2( , , )union L L L   and ( )check L  are added to the encoded Prolog rule, where 1 2( , , )union L L L  sets 
L  as the union of 1L  and 2L  and returns true, which is used to yield the union of all sets of 
added ground atoms. Following all the above body atoms, two body atoms ( )output L  and fail  
are also added to the encoded Prolog rule, where ( )output L  outputs L  and returns true, while 
fail  forces the Prolog engine to enumerate all possible instantiations of extra arguments when 
go  is called. For example, the observation { ( )Extraordinary Tom , ( )}Person Tom  is encoded 
into the following Prolog rule.  

:- go 1 1p_Extraordinary( Tom", ), (" )L check L , 

2 1 2p_Person("Tom", ), ( , , ), ( ), ( ),L union L L L check L output L fail . 
In the second step, every definite rule in ( )′ ODD  is encoded into a Prolog rule. In more 

details, every atom α  occurring in ( )′ ODD  is encoded into a Prolog atom with an extra 
argument, which is a list storing a set of ground atoms that are added to ( )′ ODD  to enforce 
entailment of a ground instance of α . When α  has variables, the extra argument is written as a 
variable because the corresponding list is different for different ground instances of α , otherwise 
the extra argument is written as the empty list [ ]  since α ←  is a ground fact in ( )′ ODD  and α  
is entailed by ( )′ ODD . Likewise, following the first body atom (resp. every other body atom) 
encoded from body atoms in the original rule in ( )′ ODD , a body atom of the form ( )check L  
(resp. two body atoms of the form 1 2( , , )union L L L  and ( )check L ) is added to the encoded 



Prolog rule. Consider Example 2, all rules except rule (4) are encoded in this step. For example, 
rules (2), (3) and (6) are encoded into the following Prolog rules. 

1 1p_Extraordinary( , ) :- p_isRewarded( , , ), ( )X L X Y L check L , 

2 1 2p_Competition( , ), ( , , ), ( )Y L union L L L check L . 
p_Person( , ) :- p_Extraordinary( , ), ( )X L X L check L . 
p_Clever("Tom",[ ]) . 
In the third step, every predicate T  in A  is encoded into a Prolog rule, which consists of a 

head atom and n  body atoms, specifying that adding a ground atom to ( )′ ODD  enforces 
entailment of this ground atom, where 1n =  if T  is an atomic concept, or 2n =  if T  is an 
atomic role. The head atom is composed by T  and 1n +  arguments, where the last argument is a 
singleton list storing an atom on T . Every body atom is of the form ( )dom X , which ensures X  
to be a constant in ( )′ ODD . For example, the abducible predicates Diligent  and isRewarded  
are encoded into the following two rules.  

p_Diligent( ,[( ,"rdf:type","Diligent")]) :- ( ) X X dom X . 
p_isRewarded( , ,[( ,"isRewar  ded", )]) :- ( ), ( ) X Y X Y dom X dom Y . 
In the last step, all Prolog predicates occurring in cycles in the set of generated Prolog rules 

are declared to be tabled predicates. Declaring a Prolog predicate to be tabled means that any 
Prolog atom on this predicate is prevented from calling multiple times. The declaration of tabled 
predicates is supported by B-Prolog. This is a crucial step for guaranteeing termination when 
calling Prolog atoms in the encoded Prolog program. 

There are two remarks on the aforementioned encoding method. First, rules in ( )′ ODD  that 
have more than one head atom cannot be encoded into Prolog rules, thus they are ignored. 
Second, although constraints in ( )′ ODD  can be encoded into Prolog rules with some special 
treatments, they are only used to determine whether an output solution is consistent with the 
background theory. Since this consistency checking implemented in B-Prolog is based on brute-
force search and is generally less efficient than consistency checking in modern DL reasoners, 
constraints in ( )′ ODD  are also ignored and consistency checking is performed by calling 
external DL reasoners. 

Let ( ( )′ Oprolog DD , A , )G  denote the set of lists output by the Prolog program encoded 
from ( ( )′ ODD , A , )G  when calling go . The following theorem shows that all abductive 
solutions for ( ( )ODD , A , )G  can be extracted from ( ( )′ Oprolog DD , A , )G  when ( )′ ODD  is a 
plain datalog program. 
 
Theorem 3.  If ( )ODD  is a plain datalog program (possibly with equality), then the set of 
abductive solutions for ( ( )ODD , A , )G   is the set of minimal sets in 
{ ( ) | ( ( )L L ′∈ Odecode prolog DD , A , )G , ( ) |L G≠decode , ( )L∪O decode  is consistent}.  
Proof. Note that ( )′ ODD  is a plain datalog program without equality. The encoded Prolog 
program searches and only outputs all lists L  such that ( ) ( )L′ ∪ODD decode  entails G  and 
every ground atom in ( )Ldecode  is on atomic concepts or atomic roles in A . It must output all 
minimal ones among all these lists. Let { ( ) ( ( )S L L ′= ∈∣ Odecode prolog DD , A , )G , 

( ) |L G≠decode , ( )L∪O decode  is consistent}. 



(1) Let ∆  be a minimal set in S , then ∆  is a set of ground atoms on atomic concepts or 
atomic roles in A  such that ( ) | G′ ∪∆ =ODD , i.e., ( ) | G∪∆ =ODD . Since ∪∆O  is consistent, 
by Theorem 1, ( ) ( )∪∆ = ∪∆O ODD DD  is satisfiable. Hence, ∆  is an abductive solution for 
( ( )ODD , A , )G . 

(2) Let ∆  be an abductive solution for ( ( )ODD , A , )G , then ( ) | G′ ∪∆ =ODD  and there is 
not any proper subset ′∆  of ∆  such that ( ) | G′ ′∪∆ =ODD . Hence, there is a list L  output by the 
encoded Prolog program such that ( )L = ∆decode . By Theorem 2, ∆  is also an abductive 
solution for (O , A , )G , thus ∪∆O  is consistent. Suppose ∆  is not a minimal set in S . Since 

| G∆ ≠  and ∪∆O  is consistent, there must be a minimal set ′∆  in S  such that ′∆ ⊂ ∆ . But then 
by (1), ′∆  is an abductive solution for ( ( )ODD , A , )G , contradiction. W  
 

Based on Theorem 2 and Theorem 3, we can obtain a method which computes the set of all 
minimal sets in { ( ) ( ( )L L ′∈∣ Odecode prolog DD , A , )G , ( ) |L G≠decode , ( )L∪O decode  is 
consistent} that are also sets of ABox axioms. The resulting set is actually the complete set of 
abductive solutions. However, this method only guarantees sound and complete results for a 
restricted class of the proposed problem. Moreover, it is impractical when ( )ODD  has equational 
head atoms. In this case, axiomatizing equality is needed, implying that ( )′ ODD  will have some 
rules like ( ) ( ),T y T x x y← ≈ . These rules are hard to handle by the encoded Prolog program 
since every predicate occurring in them appear in cycles. Our experimental results also confirm 
that these rules easily make ABox abduction fail. In the next subsection, we propose a general 
method to tackle all the above issues. 
 
4.2. The Method for the Full Class 
Throughout this subsection, let O  denote an arbitrary SHOIQ  ontology, A  a finite set of 
arbitrary concepts or roles, and G  a finite set of concept assertions or role assertions. That is, 
(O , A , )G  represents the full class of the proposed problem where SHOIQ  is treated as the 
most expressive DL. 

The key idea for applying Prolog engines to compute abductive solutions for (O , A , )G  is 
to transform (O , A , )G  to some (P , 'A , ')G  which can be encoded to a Prolog program using 
the method described in the previous subsection, i.e., P  is a plain datalog program, 'A  is a set 
of atomic concepts or atomic roles, and 'G  is a set of atomic concept assertions or atomic role 
assertions. Suppose there is a one-to-one mapping function f  that maps concepts or roles in 'A  
to concepts or roles in A . Given a set ∆  of ABox axioms on concepts or roles in 'A ,  by ( )f ∆  
we simply denote the set of ABox axioms obtained from ∆  by replacing every concept or role T  
occurring in ∆  with ( )f T . Suppose | G′∪∆ =P  implies ( ) |f G∪ ∆ =O  for all sets ∆  of ABox 
axioms on concepts or roles in 'A , then for every set ∆  of ABox axioms on concepts or roles in 

'A  such that | G′∪∆ =P , some subsets of ( )f ∆  can possibly be abductive solutions for (O , A , 
)G . Hence, we can first compute all sets ∆  of ABox axioms on concepts or roles in 'A  such that 

| G′∪∆ =P  by the Prolog program encoded from (P , 'A , ')G , then extract abductive solutions 
for (O , A , )G from ( )f ∆ . 



Based on the above idea, we develop a method for computing abductive solutions for (O , 
A , )G . In order to transform (O , A , )G  to (P , 'A , ')G  such that (*) | G′∪∆ =P  implies 

( ) |f G∪ ∆ =O  for all sets ∆  of ABox axioms on concepts or roles in 'A , we need to normalize 
(O , A , )G  to ( ′O , 'A , ')G  first, where ′O  is an extensionally reduced ontology, 'A  is a set of 
atomic concepts or atomic roles, and G′  is a set of atomic concept assertions or atomic role 
assertions. Since this is a normalization step, we also need to ensure that for all sets ∆  of ABox 
axioms on concepts or roles in 'A , ∆  is an abductive solution for ( ′O , 'A , ')G  if and only if 

( )f ∆  is an abductive solution for (O , A , )G , where f  is a one-to-one mapping function from 
concepts or roles in 'A  to concepts or roles in A . Then, in order to convert ( ′O , 'A , ')G  to (P , 

'A , ')G , we consider existing methods for transforming DLs to plain datalog. The KAON2 
method is the best choice because it has efficient implementation and preserves consequences 
when compiling very expressive DLs to disjunctive datalog. To apply the KAON2 method, we 
need to weaken ′O  to a SHIQ  ontology. Moreover, we require that the disjunctive datalog 
program compiled by the KAON2 method should have no equational head atoms; otherwise the 
axiomatization of equality is needed and will introduce many cyclic rules that heavily impair the 
efficiency of subsequent steps. Hence, we weaken ′O  to ′′O  such that ( )′′ODD  can be computed 
by the KAON2 method and has no equational head atoms. As a weakening step, we need to 
ensure that | G′′ ′∪∆ =O  implies | G′ ′∪∆ =O  for all sets ∆  of ABox axioms on concepts or 
roles in 'A . Afterwards, we compile ( )′′ODD  from ′′O  and then modify it to a plain datalog 
program P  by removing non-definite rules and adding more definite rules to make the ultimate 
results more complete. To achieve the aforementioned condition (*), we need to ensure that 

| G′∪∆ =P  implies | G′ ′∪∆ =O  for all sets ∆  of ABox axioms on concepts or roles in 'A . 
To summarize, the proposed method for computing all abductive solutions for (O , A , )G   

consists of five steps. In the first step, (O , A , )G  is normalized to ( ′O , 'A , ')G . In the second 
step, ′O  is weakened to ′′O . In the third step, ′′O  is compiled to ( )′′ODD  and ( )′′ODD  is then 
modified to P . In the fourth step, a Prolog program is encoded from (P , 'A , ')G  using the 
method described in the previous subsection, and then go  is called. In the last step, abductive 
solutions for (O , A , )G  are extracted from ( )Ldecode  for every list L  output by the encoded 
Prolog program. More details on these steps are given in the following. 
 
4.2.1 Normalizing ( , , )A GO  
In the first step, we need to normalize (O , A , )G  to ( ′O , A′ , )G′  such that for all sets ∆  of 
ABox axioms on concepts or roles in A′ , ∆  is an abductive solution for ( ′O , A′ , )G′  if and 
only if ( )f ∆  is an abductive solution for (O , A , )G , where f  is a one-to-one mapping 
function from concepts or roles in A′  to concepts or roles in A . To achieve this goal, ′O  may 
not be kept as a SHOIQ  ontology. For example, suppose r¬  is a role in A  and ( , )s a b¬  is a 
role assertion in G , where both r  and s  are atomic roles. To obtain A′  and G′ , we introduce a 
fresh atomic role †

rQ¬  for r¬  and another fresh atomic role sQ¬
P  for s¬ . To make G′  hold, we 

need to guarantee the traditional forward inference from ABox axioms on A′  to G′ . This 
inference involves an inference from ABox axioms on A′  to ABox axioms on A , an inference 
from ABox axioms on A  to G , and an inference from G  to G′ . Hence, we need to introduce 



two axioms †
rQ r¬ ¬�  and ss Q¬¬ P�  for †

rQ¬  and sQ¬
P , respectively, to make the inference from 

ABox axioms on A′  to G′  work. 
We call an axiom of the form s r¬�  or s r¬ �  (where s  and r  are non-negated roles) a 

negated role inclusion axiom. A SHOIQ  ontology does not include negated role inclusion 
axioms, thus ′O  may not be expressed in SHOIQ . We extend the semantics of SHOIQ  to 
the semantics of  SHOIQ  with negated role inclusion axioms. We say an interpretation I  
satisfies s r¬�  if s r∩ =∅I I ; satisfies s r¬ �  if s r∪ = ∆I I I . Then a model of ′O  is still 
defined as an interpretation that satisfies all axioms in ′O . 

The pseudo-code for this step is given in Algorithm 1 below. Line 1 eliminates all inverse 
roles in O  and G . Lines 3–16 normalize A  to A′  by introducing a set of fresh predicates 
(which are atomic concepts or roles) and adding axioms that maintain the correspondence 
between fresh predicates and original predicates. Lines 17–24 normalize G  to G′  in a similar 
way as normalizing A . Lines 25–28 compute ′O  that is the union of an ontology extensionally 
reduced from O  and the set of previously added axioms. 

 
Algorithm 1.    Normalize(O , A , G )  
Input: A SHOIQ  ontology O , a set A  of concepts or roles, and a set G  of concept or role 
assertions.  
Output:  An extensionally reduced SHOIQ  ontology ′O  possibly with negated role inclusion 
axioms, a set A′  of atomic concepts or atomic roles, and a set G′  of atomic concept or role 
assertions.  
1: for each role assertion of the form ( , )r a b−  or ( , )r a b−¬  in G or O  where r  is an atomic 

role do  Replace ( , )r a b−  with ( , )r b a  and ( , )r a b−¬  with ( , )r b a¬ ; 
2: ′←∅O ; A′ ←∅ ; G′ ←∅ ;  
3: for each concept or role T  in A  do 
4: if T  is of the form r−  where r  is an atomic role then 
5: †{ }

r
A A Q −′ ′← ∪  where †

r
Q −  is a fresh atomic role;  

6: †{ }
r

Q r−
−′ ′← ∪O O � ;  

7: else if T  is of the form r¬  where r  is an atomic role then 
8: †{ }rA A Q¬′ ′← ∪  where †

rQ¬  is a fresh atomic role;  
9: †{ }rQ r¬′ ′← ∪ ¬O O � ; 
10: else if T  is of the form r−¬  where r  is an atomic role then 
11: †{ }

r
A A Q −¬
′ ′← ∪  where †

r
Q −¬

 is a fresh atomic role;  
12: †{ }

r
Q r−

−

¬
′ ′← ∪ ¬O O � ;  

13: else if T  is of the form C  where C  is not an atomic concept then 
14: †{ }CA A Q′ ′← ∪  where †

CQ  is a fresh atomic concept;  
15: †{ }CQ C′ ′← ∪O O � ;  
16: else { }A A T′ ′← ∪ ;  
17: for each concept assertion or role assertion ax  in G  do 
18: if ax  is of the form ( , )r a b¬  where r  is an atomic role then 



19: { ( , )}rG G Q a b¬′ ′← ∪ P  where rQ¬
P  is a fresh atomic role;  

20: { }rr Q¬′ ′← ∪ ¬ PO O � ;  
21: else if ax  is of the form ( )C a  where C  is not an atomic concept then 
22: { ( )}CG G Q a′ ′← ∪ P  where CQP  is a fresh atomic concept; 
23: { }CC Q′ ′← ∪ PO O � ; 
24: else { }G G ax′ ′← ∪ ; 
25: for each ABox axiom ax  in O  do  
26: if ax  is of the form ( )C a  where C  is not a literal concept then 
27: { ( )} { }C CQ a Q C′ ′← ∪ ∪O O �  where CQ  is a globally unique fresh atomic 

concept for C ;  
28: else { }ax′ ′← ∪O O ; 
29: return ( , , )A G′ ′ ′O ; 
 

Let f  be a one-to-one mapping function on all concepts or roles T A′∈  such that 
( )f T r−=  if T  is of the form †

r
Q − , ( )f T r= ¬  if T  is of the form †

rQ¬ , ( )f T r−= ¬  if T  is of 
the form †

r
Q −¬

, ( )f T C=  if T  is of the form †
CQ , or ( )f T T=  otherwise. By ( )f ∆  we simply 

denote the set of ABox axioms obtained from a set ∆  of ABox axioms by replacing every 
concept or role T  occurring in ∆  with ( )f T . Let ( , , )A G′ ′ ′O  be returned by Normalize(O , A , 
G ), then we have the following lemma. 

 
Lemma 1  For any set ∆  of ABox axioms on concepts or roles in A′ , ∆  is an abductive solution 
for ( ′O , A′ , )G′  if and only if ( )f ∆  is an abductive solution for (O , A , )G .  
Proof. Let †O  and †G  be obtained from O  and G  by replacing ( , )r a b−  with ( , )r b a  and 

( , )r a b−¬  with ( , )r b a¬  for every atomic role r , then clearly †(O , A , † )G  has the same set of 
abductive solutions as (O , A , )G  has. Let ∆  be an arbitrary set of ABox axioms on concepts or 
roles in A′ . We only need to show that ∆  is an abductive solution for ( ′O , A′ , )G′  if and only if 

( )f ∆  is an abductive solution for †(O , A , † )G . 
Let h  be a one-to-one mapping function on all concepts or roles T  appearing in †G  such 

that ( )h T r= ¬  if T  is of the form rQ¬
P , ( )h T C=  if T  is of the form CQP , or ( )h T T=  otherwise. 

We first show that (*) for any axiom ( )T t G′∈
r

 and any set ∆  of ABox axioms on concepts or 
roles in A′ , †| ( ) ( ) | ( )( )T t f h T t′∪∆ = ⇔ ∪ ∆ =

r r
O O . For any interpretation I , by t

r I  we simply 
denote ( , )a bI I  when t

r
 is a pair made up of a  and b , or denote aI  when t

r
 is a singleton a . 

(⇒ ) Suppose | ( )T t′∪∆ =
r

O . Consider an arbitrary model I  of † ( )f∪ ∆O . I  can be 
expanded to a model ′I  of ′∪ ∆O  such that ( ) ( )T h T h T′ ′= =I I I  for every concept or role T  
appearing in G′ , and a a′ =I I  for every individual a  in O . Since | ( )T t′∪∆ =

r
O , we have 

t T′ ′∈
r I I  and thus ( )t h T∈

r I I . It follows that † ( ) | ( )( )f h T t∪ ∆ =
r

O . (⇐ ) Suppose 
† ( ) | ( )( )f h T t∪ ∆ =

r
O . Consider an arbitrary model I  of ′∪ ∆O . Let ′I  be the projection of I  
on the signature of † ( )f∪ ∆O , then ′I  is a model of † ( )f∪ ∆O , ( ) ( )h T h T T′ = ⊆I I I  for 



every concept or role T  appearing in G′ , and a a′ =I I  for every individual a  in O . Since 
† ( ) | ( )( )f h T t∪ ∆ =

r
O , we have ( )t h T′ ′∈

r I I  and thus t T∈
r I I . It follows that | ( )T t′∪∆ =

r
O . 

Suppose ∆  is an abductive solution for ( ′O , A′ , )G′ , then | ax′∪∆ =O  for all ax G′∈ . By 
(*) we have † ( ) |f ax∪ ∆ =O  for all †ax G∈ . ( )f ∆  must be an abductive solution for †(O , A , 

† )G . Otherwise, since ′∪ ∆O  is consistent and so is † ( )f∪ ∆O , there must exist ( )f′∆ ⊂ ∆  
such that † | ax′∪∆ =O  for all †ax G∈ . By (*) we have ( ) |f ax−′ ′∪ ∆ =O  for all ax G′∈ . But 
then ( )f − ′∆ ⊂ ∆ , contradicting that ∆  is an abductive solution for ( ′O , A′ , )G′ . 

Suppose ∆  is an abductive solution for †(O , A , † )G , then † | ax∪∆ =O  for all ax G∈ . By 
(*) we have ( ) |f ax−′∪ ∆ =O  for all ax G′∈ . ( )f − ∆  must be an abductive solution for ( ′O , A′ , 

)G′ . Otherwise, since † ∪∆O  is consistent and so is ( )f −′∪ ∆O , there must exist ( )f −′∆ ⊂ ∆  
such that | ax′ ′∪∆ =O  for all ax G′∈ . By (*) we have † ( ) |f ax′∪ ∆ =O  for all †ax G∈ . But 
then ( )f ′∆ ⊂ ∆ , contradicting that ∆  is an abductive solution for †(O , A , † )G . W  

 
An example for this step is given below. 
 

Example 4   Consider computing all abductive solutions for (O , A , )G , where O  is the 
ontology given in Example 1, { }A = ¬Extraordinary  and { ( )}G = Ordinary Tom . (O , A , )G  
is normalized to ( ′O , A′ , )G′ , where †{ }A ¬′ = ExtraordinaryQ , G G′ =  and 

†{ }¬′ = ∪ ¬�O O ExtraordinaryQ Extraordinary . 
 
4.2.2 Weakening O′  
In the second step, we need to weaken ′O  to ′′O  such that ( )′′ODD  can be computed by the 
KAON2 method and has no equational head atoms. To do this, we first eliminate nominals, 
negated role inclusion axioms and equality assertions, then standardize every concept inclusion 
axiom C D�  to ( )C D¬� NNF� � ⊺, and finally remove all maximum number restrictions 
from every standardized axiom, where ( )ENNF  denotes the negation normal form of a concept 
E , which can be computed by standard methods e.g. given in (Hustadt et al., 2007). Note that 
there will be no equational head atom introduced when translating ( )C D¬� NNF� �  to first-
order rules, if ( )C D¬NNF �  has no maximum number restrictions. 

The pseudo-code for this step is given in Algorithm 2 below. Lines 1–3 eliminate nominals 
by introducing fresh atomic concepts. Line 4 eliminates negated role inclusion axioms. By now 
′O  becomes a SHIQ  ontology. Line 5 eliminates equality assertions. Lines 6–8 further rewrite 

every concept inclusion axiom C D�  to a semantically equivalent axiom ( )C D¬� NNF� �  
and eliminate all maximum number restrictions .n R E≤  occurring in the right hand side of the 
resulting axiom, so that ′O  becomes a SHIQ  ontology such that ( )′ODD  does not contain any 
equational head atom. 
 
Algorithm 2.    Weaken( ′O )  
Input: An extensionally reduced SHOIQ  ontology ′O  possibly with negated role inclusion 

axioms.  



Output: A SHIQ  ontology ′′O .  
1: for each nominal { }a  occurring in ′O  do 
2: Replace { }a  with aC  where aC  is a globally unique fresh atomic concept;  
3: { ( )}aC a′ ′← ∪O O ; 
4: for each negated role inclusion axiom ax  in ′O  do  { }ax′ ′←O O � ;  
5: for each equality assertion ax  in ′O  do  { }ax′ ′←O O � ; 
6: for each concept inclusion axiom C D�  in ′O  do 
7: Replace it with ( )C D¬� NNF� � ; 

8: 
Replace .n R E≤  with �  for every maximum number restriction .n R E≤  occurring in 

the right hand side of ( )C D¬� NNF� � ;  
9: return ′O ;  
 

Let ( )Onorm  denote the ontology obtained from an ontology O  by replacing every 
concept inclusion axiom C D�  with ( )C D¬� NNF� � . We call a SHIQ  ontology O  a 

≤/SHIQ  ontology if ( )Onorm  has no equality assertions and contains no maximum number 
restrictions in the right hand side of any concept inclusion axiom. Let ′′O  be returned by 
Weaken( ′O ), then ′′O  is a ≤/SHIQ  ontology. We have the following lemma. 

 
Lemma 2.  For any set ∆  of ABox axioms on concepts or roles in A′ , | G′ ′∪∆ =O  if 

| G′′ ′∪∆ =O .  
Proof. Let ax  be an arbitrary atomic concept or role assertion in G′ . When | G′′ ′∪∆ =O , 

| { }ax′′∪∆ =O  and thus { }ax′′∪∆∪ ¬O  is inconsistent. Let ♯O  be the ontology obtained before 
line 4 and PO  be the ontology obtained before line 6, then ( )♯M O  and ( )′M O  coincide on the 
signature of ′O , and ( ) ( )⊆ P♯M O M O . For any concept inclusion axiom ax′  in ( )POnorm , let 

( )w ax′  be obtained from ax′  by replacing .n R C≤  with �  for every maximum number 
restriction .n R C≤  occurring in the right hand side of ax′ , then ( ) ( ( ))ax w ax′ ′⊆M M . Hence, 

( )( ( )) ( ) ( ) ( )axax ax ax′ ′′∈′∈
′ ′ ′′= ⊆ =∩ ∩P

P
OO

M O M M M Onormnorm  and thus 

( ) { }ax∪∆∪ ¬POnorm  is inconsistent. Since ( ) ( ) ( ( ))⊆ =P P♯M O M O M Onorm , 
{ }ax∪∆∪ ¬♯O  is inconsistent. Since ( )♯M O  and ( )′M O  coincide on the signature of ′O , 

{ }ax′∪∆∪ ¬O  is also inconsistent and thus | { }ax′∪∆ =O . It follows that | G′ ′∪∆ =O . W  
 
4.2.3 Modifying ( )′′ODD  
In the third step, we need to compute ( )′′ODD  and modify it to a plain datalog program P  such 
that | G′∪∆ =P  implies | G′ ′∪∆ =O  for all sets ∆  of ABox axioms on concepts or roles in A′ . 
As mentioned before, ( )′′ODD  is compiled from ′′O  by applying the KAON2 method (Hustadt 
et al., 2007). However, ( )′′ODD  may not contain all entailed definite rules, because the KAON2 
method eliminates all redundant rules that do not impact the results of the subsequent resolution 
operations. The elimination of redundant definite rules may make the Prolog program encoded 
subsequently output nothing when calling go , as shown in the following example. 



 
Example 5.   Consider the normalized problem ( ′O , A′ , )G′  given in Example 4. The step for 
weakening ′O  yields a semantically equivalent ontology ′′O  since ′O  is already a ≤/SHIQ  
ontology. By compiling ′′O  through the KAON2 system, we obtain ( )′′ODD  which consists of 
the rules (1)–(6) given in Example 2 and the following rule.  

†( ), ( )x x¬← ExtraordinaryExtraordinary Q .           (11) 
The predicate Ordinary  does not occur in the head of any definite rule in ( )′′ODD , thus the 
Prolog program encoded from ( ( )′′ODD , A′ , )G′  does not output any list when called go , i.e., 

( ( )′′Oprolog DD , A′ , )G′  is empty.  
 

The above example shows that the results of some resolution operations that involve a rule 
translated from an axiom of the form PP Q¬¬ P� , †

PQ P¬ ¬�  or PQ P¬ ¬�  may be treated as 
redundant rules in the KAON2 method. These redundant rules are entailed by ( )′′ODD , thus re-
adding them to ( )′′ODD  does not impact the models of ( )′′ODD . In other words, we can add to 

( )′′ODD  any rules that are entailed by ( )′′ODD  while still keeping that ( ) | G′′ ′∪∆ =ODD  
implies | G′ ′∪∆ =O  for all sets ∆  of ABox axioms on concepts or roles in A′ . In this way 

| G′∪∆ =P  still implies | G′ ′∪∆ =O , where P  is the set of definite rules in ( )′′ODD . 
To make the presentation concise, we only present simple resolution operations that involve 

new concept names introduced in the normalization step for adding redundant rules that are 
entailed by ( )′′ODD . These resolution operations can make many concept names appear in heads 
of definite rules, thus can compensate abductive solutions in many cases. To add more redundant 
rules that are entailed by ( )′′ODD , we can apply other resolution operations exploited in the 
KAON2 method (Hustadt et al., 2007). 

The pseudo-code for this step is given in Algorithm 3. Line 1 initializes the resulting plain 
datalog program P  as ( )′′ODD . For every rule R  in ( )′′ODD , lines 3–9 add to P  the hyper-
resolution result between R  and as many as possible rules translated from axioms of the form 

†
PQ P¬ ¬�  or PQ P¬ ¬� . For every constraint R  in P , lines 12–16 add to P  every resolution 

result between R  and a rule translated from axioms of the form PP Q¬¬ P� . Line 17 keeps only 
definite rules in P  and returns it. 
 
Algorithm 3.    Modify( ( )′′ODD )  
Input:  A disjunctive datalog program without equality ( )′′ODD .  
Output:  A plain datalog program without equality.  
1: ( )′′←P ODD ; 
2: for each rule R  in ( )′′ODD  such that | ( ) | 0R >head  do 
3: for every atom of the form ( )P x  in ( )Rhead  do 
4: if P  is a concept name and †

PQ¬  appears in ( )′′ODD  then 
5: Remove ( )P x  from the head of R  and add † ( )PQ x¬  to the body of R ; 
6: else if P  is a concept name and PQ¬  appears in ( )′′ODD  then 
7: Remove ( )P x  from the head of R  and add † ( )PQ x¬  to the body of R ; 



8: else if P  is of the form †
TQ¬  or TQ¬  where T  is a concept name then 

9: Remove ( )P x  from the head of R  and add ( )T x  to the body of R ; 
10: Add to P  the finally updated R ; 
11: for each constraint R  in P  do 
12: for every atom of the form ( )P x  in ( )Rbody  do 
13: if P  is a concept name and PQ¬

P  appears in ( )′′ODD  then 

14: 
Add to P  the rule obtained from R  by removing ( )P x  from the body and 

adding ( )PQ x¬
P  to the head;  

15: else if P  is of the form TQ¬
P  where T  is a concept name then 

16: 
Add to P  the rule obtained from R  by removing ( )P x  from the body and 

adding ( )T x  to the head; 
17: return { | | ( ) | 1}R R∈ =P head ; 
 

The following example shows the effectiveness of this step. 
 

Example 6.   Consider the disjunctive datalog program ( )′′ODD  given in Example 5. This step 
will yield a plain datalog program P  having the following rule (12), which is the resolution 
result between rule (4) and rule (11). 

†( ) ( ), ( )x x x¬← ExtraordinaryOrdinary Person Q .    (12) 
We can see that now the predicate Ordinary  occurs in the head of rule (12) and the Prolog 
program encoded from (P , A′ , )G′  will output a list [("Tom", "rdf:type", 
p_QDagNegExtraordinary)]  when executing go , where QDagNegExtraordinary  stands for 

†
¬ExtraordinaryQ . 

 
Let P  be returned by Modify( ( )′′ODD ), then we have the following lemma. 
 

Lemma 3.  For any set ∆  of ABox axioms on concepts or roles in A′ , | G′ ′∪∆ =O  if 
| G′∪∆ =P .  

Proof. Let ax  be an abitrary atomic concept or role assertion in G′ . When | G′∪∆ =P , 
| { }ax∪∆ =P  and thus { }ax∪∆∪ ¬P  is unsatisfiable. Since every model of ( )′′ODD  is also a 

model of P , ( ) { }ax′′ ∪∆∪ ¬ODD  is also unsatisfiable. Let ( )′′Ω O  be the ALCHIQ  ontology 
obtained from ′′O  in the course of the KAON2 method, then by Theorem 1, 

( ( ) { }) ( ( )) { } ( ) { }ax ax ax′′ ′′ ′′Ω ∪∆∪ ¬ = Ω ∪∆∪ ¬ = ∪∆∪ ¬O O ODD DD DD  is unsatisfiable and 
thus ( ) { }ax′′Ω ∪∆∪ ¬O  is inconsistent. Since ( ) ( ( ))′′ ′′⊆ ΩM O M O , { }ax′′∪∆∪ ¬O  is also 
inconsistent and thus | { }ax′′∪∆ =O . It follows that | G′′ ′∪∆ =O . By Lemma 2, | G′ ′∪∆ =O . W  
 
4.2.4 Extracting Abductive Solutions from (Pprolog , A′ , )G′ . 

In the last two steps, we encode (P , A′ , )G′  to a Prolog program, and then extract 
abductive solutions for (O , A , )G  from (Pprolog , A′  , )G′ , namely the set of lists output by 
the encoded Prolog program when calling go . 



There is a remark on the extraction step. Consider an arbitrary set ∆  of ABox axioms on 
concepts or roles in A . It can be seen that, all minimal subsets ′∆  of ∆  such that ′∪∆O  is 
consistent and entails G  are abductive solutions for (O , A , )G . However, it is unlikely that 
such a subset ′∆  of ∆  exists when | G∪∆ ≠O . In contrast, consider a list (L∈ Pprolog , A′  , 

)G′ , since ( ) |L G′∪ =P decode , by Lemma 3, we have ( ) |L G′ ′∪ =O decode  and thus 
( ( )) |f L G∪ =O decode . This implies that there probably exist some subsets ′∆  of 

( ( ))f Ldecode  such that ′∪∆O  is consistent and entails G . Hence, we do not extract 
abductive solutions from arbitrary hypotheses but only from lists L  in (Pprolog , A′  , )G′  such 
that ( ) |L G′≠decode . 

The following theorem shows that this method guarantees the soundness of results. 
 

Theorem 4.  Let L  be a list in (Pprolog , A′  , )G′  such that ( )Ldecode  is a set of ABox 
axioms not entailing G′ , and ∆  be a minimal subset of ( ( ))f Ldecode  such that ∪∆O  is 
consistent and entails G , then ∆  is an abductive solution for (O , A , )G .  
Proof. Since ( ) |L G′≠decode  and all ABox axioms in ( )Ldecode  are only on concepts or roles 
in A′ , for all subsets ′∆  of ( ( ))f Ldecode , obviously | G′∆ ≠  and all ABox axioms in ′∆  are 
only on concepts or roles in A . By the definition of abductive solutions, this theorem follows. W  

 
By Theorem 2, Theorem 3 and Lemma 1, we see that this method also guarantees the 

completeness of results in some restricted class of the proposed problem. This conclusion is 
shown in the following theorem. 
 
Theorem 5.  If ′O  is a Horn- ≤/SHIQ  ontology without negated role assertions on complex roles 
and G′  has no atomic role assertions on complex roles, then for every abductive solution ∆  for 
(O , A , )G , there is a list L  in (Pprolog , A′  , )G′  such that ( )Ldecode  is a set of ABox 
axioms not entailing G′  and ∆  is a minimal subset of ( ( ))f Ldecode  such that ∪∆O  is 
consistent and entail G .  
Proof. Let ′∆  be a set of ABox axioms such that ( )f ′∆ = ∆ , then by Lemma 1, ′∆  is an 
abductive solution for ( ′O , A′  , )G′ . Since G  has no role assertions on complex roles, G′  is a 
set of atomic concept assertions or atomic role assertions on simple roles. Since ′O  has no 
negated role assertions on complex roles and A′  is a set of atomic concepts or atomic roles, by 
Theorem 2, ′∆  is also an abductive solution for ( ( )′ODD , A′  , )G′ . Since ′O  is a ≤/SHIQ  
ontology, we have ( ) ( )′′ ′=O ODD DD . Since ′O  is a Horn- ≤/SHIQ  ontology, ( )′′ODD  is a plain 
datalog program without equational head atoms, thus every definite rule in ( )′′ODD  is also in P . 
It follows that ( ( )′Oprolog DD , A′  , ) ( ( )G′ ′′= Oprolog DD , A′  ,  ) (G′ ⊆ Pprolog , A′  , )G′ . Since 
′∆  is an abductive solution for ( ( )′ODD , A′  , )G′  and ( )′ODD  does not contain any equational 

head atom, by Theorem 3, ′∆  is a minimal set in { ( ) ( ( )L L ′∈∣ Odecode prolog DD , A′  , )G′ , 
( ) |L G′≠decode , ( )L′∪O decode  is consistent}. Since 

( ( )′Oprolog DD , A′ , ) (G′ ⊆ Pprolog , A′  , )G′ , there must be a list (L∈ Pprolog , A′  , )G′  such 
that ( )L ′= ∆decode . Then ( ( ))f L = ∆decode . Since ∆  is an abductive solution for (O , A , 



)G , ∆  is the unique minimal subset of ( ( ))f Ldecode  such that ∪∆O  is consistent and entails 
G . W  
 

The remaining problem is how to efficiently compute all minimal subsets ∆  of 
( ( ))f Ldecode  such that ∪∆O  is consistent and entails G , where L  is a list in (Pprolog , 

A′  , )G′  such that ( ) |L G′≠decode . We tackle this problem by using a set-enumeration tree 
whose root is ( ( ))f Ldecode . A set-enumeration tree stores all subsets of a given set and is 
constructed by recursively expanding nodes from the root corresponding to the given set. 
Suppose each element has a sequence number from 1 to m  and we use a subset S  of {1,..., }m  to 
represent a node in the tree, where i S∈  means that the thi  element is in the node represented by 
S . An example set-enumeration tree whose root is represented by {1, 2 , 3} is shown in Figure 1 
(a). A node represented by {1, 2,..., , , ..., }i i j n+  (where 0 i n m≤ ≤ ≤  and jÿÿ) has exactly i  
children, where the thk  (1 k i≤ ≤ ) child is obtained from its parent by deleting the ( 1 )thi k+ −  
element, as shown in Figure 1 (b). 
  

 
Figure 1: Illustrations for set-enumeration trees 

 
To find abductive solutions for ( , , )A GO  among all subsets of ( ( ))f Ldecode , the set-

enumeration tree stemming from ( ( ))f Ldecode  is traversed in a depth-first manner. The 
pseudo-code is given in Algorithm 4, where ( )Ch ∆  returns the set of children of a subset ∆  of 

( ( ))f Ldecode  in the set-enumeration tree stemming from ( ( ))f Ldecode , 
Traverse( ( ( ))f Ldecode , O , G , S ) returns the union of S  and the set of all minimal subsets 
∆  of ( ( ))f Ldecode  such that ∪∆O  is consistent and entails G . 

 
Algorithm 4.    Traverse(∆ , O , G , S )  
Input: A set ∆  of ABox axioms, a SHOIQ  ontology O , a set G  of ABox axioms, and a set 
S  of abductive solutions previously found.  
Output: A updated set of abductive solutions.  
1: if ∪∆O  is consistent but does not entail G  then return S ; 
2: S S′ ← ; 
3: for each ′∆  in ( )Ch ∆  do  S′ ←  Traverse( ′∆ , O , G , S′ ); 
4: if S S′ =  and ∪∆O  is consistent and ∪∆O  entails G  and ∆  has no subsets in S  then 

{ }S S′ ′← ∪ ∆ ; 
5: return S′ ; 
 



Algorithm 4 can be explained as follows. Suppose ∆  is the current node to be processed in 
Algorithm 4. In case ∪∆O  is consistent but does not entail G , since any descendant of ∆  
cannot entail G , no descendants of ∆  can be abductive solutions (see line 1). In other cases, all 
children of ∆  in the set-enumeration tree are processed recursively (see line 3). Note that, during 
the traversal of a set-enumeration tree, all subsets of ∆  must have been processed after all 
descendants of ∆  are processed. Hence, whether ∆  is an abductive solution can be decided after 
all its descendants are processed (see line 4). 
 
5.  EXPERIMENTAL EVALUATION 
We implemented both the method for the restricted class (simply called the restricted method) 
and the one for the full class (simply called the general method), where Pellet (Sirin et al., 2007) 
API is used to realize consistency checking and entailment checking in the course of extracting 
abductive solutions from the output of B-Prolog. We conducted experiments on thirteen 
benchmark ontologies that have large ABoxes. The first two ontologies are Semintec 
(http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm), which is an ontology about financial 
services, and Vicodi (http://www.vicodi.org/), which is an ontology on European history. The 
next five are the Lehigh University Benchmark (LUBM) (Guo et al., 2005) ontologies LUBM n  
( 1n = , ..., 5 ), where LUBM n  denotes the LUBM ontology containing the data of n  universities. 
The above ontologies have been used as benchmark ones in comparing different DL reasoners 
(Motik & Sattler, 2006). The last six ontologies are the University Benchmark (UOBM) (Ma et 
al., 2006) ontologies UOBM-Lite n  and UOBM-DL n  ( 1,2,3n = ), where UOBM-Lite n  and 
UOBM-DLn  denote the UOBM ontologies (OWL Lite version and OWL DL version, 
respectively) containing the data of n  universities. We could not test larger UOBM ontologies 
that involve more universities, because B-Prolog ran out of memory when loading the Prolog 
programs encoded from these ontologies. The characteristics of all test ontologies are shown in 
Table 2. All experiments were conducted on a PC with Pentium Dual Core 2.60GHz CPU and 
2GB RAM, running Windows XP, where the maximum Java heap size was set to 1GB. Note that 
B-Prolog does not work in the Java Virtual Machine and its memory usage is not limited by the 
maximum Java heap size. Our implemented system for ABox abduction, accessorial tools and 
test ontologies are all available at http://jfdu.limewebs.com/abduction/. 
  

Table 2: The characteristics of test ontologies 
Ontology #C #R #TA #AA #I 
Semintec 60 16 219 65,240 17,941 
Vicodi 194 12 223 116,181 33,238 

LUBM1~5 43 32 93 100,543 ~ 624,532  17,174 ~ 102,368  
UOBM-Lite1~3  51 43 145 245,740 ~ 575,380  37,704 ~ 71,901 
UOBM-DL1~3  69 44 206 260,900 ~ 607,248  37,927 ~ 72,059  

Note: “#C", “#R", “#TA", “#AA" and “#I" are the numbers of concept names, role names, TBox 
axioms, ABox axioms and individual names, respectively.   
 
5.1 Results on the Restricted Method 
We first compared the general method with the restricted method on handling test ontologies for 
which the results obtained from the KAON2 method are plain datalog programs with equality. 
These ontologies include Semintec and all UOBM-Lite n . We randomly generated forty atomic 



concept assertions. We set all atomic concepts as abducible predicates and every singleton set 
made up of a generated concept assertion as an observation. The general method finishes in half 
an hour for all observations. But the restricted method always exceeds half a day when handling 
an observation that is known to have abductive solutions from the results of the general method. 
It shows that the rules added to axiomatize equality heavily impair the efficiency of ABox 
abduction. This can be explained by the fact that these rules introduce cycles in the encoded 
Prolog program, diffusing the search space to a huge one. Thus we do not recommend the 
restricted method even when the given problem is in the corresponding restricted class. 

 
5.2 Preparation for the General Method 
We implemented the general method in a way that all observations can be handled without 
starting from scratch as long as the observations are made up of literal concept assertions. Given 
a test ontology O , a set A  of abducible predicates and some observations made up of literal 
concept assertions, the implementation works in two phases. In the first phase, O , A  and the set 
of all literal concepts in O  are encoded into a Prolog program, which is then loaded to B-Prolog. 
Since this phase is independent from specific observations made up of literal concept assertions, 
we call it the preprocess phase. In the second phase, when given an observation G  made up of 
literal concept assertions, the implementation encodes G  into a Prolog rule and combines it with 
the loaded Prolog program to compute abductive solutions for (O , A , )G . We call this phase 
the query phase. 

Using hypothesis is a new feature in ABox abduction which is not in traditional ABox 
reasoning. The performance of the general method depends on the size of the hypothesis space 
which is determined by the number of abductive predicates. To see how the performance 
changes against different numbers of abductive predicates, we designed four suites of 
experiments on the general method, each of which uses different numbers of abductive 
predicates. For the first suite, called the allAC suite, we set all atomic concepts as abducible 
predicates. For the second suite, called the allLC suite, we set all literal concepts as abducible 
predicates. For the third suite, called the allEAC suite, we set as abducible predicates all atomic 
concepts and all existential restrictions of the form .r P∃  where r  is an atomic concept and P  is 
an atomic concept subsumed by the domain of r  in the test ontology. For the last suite, called 
the allELC suite, we set as abducible predicates all literal concepts and all existential restrictions 
of the form .r C∃  where r  is an atomic concept and C  is a literal concept subsumed by the 
domain of r  in the test ontology. For all suites of experiments on a test ontology O , we 
randomly generated forty concept assertions ( )C a  such that | ( )C a≠O  and | ( )C a≠ ¬O , out of 
which twenty are atomic concept assertions and twenty are negative ones, and set every singleton 
set made up of a generated concept assertion as an observation. We did not generate ( )C a  such 
that | ( )C a=O  because there is only one trivial abductive solution ∅  for (O , A , { ( )})C a . We 
also did not generate ( )C a  such that | ( )C a= ¬O  because there is no abductive solution for (O , 
A , { ( )})C a . To see how the general method scales with increasing sizes of ABoxes, we 
generated the same set of observations for different LUBM n  (resp. different UOBM-Lite n  or 
different UOBM-DLn ). 

The aim of these experiments is to verify the general method in terms of efficiency and 
scalability against different numbers of abducible predicates and different sizes of ABoxes. Note 
that the set of abducible predicates in the allAC suite is a subset of that in the allLC or allEAC 
suite, while the set of abducible predicates in the allLC or allEAC suite is a subset of that in the 



allELC suite. Hence we have the following partial order on the complexity of abducible 
predicates: allACÿallLC, allACÿallEAC, allLCÿallELC, allEACÿallELC. So far we cannot 
verify the completeness of the general method, because the baseline method which generates and 
tests all candidate abductive solutions is infeasible in traversing such a huge search space for any 
test ontology. Nevertheless, we can still provide some information on the completeness. Since 
Vicodi and all LUBM n  are Horn- ≤/SHIQ  ontologies, by Theorem 5, the general method must 
compute the complete set of abductive solutions for an observation made up of atomic concept 
assertions, in all suites of experiments. 
 
5.3 Results on the General Method 

Table 3: The statistics for Semintec and Vicodi 
Ontology Suite #Abd Pre.Time Max.Time Avg.Time Max.Num Avg.Num  
Semintec allAC 59 22.1 5.4 4.2 3 2.5 
Semintec allLC 118 22.2 7.4 5.4 3 3.0 
Semintec allEAC 119 24.2 4.5 3.4 3 2.5 
Semintec allELC 178 24.2 4.7 4.1 3 3.0 

Vicodi allAC 194 76.3 22.4 3.8 11 1.8 
Vicodi allLC 388 76.5 22.3 11.2 11 3.3 
Vicodi allEAC 673 78.7 480.3 16.0 212 7.2 
Vicodi allELC 867 78.9 480.8 19.9 212 8.6 

Note: “#Abd" is the number of abducible predicates. “Pre.Time" is the execution time (sec) of 
the preprocess phase, “Max.Time" (resp. “Avg.Time") is the maximum (resp. average) execution 
time (sec) for computing abductive solutions for an observation in the query phase. “Max.Num" 
(resp. “Avg.Num") is the maximum (resp. average) number of computed abductive solutions for 
an observation.   
 

The test results for Semintec and Vicodi are shown in Table 3. For all suites of experiments, 
the execution time of the preprocess phase is almost the same, except that the execution time for 
the allEAC or allELC suite is slightly longer. Both the execution time for computing abductive 
solutions for an observation and the number of computed abductive solutions increase when the 
complexity of abducible predicates increases. For each suite and each observation, the 
computation of abductive solutions is accomplished without running out of memory. In 
particular, the maximum execution time for computing abductive solutions for an observation is 
less than half a minute for almost all suites, except that for Vicodi and two suites (allEAC and 
allELC), the maximum execution time is about six minutes. The reason why computing 
abductive solutions takes a rather long time in some cases is that there are many abductive 
solutions in these cases. 
  

Table 4: A portion of statistics for LUBM n , UOBM-Lite n  and UOBM-DL n  
Ontology Suite #Abd #Succ Max.Num Avg.Num 
LUBM n  allAC 43 40 3 0.3 
LUBM n  allEC 86 40 4 1.2 
LUBM n  allEAC 373 40 53 5.1 
LUBM n  allELC 588 40 96 9.6 

UOBM-Lite n  allAC 51 24 9 1.5 



UOBM-Lite n  allEC 102 24 9 1.8 
UOBM-Lite n  allEAC 659 24 148 17.2 
UOBM-Lite n  allELC 1067 24 250 21.8 
UOBM-DLn  allAC 68 16 15 1.5 
UOBM-DLn  allEC 136 16 15 1.8 
UOBM-DLn  allEAC 862 16 101 9.4 
UOBM-DLn  allELC 1406 15 169 14.7 

 Note: “#Abd" is the number of abducible predicates. “#Succ" is the number of successful 
observations for which computing abductive solutions is accomplished in finite time. 
“Max.Num" (resp. “Avg.Num") is the maximum (resp. average) number of computed abductive 
solutions for a successful observation.   
 

The test results for LUBM n , UOBM-Lite n  and UOBM-DL n  (excluding execution time) 
are shown in Table 4. Since we used the same set of observations for all LUBM n  (resp. all 
UOBM-Lite n  or all UOBM-DL n ), we got the same results on all aspects except execution time 
for different n . Due to limited memory, some observations cannot be properly handled in some 
test cases. We call an observation a successful one if the computation of abductive solutions for 
it is accomplished without running out of memory. For all suites of experiments on LUBM n , all 
40 observations are successful ones. For all suites of experiments on UOBM-Lite n , 24 
observations are successful ones. For almost all suites of experiments on UOBM-DL n , 16 
observations are successful ones except that 15 are successful for the allELC suite. All failures 
are caused by B-Prolog, which ran out of memory during executing the encoded Prolog program. 

The execution time of the preprocess phase (simply preprocessing time) against different n  
is shown in Figure 2. For all LUBM n  or all UOBM-Lite n , the preprocessing time is almost the 
same for different suites. For all UOBM-DL n , the preprocessing time for the allELC suite and 
the allEAC suite is significantly longer than the preprocessing time for the allLC suite and the 
allAC suite. The main reason why UOBM-DL n  have different results on preprocessing time is 
that they are expressed in the most expressive language among all test ontologies, while the 
resolution operations between the clauses translated from complex axioms in UOBM-DL n  and 
the clauses used to normalize abducible predicates from existential restrictions to atomic 
concepts result in much more rules in the compiled disjunctive datalog program. Regarding the 
scalability against different sizes of ABoxes, the preprocessing time for LUBM n , UOBM-Lite n  
or UOBM-DL n  increases smoothly when n  increases. The general method shows a near linear 
scalability on preprocessing time. 

 

 
Figure 2: The execution time of the preprocess phase 

 
The maximum/average execution time (in the query phase) for computing abductive 

solutions for a successful observation is shown in Figure 3 and Figure 4, respectively. For all 
LUBM n , UOBM-Lite n  or UOBM-DL n , the execution time for computing abductive solutions 



for a successful observation increases when n  increases and when the complexity of abducible 
predicates increases. The general method shows a near linear scalability on the execution time 
for computing abductive solutions against different sizes of ABoxes. For the allAC suite and the 
allLC suite, the maximum execution time for computing abductive solutions for a successful 
observation is relatively short and is less than eight minutes for all test ontologies. For the other 
two suites, the maximum execution time for computing abductive solutions for a successful 
observation is relatively long, but the average execution time is only about one tenth of the 
maximum execution time. Table 4 has shown some hints for explaining why computing 
abductive solutions takes a long time in some cases. The main reason is that there are many 
abductive solutions in these cases. 

 

 
Figure 3: The maximum execution time for computing abductive solutions for a successful 
observation 
 

 
Figure 4: The average execution time for computing abductive solutions for a successful 
observation 
 
5.4 Discussion 
The general method for ABox abduction provides an effective way to search over 

2| || | | || |(2 )C I R IA N A NO +  candidate abductive solutions, where | |CA , | |RA  and | |IN  are respectively the 
number of abducible concepts, the number of abducible roles and the number of individual 
names. That is, it localizes the search in small areas, each of which contains a portion of 
abductive solutions. With this manner the method can efficiently compute abductive solutions in 
benchmark ontologies that have large ABoxes. In particular, experimental results show that the 
method works well for hundreds of abducible predicates that are concepts more complex than 
literal ones. The results also show that the method scales well against different sizes of ABoxes. 
We believe that the method is able to scale to much larger ABoxes provided that it works with 
more memory. 

It should be mentioned that we did not show the experimental results about the cases where 
roles are used as abducible predicates. But we had actually conducted some of such experiments. 
The results are not promising because there are usually too many abductive solutions. Recall a 
simple example given in Section 3: { .= ∃O �hasFather Person� , 1 1( , )a a¬hasFather , 

2( )aPerson , ..., ( )}naPerson , { }A = hasFather  and 1{ ( )}G a= Person . There are 1n −  
abductive solutions for (O , A , )G , i.e. 1 2{ ( , )}a ahasFather , ..., 1{ ( , )}na ahasFather . This 



example has similar nature as the test cases where atomic roles are used as abducible predicates, 
thus it is not a surprise when we saw the general method did not finish and continued outputting 
abductive solutions after several hours. Although the general method does not handle abducible 
roles well, it can still be of practical use because abducible roles can often be substituted by 
abducible predicates that are existential restrictions. Consider the aforementioned example. If the 
abducible role hasFather  is replaced with .∃ �hasFather  in A , then there is only one 
abductive solution for (O , A , )G , i.e. { . ( )}∃ � 1hasFather a , which essentially generalizes 

1 2{ ( , )}a ahasFather , ..., 1{ ( , )}na ahasFather . Hence, we recommend using existential 
restrictions rather than roles as abducible predicates. 
 
6. RELATED WORK 
Abductive reasoning in DLs was initiated by Elsenbroich et al. (2006). They classified the tasks 
of abductive reasoning into two categories, namely TBox abduction and ABox abduction, and 
described specific tasks in these two categories using case studies. The necessity of abductive 
reasoning in DLs was reemphasized by Bada et al. (2008) to support ontology quality control. 

Although abductive reasoning in DLs is important, there is still not much work in this area, 
probably due to the high complexity of abductive reasoning. Computing a set-minimal abductive 
solution for propositional Horn theories is already NP-hard (Selman & Levesque, 1990). It is 
even harder for more general propositional theories (Eiter & Gottlob, 1995). Bienvenu (2008) 
adapted this complexity result to the EL  family (Baader et al., 2005) and showed that the 
problem of computing a minimal set of atomic concepts 1{ ,..., }nA A  such that 1 ... nA A� �  is 
satisfiable and subsumed by an observed atomic concept C  in an ++EL  TBox is NP-hard. 
Considering that ++EL  is a rather inexpressive DL, the complexity should be at least as high for 
general DLs. Since the problem considered by Bienvenu (2008) can be treated as a problem for 
ABox abduction by defining abducible predicates as atomic concepts and the observation as 
{ ( )}C a  where a  is a fresh individual, the complexity for ABox abduction is at least NP-hard. 

The work on methods for TBox abduction has a longer history than that for ABox abduction. 
Before the use of abductive reasoning in DLs was comprehensively discussed by Elsenbroich 
et al. (2006), Colucci et al. (2004) have proposed a tableaux-based method for concept abduction 
in ALN  TBoxes, which computes an ALN  concept H  such that C H�  is satisfiable and 
subsumed by D  in a given ALN  TBox, for two given ALN  concepts C  and D . This method 
has only been empirically verified in small-scale applications with a few hundreds of concepts 
(Colucci et al., 2004; Noia et al., 2007). To support existential restrictions that are not allowed in 
ALN , Noia et al. (2009) also proposed a tableaux-based method for concept abduction in SH  
TBoxes. No evaluation results are available for this method. Targeting a different problem for 
TBox abduction, which computes a set of concept inclusion axioms to enforce entailment of a 
given concept inclusion axiom, Hubauer et al. (2010) proposed an automata-based method for 
TBox abduction in EL  TBoxes. Also, there are no evaluation results available for this method. 
Considering that ALN , SH  and EL  do not support nominals, the above methods cannot 
directly be applied to ABox abduction. Moreover, there is no empirical evidence that these 
methods are practically feasible in handling a large number of axioms that involve nominals. 
Hence, we do not consider adapting existing methods for TBox abduction to ABox abduction. 

As mentioned in section 1, the work on ABox abduction is rare. Peraldi et al. (2007) 
proposed a method, based on backward inference, to compute abductive solutions in a DL 
ontology accompanying rules. The method has the following limitations: the axioms that can be 



used are restricted to some special forms; the computed abductive solutions may not be subset-
minimal. Recently, Klarman et al. (2011) proposed a method, based on tableaux and resolution 
techniques, to compute all abductive solutions in an ALC  ontology. It is still unclear how to 
extend this method to support more expressive DLs. Furthermore, the method does not guarantee 
termination. In contrast, our proposed method guarantees termination and set-inclusion 
minimality of abductive solutions; moreover, it works for SHOIQ  which is much more 
expressive than ALC . Currently, we are unable to empirically compare our proposed method 
with the above two methods, because for the first one, neither the ontology nor the system they 
used is publicly accessible, while for the second one, no evaluation results are available. 

Abductive reasoning in logic programming (Kakas et al., 1998) is a relatively prolific area. 
There exist mature proof procedures for abductive reasoning in logic programming. The premier 
proof procedure is the SLDA procedure (Kakas & Mancarella, 1990), which extends the well-
known SLD resolution (Selective Linear Definite clause resolution) with abduction. This 
procedure has been extended to the SLDNFA procedure (Denecker & Schreye, 1992) to support 
normal logic programs that may contain negation-as-failure. The SLDNFA procedure has also 
been extended or refined to other proof procedures such as the IFF (if-and-only-if) procedure 
(Fung & Kowalski, 1997). The two state-of-the-art abduction systems CIFF (Mancarella et al., 
2009) and A -system (Kakas et al., 2001), mentioned in this paper, are built on the above proof 
procedures, where CIFF is built on an extension of IFF and A -system is built on SLDNFA. 
However, these abduction systems cannot solve our proposed program for ABox abduction 
because they do not work for expressive DLs. Although we provide a method for reducing our 
proposed problem to an abduction problem on plain datalog programs (see subsection 4.2), these 
systems are still inapplicable because they currently do not guarantee termination in handling 
cyclic plain datalog programs. Hence, we implement the SLDA procedure on a Prolog engine B-
Prolog, through an encoding method proposed in subsection 4.1, to solve the reduced abduction 
problem. This implementation uses linear tabling (Shen et al., 2001) supported by B-Prolog to 
solve the reduced problem in finite time. 
 
7. CONCLUSION 
ABox abduction is an indispensable non-standard reasoning facility in DLs, but the work on 
ABox abduction is rare. What is even worse, currently no method for ABox abduction works for 
very expressive DLs and computes minimal solutions in finite time. Under this situation, this 
paper made the following contributions so as to pave a way to practical ABox abduction. 

Firstly, the paper proposed a new problem for ABox abduction. This problem follows some 
ideas from abductive reasoning in logic programming, e.g., an abductive solution, namely a 
result of ABox abduction, should be subset-minimal, and introduces the notion of abducible 
predicate to guarantee finite number of abductive solutions. That is, all ABox axioms in an 
abductive solution should be on a finite set of abducible predicates which can be arbitrary 
concepts or roles. 

Secondly, the paper accordingly proposed a method for the above problem. The method is 
based on a reduction from DL SHOIQ  to plain datalog. That is, the abductive solutions for the 
original problem which is expressed in SHOIQ  are computed by reducing the original problem 
to an abduction problem in plain datalog programs, and then extracting true results from 
abductive solutions for the reduced abduction problem. Although the reduction may not 
guarantee semantic equivalence, the proposed method still guarantees soundness and conditional 
completeness of computed results. 



At last, the paper also provided evaluation results on benchmark ontologies that have large 
ABoxes. The results show that the method works well for hundreds of abducible predicates and 
scales well against different sizes of ABoxes. To the best of our knowledge, these results are the 
first evaluation results for ABox abduction on large benchmark ontologies. 

As shown in our experiments, the bottleneck of the proposed method lies in solving the 
reduced abduction problem. Hence, in future work we plan to investigate which fragments of 
plain datalog allow for efficient computation of abductive solutions, and develop methods for 
reducing the proposed problem to an abduction problem expressed in such fragments. The 
proposed problem has a potential issue that there may be too many abductive solutions, 
especially when roles are used as abducible predicates. We also plan to tackle this issue by 
refining the proposed problem, e.g., defining stricter minimal criteria for abductive solutions. 
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