
A New Matchmaking Approach Based on
Abductive Conjunctive Query Answering

Jianfeng Du1,2, Shuai Wang1, Guilin Qi3, Jeff Z. Pan4, and Yong Hu1

1 Guangdong University of Foreign Studies, Guangzhou 510006, China
jfdu@mail.gdufs.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

3 Southeast University, Nanjing 211189, China
4 The University of Aberdeen, Aberdeen AB243UE, UK

Abstract. To perform matchmaking in Web-based scenarios where data
are often incomplete, we propose an extended conjunctive query answer-
ing (CQA) problem, called abductive CQA problem, in Description Logic
ontologies. Given a consistent ontology and a conjunctive query, the ab-
ductive CQA problem computes all abductive answers to the query in
the ontology. An abductive answer is an answer to the query in some
consistent ontology enlarged from the given one by adding a bounded
number of individual assertions, where the individual assertions that
can be added are confined by user-specified concept or role names. We
also propose a new approach to matchmaking based on the abductive
CQA semantics, in which offer information is expressed as individual
assertions, request information is expressed as conjunctive queries, and
matches for a request are defined as abductive answers to a conjunc-
tive query that expresses the request. We propose a sound and complete
method for computing all abductive answers to a conjunctive query in an
ontology expressed in the Description Logic Program fragment of OWL
2 DL with the Unique Name Assumption. The feasibility of this method
is demonstrated by a real-life application, rental matchmaking, which
handles requests for renting houses.

1 Introduction

Matchmaking is a useful facility for comparing offers with requests. It determines
whether an offer matches a request or whether a request matches an offer, and
has been widely used in Web service discovery [18, 3, 10], skill matching [6],
marriage matching [2] and product matching in e-marketplaces [14, 15, 5, 16].

Existing approaches to matchmaking can be divided into two categories,
namely syntactic ones and semantic ones. Syntactic approaches usually exploit
keyword-based search methods to compare offers with requests. These approaches
make little use of the background knowledge and the semantics about offers or
requests, and will easily miss right matches or yield wrong matches. Semantic
approaches usually use ontologies to formalize offers and requests. Since an on-
tology provides the background knowledge and formalizes offers and requests



with certain semantics, semantic approaches can make the matchmaking results
more sound and complete than syntactic approaches.

The World Wide Web Consortium (W3C) has proposed the Web Ontology
Language (OWL), for which the newest version is OWL 2 [11], to model ontolo-
gies. OWL is based on a family of formal languages, called Description Logics
(DLs) [1]. In particular, the most expressive and decidable species of OWL 2,
OWL 2 DL, corresponds to the DL SROIQ [13]. The proposal of OWL has
motivated the industry to upgrade many applications to DL-based ones. Recent
semantic approaches to matchmaking are also based on DLs. These approaches
can be roughly divided into two sorts, described below.

The first sort approaches, such as [3, 10, 18], exploit a DL ontology to compute
semantic distances between offers and requests, where offers and requests are
expressed as DL concept descriptions (simply DL concepts). These approaches
mainly focus on defining a reasonable distance function between two DL con-
cepts. The primary drawback is that they cannot guarantee that the computed
distances adhere to the DL semantics. For example, when an offer matches a
request, i.e., the offer is subsumed by the request under the DL semantics, the
computed distance may not be zero.

The second sort approaches, such as [14, 15, 5], also express offers and re-
quests as DL concepts, but they exploit DL inference methods to compute dif-
ferent matches. In the approaches proposed in [14, 15], a popular DL inference
method, namely concept subsumption checking, is used to compute several kinds
of matches. Two kinds that are most related to this work are respectively the
potential match proposed in [15] and the intersection match proposed in [14],
where a potential match for a request is an offer matching a portion of the re-
quest, while an intersection match for a request is an offer consistent with the
request. In the approach proposed in [5], two non-standard DL inference meth-
ods, namely concept abduction and concept contraction, are used to compute
possible matches. A possible match for a request is an offer that gets subsumed
by the request after adding some information to the offer (i.e. abduction) and
removing some information from the request (i.e. contraction).

All the aforementioned semantic approaches are not easy to scale to real-life
applications that involve a large number of offers and requests, because com-
posing the DL concepts for offers and requests is time consuming and laborious.
A more practical approach should alleviate human efforts to formalize offers
or requests. Hence, we use for reference another approach which is based on
conjunctive query answering (CQA). In this approach, offer information is ex-
pressed as individual assertions in the back-end ontology, request information is
expressed as conjunctive queries posed upon the back-end ontology, and matches
for a request are defined as answers to a conjunctive query that expresses the
request. This approach enables an efficient way to construct a matchmaking sys-
tem. That is, a large portion of the back-end ontology, which stores data about
offers (i.e. offer information), can be automatically extracted from Web sources
using ontology population techniques [4, 8], while a very small portion of the
back-end ontology, which stores background knowledge, can be manually built



using ontology editors. This approach has been used to solve the fuzzy match-
marking problem [16], where the back-end ontology is expressed by a Datalog
program with scoring atoms that calculate the match degrees. It has also been
used to support Semantic Web search [9] for DL back-end ontologies.

However, the CQA based approach is unsuitable in Web-based scenarios
where data of the back-end ontology come from the World Wide Web and are
often incomplete. Since an offer that is not originally an answer to a conjunctive
query can be turned into an answer to after missing data are added, the offer
can also be considered as a match. To capture this idea, we propose an extended
CQA problem, called abductive CQA problem. Given a consistent ontology and a
conjunctive query, the abductive CQA problem computes all abductive answers
to the query in the ontology. An abductive answer is an answer to the query in
a certain consistent ontology enlarged from the given one by adding a bounded
number of individual assertions, where the individual assertions that can be
added are confined by two disjoint sets of concept or role names. The names in
the first set are called abducible predicates. The possibly added individual as-
sertions can be on abducible predicates only. The names in the second set are
called closed predicates. The possibly added individual assertions cannot make
the enlarged ontology entail any individual assertion that is on closed predicates
and is not entailed by the given ontology.

Based on the abducible CQA semantics, we propose a new semantic approach
to computing all matches for a given request, where these matches are abductive
answers to a conjunctive query that expresses the request. This notion of match
is similar to the notion of potential match [15] and the notion of intersection
match [14] — all of them regard matches for a request as offers satisfying a
certain portion of the request. We also propose a method for computing all
abductive answers to a conjunctive query. The method encodes the abductive
CQA problem into a Prolog program and solves it with Prolog engines. To ensure
that the method is sound and complete, we assume that the given ontology is
expressed in the Description Logic Program (DLP) [12] fragment of OWL 2 DL
and adopts the Unique Name Assumption [1]. The DLP fragment of OWL 2 DL
underpins the OWL 2 RL profile of OWL 2 [11] and is often used in applications
that require efficient reasoning facilities. The Unique Name Assumption, which
explicitly declares that any two different individual names correspond to different
elements in the interpretation domain, is often used with DLs.

We conducted experiments in a real-life application, rental matchmaking,
which handles requests for renting houses in an ontology with more than one
million individual assertions. We carefully designed ten benchmark queries for
this application. Experimental results show that the proposed method is rather
efficient in computing abductive answers to the benchmark queries.

The remainder of the paper is organized as follows. After providing prelim-
inaries in the next section, in Sect. 3 we give more details on the abductive
CQA problem. Then in Sect. 4, we describe the proposed method for computing
all abductive answers to a conjunctive query. Before making a conclusion, we
present our experimental evaluation in Sect. 5.



2 Preliminaries

2.1 OWL 2 and DLP

We assume that the reader is familiar with OWL 2 [11] and briefly introduce the
most expressive and decidable species of OWL 2, OWL 2 DL, which corresponds
to the DL SROIQ [13] with datatypes. An OWL 2 DL ontology consists of an
RBox, a TBox and an ABox. The RBox consists of a finite set of role inclusion
axioms and role assertions. The TBox consists of a finite set of concept inclusion
axioms. The ABox consists of a finite set of individual assertions. OWL 2 DL
(i.e. SROIQ) is a syntactic variant of a fragment of First-order Logic, and the
semantics of a SROIQ ontology O can be defined by translating to a formula
π(O) of First-order Logic with equality, where π is defined in Table 1. We use
the traditional rule form to represent π(O). For example, consider the ontology
(called the rental ontology) used in our experiments, the following two axioms
in the RBox of the rental ontology: Tra(isA) and hasFacility ◦ isA v hasFacility,
and the following two axioms in the TBox: House v Building and Building u
TrafficLine v ⊥, can be translated to the following First-order rules.
R1 = ∀x, y, z : isA(x, y) ∧ isA(y, z) → isA(x, z)
R2 = ∀x, y, z : hasFacility(x, y) ∧ isA(y, z) → hasFacility(x, z)
R3 = ∀x : House(x) → Building(x)
R4 = ∀x : House(x) ∧ TrafficLine(x) → ⊥
Rule R1 tells that if x is more specific than y and y is more specific than z, then
x is more specific than z. Rule R2 tells that if x has a facility y and y is more
specific than z, then x also has a facility z. Rule R3 tells that if x is a renting
house, then it is also a building. Rule R4 tells if x is a building, then it cannot be
a traffic line, where the symbol ⊥ in rule consequences denotes a contradiction.

A model of an OWL 2 DL ontologyO is a model of π(O) under the traditional
First-order semantics. O is said to be consistent if it admits at least one model.
An individual assertion α is said to be entailed by O, denoted by O |= α, if
α is satisfied by all models of O. The Unique Name Assumption [1] in O is an
assumption that O |= a 6≈ b for any two different individual names a and b
occurring in O.

The DLP [12] fragment of OWL 2 DL is the intersection of OWL 2 DL and
Horn Logic, another fragment of First-order Logic in which all rules have no
existential quantifiers or disjunctions in the consequence part. We simply call an
ontology DLP ontology if it is expressed in the DLP fragment of OWL 2 DL and
adopts the Unique Name Assumption.

2.2 Conjunctive Query Answering

A conjunctive query is an expression of the form ∃−→y : conj(−→x ,−→y ,−→c ), where −→x is
a vector of distinguished variables, −→y a vector of non-distinguished variables and
−→c a vector of individuals or constants. conj(−→x ,−→y ,−→c ) denotes a conjunction of
atoms of the form A(v) or r(v1, v2), where A is an atomic concept (i.e. a concept



Table 1. The semantics of SROIQ by mapping to First-order Logic

Translating SROIQ concepts to First-order Logic

πx(>) = > πx(⊥) = ⊥
πx(A) = A(x) πx(¬C) = ¬πx(C)
πx(C uD) = πx(C) ∧ πx(D) πx(C tD) = πx(C) ∨ πx(D)
πx(∃r.C) = ∃y : ar(r, x, y) ∧ πy(C) πx(∀r.C) = ∀y : ar(r, x, y) → πy(C)
πx(∃r.Self) = ar(r, x, x) πx({a}) = x ≈ a
πx(≥n r.C) = ∃y1, ..., yn :

∧n

i=1
(ar(r, x, yi) ∧ πyi(C)) ∧∧

1≤i<j≤n
yi 6≈ yj

πx(≤n r.C) = ∀y1, ..., yn+1 :
∧n+1

i=1
(ar(r, x, yi) ∧ πyi(C)) → ∨

1≤i<j≤n+1
yi ≈ yj

Translating axioms to First-order Logic

RBox: π(r1 ◦ . . . ◦ rn v s) = ∀x1, ..., xn+1 :
∧n

i=1
ar(ri, xi, xi+1) → ar(s, x1, xn+1)

π(Tra(r)) = ∀x, y, z : ar(r, x, y) ∧ ar(r, y, z) → ar(r, x, z)
π(Sym(r)) = ∀x, y : ar(r, x, y) → ar(r, y, x) π(Ref(r)) = ∀x : ar(r, x, x)
π(Dis(r, s)) = ∀x, y : ¬ar(r, x, y) ∨ ¬ar(s, x, y) π(Irr(r)) = ∀x : ¬ar(r, x, x)

TBox: π(C v D) = ∀x : πx(C) → πx(D)
ABox: π(C(a)) = πx(C)[x 7→ a] π(r(a, b)) = ar(r, a, b)

π(¬r(a, b)) = ¬ar(r, a, b) π(a 6≈ b) = a 6≈ b

Translating SROIQ ontologies to First-order Logic

π(O) =
∧

α∈O π(α)

Note: A denotes a concept name; ar(r, x, y) denotes s(y, x) if r is an inverse role s−, or
denotes r(x, y) otherwise.

name), r is an atomic role (i.e. a role name) or a built-in predicate, and v, v1

and v2 are variables in −→x and −→y , or individuals or constants in −→c . A Boolean
conjunctive query is a conjunctive query without distinguished variables.

Given an OWL 2 DL ontology O and a Boolean conjunctive query Q = ∃−→y :
conj(−→y ,−→c ), a model I of O is said to satisfy Q if there exists a tuple of (possibly
anonymous) individuals or constants whose substitution for the variables in −→y
makes every atom in conj(−→y ,−→c ) satisfied by I. Q is said to be entailed by O,
denoted by O |= Q, if every model of O satisfies Q. A tuple −→t of individuals
is called an answer to a conjunctive query Q(−→x ) = ∃−→y : conj(−→x ,−→y ,−→c ) in O
if O |= Q(−→x )[−→x 7→ −→

t ], where Q(−→x )[−→x 7→ −→
t ] denotes a Boolean conjunctive

query obtained from Q(−→x ) by replacing every variable in −→x with its corre-
sponding individual in −→t . The conjunctive query answering (CQA) problem is
to compute all answers to a conjunctive query in an ontology.

3 The Abductive CQA Problem

By expressing offer information as individual assertions and request information
as conjunctive queries, the matchmaking problem can be treated as the CQA
problem. For example, when we want to find all renting houses whose price is
up to 4000 yuan per month, we can pose the following conjunctive query upon
the rental ontology: ∃y : House(x) ∧ rent(x, y) ∧ y ≤ 4000. Then the answers to
this query correspond to renting houses to be found. However, the answers to a



conjunctive query may not provide all choices to a requester. For example, when
the price of a renting house is missing, possibly due to incomplete extraction
from Web sources, this renting house will not be an answer of the aforemen-
tioned query, though its rental price is 3000 yuan per month in reality. Hence
those answers in a certain enlarged ontology may also correspond to offers that
match the request in reality. This enlarged ontology can be seen as the result of
adding missing data about offers to the original ontology. Since offer informa-
tion is expressed as individual assertions, the missing data should be restricted
to individual assertions. Moreover, the number of added assertions should be
bounded by some constant that reflects the incompleteness of the original on-
tology, while the added assertions should be confined by certain concept or role
names according to the actual situation. Hence, we introduce an extended CQA
problem, called abductive CQA problem, defined below.

Definition 1 (Abductive CQA). Given a consistent ontology O, a conjunc-
tive query Q, a non-negative integer k, two disjoint sets of concept or role names
SA and SC , where the concept or role names in SA (resp. SC) are called abducible
predicates (resp. closed predicates), a tuple −→t of individuals is called an abduc-
tive answer to Q in O w.r.t. k, SA and SC , if there exists a set A of individual
assertions on the predicates in SA such that |A| ≤ k, O ∪A |= Q(−→x )[−→x 7→ −→

t ],
O ∪A is consistent, and O |= α for all individual assertions α on the predicates
in SC such that O ∪ A |= α, where |S| denotes the cardinality of a set S, and
A is said to be attached with −→t . The abductive CQA problem is to compute all
abductive answers to Q in O w.r.t. k, SA and SC .

In the above definition, A can be seen as the missing data about a certain
offer. It consists of at most k individual assertions and should be a set such
that the union of it and the given ontology O is consistent. Here, we call A
a candidate complement set if |A| ≤ k and O ∪ A is consistent. The set of
abducible predicates, SA, restricts all concepts or roles appearing in a candidate
complement set to concept or role names in SA. The set of closed predicates,
SC , further restricts that the union of a candidate complement set and the given
ontology does not entail any individual assertion which is on a closed predicate
but is not entailed by the given ontology. In general, a concept or role name can
be set as an abducible predicate if some of its instances are possibly missing; it
can be set as a closed predicate if all individual assertions on it are ensured to
be entailed by the given ontology. However, it is not necessary that a concept or
role name is set to be either abducible or closed.

The abductive CQA problem is similar to the ABox abduction problem pro-
posed in [7], which computes all minimal sets A of individual assertions on a
set S of predicates such that O ∪ A is consistent, A 6|= G and O ∪ A |= G, for
a consistent ontology O and a set G of individual assertions. Compared to the
ABox abduction problem, the abductive CQA problem also restricts A to a set
that consists of individual assertions on certain predicates and does not intro-
duce inconsistency. But it computes abductive answers to a conjunctive query
by considering all possible A instead of computing certain A. Moreover, it in-
troduces the use of the bounded number k and a set of closed predicates. The



bounded number k is used to control the extensiveness of abducible answers,
while the usefulness of closed predicates is described below.

One use of the closed predicates is to simulate the use of disjoint concept
or role axioms, which declare that two concepts or two roles are disjoint. For
example, suppose City(a) is entailed by O and House(a) is not. When O does
not contain the axiom declaring that House and City are disjoint, House(a) can
possibly be entailed by O ∪ A for some candidate complement set A. But we
actually do not expect House(a) to be entailed by O ∪ A as House(a) does not
hold in reality. Hence we can define House as a closed predicate, so that all
candidate complement sets A making O ∪A entail House(a) are not considered
in computing abductive answers. Since disjoint concept or role axioms can easily
be neglected when manually constructing or maintaining ontologies, the closed
predicates are often needed to substitute the use of these axioms. Another use
of the closed predicates is to enable some optimizations in computing abductive
answers; this will be shown in the next section.

It should be mentioned that closed predicates are not predicates in an NBox
(Negation-as-failure Box) [17]. Defining concept or role names in the NBox of an
ontology impacts the semantics of the ontology. For example, defining House as
a concept name in the NBox amounts to adding the axiom House v {a1, ..., an}
to the ontology, where a1, ..., an are all (explicit and implicit) instances of House
in the ontology. In contrast, defining concept or role names as closed predicates
does not impact the semantics of the ontology; it only determines what kind
of candidate complement sets can be considered. In fact, when k = 0, the set
of abductive answers to Q in O w.r.t. k, SA and SC coincides with the set of
answers to Q in O no matter how SA and SC are set.

For the abductive CQA problem, we assume that the given ontology O has
been extensionally reduced by replacing concept assertions C(a) with QC(a) and
role assertions (¬)r−(a, b) with (¬)r(b, a) in the ABox, and by adding QC v C
to the TBox, where C is a concept appearing in the ABox but is neither an
atomic concept nor a negated atomic concept, QC is a new globally unique
atomic concept corresponding to C, and r is an atomic role appearing in the
ABox. Extensionally reducing an ontology does not impact abductive answers
to conjunctive queries in the ontology.

4 A Method for the Abductive CQA Problem

The ABox abduction method proposed in [7] encodes the ABox abduction prob-
lem into a Prolog program and solves it with Prolog engines. We extend this
method to solve the abductive CQA problem in a consistent extensionally re-
duced DLP ontology O. It has been empirically shown in [7] that the ABox
abduction method is feasible only when the translated First-order rules have
no equality in heads. To guarantee this, expressing O in the DLP fragment of
OWL 2 DL is not enough, thus we also assume that O adopts the Unique Name
Assumption so that any translated rule with equational head atoms can be con-



verted to a semantically equivalent one by rewriting equational head atoms to
inequational atoms and moving them to the rule body.

Compared to the ABox abduction method in [7], the proposed method for
abductive CQA has significant extensions. First, the proposed method handles
new parameters that are not considered in [7] (i.e. the bounded number k and
the set SC of closed predicates). Second, the proposed method introduces new
optimizations based on abducible predicates and closed predicates.

Let F (O) denote the set of First-order rules translated from O where there
are no equational head atoms. The proposed method has the following six steps.

In the first step, for the purpose of optimization the unique minimal model
of F (O) is computed and all ground atoms in this model are added to F (O) as
ground facts (i.e. variable-free rules whose consequence part is not ⊥), yielding
F ′(O). We call a concept or role name P an addable predicate if there is a
sequence of rules r1, ..., rn in F (O) (where n ≥ 1) such that P occurs in the head
of r1, some abducible predicates occur in the body of rn, and the body of ri and
the head of ri+1 have common predicates for all i ∈ {1, ..., n−1}. Intuitively, only
individual assertions on addable predicates can possibly be added to the unique
minimal model of F (O) after individual assertions on abducible predicates are
added to O. Consider an arbitrary conjunctive query Q(−→x ) = ∃−→y : P (−→x ,−→y ,−→c )
that consists of a single atom P (−→x ,−→y ,−→c ) where P is a non-addable or closed
predicate. For an arbitrary set A of individual assertions that will be attached
with some abductive answers of Q in O, there is not any individual assertion α
on P that is entailed by O∪A but not entailed by O, hence the set of abductive
answers of Q in O coincides with the set of answers of Q in O no matter how the
bounded number k and closed predicates are set. Since the answers of Q in O
can be retrieved from the unique minimal model of F (O), the abductive answers
of Q in O can be directly retrieved from the ground facts in F ′(O). Hence, the
use of non-addable or closed predicates can yield a more efficient encoding of the
abductive CQA problem. To achieve this encoding, the following steps consider
F ′(O) instead of F (O).

In what follows, we assume that the predicate House is closed and the pred-
icates House, Building, isA, hasFacility, locatesIn and rent are addable.

In the second step, all ground facts in F ′(O) are encoded into Prolog rules.
For example, the ground fact→ isA(a, b) is encoded into the following two Prolog
rules, where the last rule is written once in the encoded Prolog program for all
ground facts on isA. In Prolog atoms, the prefix “pf ” or “p ” is added to concept
or role names, because in the Prolog syntax only for variables the first letter is
capitalized, while concept or role names are not variables.

pf isA(a, b).
p isA(X, Y, Li, Lo) :− pf isA(X, Y ), Lo = Li.

In the third step, all definite rules (i.e. First-order rules whose consequence
part is not ⊥) in F ′(O) that have addable but not closed predicates in heads
and have variables are encoded into Prolog rules. Note that any definite rule in
F ′(O) whose head predicate is non-addable or closed is not encoded, because all
instances of the head predicate can be directly retrieved from the ground facts in



F ′(O), i.e. retrieved through the Prolog rules generated in the previous step. To
manage individual assertions that can be added to O, every non-built-in atom
in a definite rule in F ′(O) is encoded as a Prolog atom with an extra input
argument and an extra output argument. The input (resp. output) argument is
a list representing the original (resp. updated) set of added assertions if the atom
is on an addable but not closed predicate, or is the empty list otherwise. A list L
is of the form [t1, ..., tn], where ti is of the form (a, “rdf : type”, p A) or (a, p r, b);
it is called empty if it is of the form [ ]. A list L can be decoded into a set
of individual assertions {t′1, ..., t′n}, denoted by decode(L), where t′i is rewritten
from ti by rewriting (a, “rdf : type”, p A) to a concept assertion A(a) and (a, p r, b)
to a role assertion r(a, b). The two extra arguments of a Prolog atom, which is
encoded from an atom on non-addable or closed predicate, are set as empty lists,
because all instances of the predicate can be directly retrieved from the ground
facts in F ′(O). In the encoded Prolog rule, the extra input argument of the head
atom, Li, is the extra input argument of the first body atom on addable but
not closed predicates, whereas the extra output argument of the head atom, Lo,
is the extra output argument of the last body atom on addable but not closed
predicates; if there are no body atoms on addable but not closed predicates, an
Prolog atom Lo = Li is added to the body to define what Lo is. For example, the
rules R1 and R3 in Sect. 2 are encoded into the following two Prolog rules.

p isA(X, Z, Li, Lo) :− p isA(X, Y, Li, L1), p isA(Y, Z, L1, Lo).
p Building(X, Li, Lo) :− p House(X, [ ], [ ]), Lo = Li.

It should be noted that all constraints (i.e. First-order rules whose conse-
quence part is ⊥), such as the rule R4 in Sect. 2, are not encoded into Prolog
rules. This is because constraints are only used to determine if the added as-
sertions are consistent with O. But this consistency checking in a Prolog engine
is based on brute-force like search and is generally less efficient than calling an
external consistency checker, so all constraints in F ′(O) are ignored.

In the fourth step, all Prolog predicates occurring in cycles in the set of
Prolog rules generated in the previous step are declared to be tabled predicates.
Setting a Prolog predicate tabled means that any Prolog atom on this predicate
is prevented from calling multiple times. This is a crucial step for guaranteeing
termination when calling Prolog atoms in the encoded Prolog program. It is
similar to the first step in the ABox abduction method [7], except that Prolog
predicates encoded from non-addable or closed predicates are not set as tabled
predicates, because they cannot be head predicates of Prolog rules generated in
the previous step and will not occur in cycles in the encoded Prolog program.

In the fifth step, the given conjunctive query Q is encoded into a Prolog rule
with a nullary head atom go, where every non-built-in atom in Q is also encoded
as a Prolog atom with an extra input argument and an extra output argument.
Likewise, the input (resp. output) argument is a list representing the original
(resp. updated) set of added assertions if the atom is on an addable but not
closed predicate, or is the empty list otherwise. In order to output all abductive
answers to Q, two Prolog atoms output(X1, ..., Xn, L) and fail are added to the
body of the encoded Prolog rule, where X1, ..., Xn are all distinguished variables



in Q, and L is the extra output argument of the last body atom on addable
but not closed predicates; if there are no body atoms on addable but not closed
predicates, L is set as the empty list. output(X1, ..., Xn, L) directly returns true if
the tuple 〈X1, ..., Xn〉 has been output; otherwise, if L is the empty list, the atom
outputs 〈X1, ..., Xn〉 and returns true; otherwise, if O ∪ decode(L) is consistent
and every ground atom on closed predicates in the unique minimal model of
F (O)∪decode(L) is also in the unique minimal model of F (O) (which is checked
by calling an external consistency checker), the atom outputs 〈X1, ..., Xn〉 and
returns true, else the atom returns fail. In other words, an external consistency
checker is called when and only when the tuple 〈X1, ..., Xn〉 has not been output
and L is not empty. The Prolog atom fail forces the Prolog engine to enumerate
all possible instantiations for variables in the encoded Prolog rule when calling
go, so as to obtain all abductive answers to Q. Suppose we want to find all
renting houses that locate in GZ (Guangzhou) and have a rental price less than
3000 yuan per month, we can express it as the following conjunctive query.

Q(x) = ∃y : House(x) ∧ locatesIn(x,GZ) ∧ rent(x, y) ∧ y < 3000
Then the above query can be encoded into the following Prolog rule.

go :− p House(X, [ ], [ ]), p locatesIn(X, “GZ”, [ ], L1), p rent(X, Y, L1, L2),
Y < 3000, output(X, L2), fail.

In the last step, for every abducible predicate in SA, two Prolog rules are
added. The first rule says that the updated set of added assertions is the original
one, if the individual assertion to be added is already in the original set of added
assertions. The second rule says that the updated set of added assertions is
obtained from the original one by inserting an individual assertion on P , if the
number of added assertions in the original set is less than k. For example, suppose
the predicate isA is abducible, then the following two Prolog rules are added,
where the Prolog atom dom(X) ensures X to be an individual or a constant
and returns true, in(t, L) sets t as a member of the list L and returns true if t
can possibly be grounded to a member of L or returns false otherwise, less(L, k)
returns true iff the the number of members in L is less than k, and insert(t, L, L′)
sets L′ as the resulting list obtained by inserting t to L and turns true.
p isA(X, Y, Li, Lo) :− in((X, p isA, Y ), Li), Lo = Li.

p isA(X, Y, Li, Lo) :− less(Li, k), dom(X), dom(Y ), insert((X, p isA, Y ), Li, Lo).
The following theorem shows the correctness of the above encoding method.

Theorem 1. The encoded Prolog program outputs exactly all abductive answers
to Q(−→x ) = ∃−→y : conj(−→x ,−→y ,−→c ) in O w.r.t. k, SA and SC when calling go.

Proof. (1) Let −→t be a tuple of individuals or constants output by the encoded
Prolog program, and A be the set of individual assertions attached with −→

t
when −→t is output. Since backward inference in Prolog is sound, it is clear that
F ′(O) ∪ A |= Q(−→x )[−→x 7→ −→

t ]. Furthermore, when −→t is output (during calling
a Prolog atom on output), it is confirmed that O ∪ A is consistent, and every
individual assertion on closed predicates is not entailed by O ∪ A unless it is
entailed by O. According to the last step of the encoding method, A should only



consist of individual assertions on abducible predicates and |A| ≤ k. Hence, by
Definition 1, −→t is an abductive answer to Q(−→x ) in O w.r.t. k, SA and SC .

(2) Let the tuple −→t be an abductive answer to Q in O w.r.t. k, SA and SC ,
then there exists a set A of individual assertions on abducible predicates such
that |A| ≤ k, O ∪ A |= Q(−→x )[−→x 7→ −→

t ], O ∪ A is consistent and O |= α for all
individual assertions α on closed predicates such that O ∪ A |= α. The unique
minimal model of F (O) ∪ A is equal to the set of ground atoms occurring in
the least fixpoint of Π(n), where Π(0) = ∅ and for n ≥ 1, Π(n) = {R σ | R ∈
F (O) ∪ A, σ is a mapping from variables in R to constants in F (O) ∪ A such
that all body atoms of R σ occur in Π(n−1)}. Let ∆n (n ≥ 1) denote the set of
ground atoms occurring in Π(n).

Consider an arbitrary ground atom α in the unique minimal model of F (O)∪
A. Let p(a1, ..., am, Li, Lo) be encoded from α. In case α is on non-addable or
closed predicates, it is clear that calling p(a1, ..., am, [ ], [ ]) will return true ac-
cording to the Prolog rules generated in the second step of the encoding method.
In other cases, we show by induction on ∆n that (*) calling the Prolog atom
p(a1, ..., am, Li, Lo) will return true with decode(Lo) set as a subset of A when Lo

is given as a variable and Li is given as a specific list such that decode(Li) ⊆ A.
In what follows, we assume that Lo is a variable and decode(Li) ⊆ A. Consider
the case where α ∈ ∆1. If α ∈ A, then according to the Prolog rules generated in
the last step of the encoding method, calling p(a1, ..., am, Li, Lo) will return true
with decode(Lo) ⊆ decode(Li) ∪ {α} ⊆ A; otherwise, according to the Prolog
rules generated in the second step, calling p(a1, ..., am, Li, Lo) will return true
with decode(Lo) = decode(Li) ⊆ A. Suppose the result (*) holds for all ground
atoms in ∆k (k ≥ 1). Consider the case where α ∈ ∆k+1 \ ∆k. There exists a
rule R ∈ F (O) and a mapping σ from variables in R to constants in F (O) ∪ A
such that all body atoms of R σ belong to ∆k. According to the Prolog rules
generated in the third step, there exists an encoded Prolog rule Re whose head
atom is p(a1, ..., am, Li, Lo) and whose body atoms except Lo = Li are encoded
from body atoms of R σ. By inductive hypothesis, all body atoms of Re except
Lo = Li, when being called, will return true with their extra output parameters
set as some lists L such that decode(L) ⊆ A. Thus, calling p(a1, ..., am, Li, Lo)
will return true with decode(Lo) ⊆ A by triggering Re.

Since O is a DLP ontology, all arguments of ground atoms in the unique
minimal model of F (O)∪A are constants in F (O)∪A. SinceO∪A |= Q(−→x )[−→x 7→−→
t ], there must be a tuple −→s of constants in F (O)∪A such that F (O)∪A |= α
for every ground atom α in Q(−→x )[−→x 7→ −→

t ,−→y 7→ −→s ]. Let α1, ..., αn be all ground
atoms in Q(−→x )[−→x 7→ −→

t ,−→y 7→ −→s ], and βi be a Prolog atom encoded from αi

as follows: If αi is a built-in atom, then βi is encoded as the corresponding
built-in atom in Prolog; else if αi is on non-addable or closed predicates, βi is
encoded to an atom of the form p(a1, ..., am, [ ], [ ]); else βi is encoded to an atom
of the form p(a1, ..., am, L, L′), where L is the last parameter of the previous βj

on addable but not closed predicates (if this βj does not exist, L is the empty
list). Consider the Prolog rule for encoding Q which is generated in the fifth
step. β1, ..., βn and output(−→t , L) will be called one by one when calling go. By



the results proved in the previous paragraph, calling βi will return true for all
i ∈ {1, ..., n}, and L must be set as a list such that decode(L) ⊆ A before calling
output(−→t , L). When output(−→t , L) is called, if −→t has not been output, then
since decode(L) ⊆ A, L should be the empty list or satisfy that O ∪ decode(L)
is consistent and every ground atom on closed predicates in the unique minimal
model of F (O) ∪ decode(L) is also in the unique minimal model of F (O), hence−→
t should be output. To conclude, −→t must be output when calling go. ut

5 Experimental Evaluation

We conducted experiments in a real-life application, rental matchmaking, which
is based on a rental ontology and handles requests for renting houses. The goal of
this application is to provide a suitable rental matchmaking system for residents
in China, under the current circumstances that many families in China cannot
afford a house.

We manually constructed the RBox and the TBox of the rental ontology,
which have 129 logical axioms, 36 concept names and 35 role names, using
Protégé (version 4.1)5, a well-known ontology editor. In addition, we built au-
tomatic tools to extract information from existing Websites, including a rental
Website6, a traffic Website7 and an administrative region Website8. We manually
wrote annotation rules in these tools to convert the extracted data to individual
assertions. We also manually added some individual assertions on the role isA
to define that some facilities are more specific than some other facilities. When
adding individual assertions annotated from different Websites to the rental on-
tology, inconsistency occurs because some homonymous entities that belong to
disjoint concepts are treated as the same individual. We resolved the inconsis-
tency by using the method proposed in [8] to remove a cardinality-minimal set
of axioms. Finally, we obtained a consistent ontology9 with 32,954 individuals
and 1,152,336 logical axioms, where the number of renting houses is 9,248. The
ontology is an existentially reduced DLP ontology.

We implemented the proposed method in JAVA and used XSB10 as the back-
end Prolog engine since XSB supports tabled predicates. Considering that the
matchmaking results returned by the proposed method have a formal semantics,
we did not focus on the quality of the matchmaking results but on the efficiency
in computing them, which is a crucial criterion for verifying the feasibility of the
method. All experiments were were conducted on a PC with Pentium Dual Core
2.80GHz CPU and 16GB RAM, running Win 7 (64 bit).

We carefully designed ten benchmark queries, shown in Fig. 1, to test the
efficiency of the proposed method, where all individuals in these queries are
5 http://protege.stanford.edu/
6 http://www.soufun.com/
7 http://www.8684.cn/
8 http://www.chinaquhua.cn/
9 http://jfdu.limewebs.com/papers/rental.zip

10 http://xsb.sourceforge.net/



Q1(x) = House(x)

Meaning: Find all renting houses.

Q2(x) = ∃y : House(x) ∧ locatesIn(x, Liwan) ∧ rent(x, y) ∧ y ≥ 1000 ∧ y ≤ 2000

Meaning: Find all renting houses in the Liwan district (a district in Guangzhou)
whose rental price is from 1000 to 2000 yuan per month.

Q3(x) = House(x) ∧ locatesIn(x, Baiyun) ∧ numOfBedrooms(x, 2) ∧
numOfLivingRooms(x, 1) ∧ locatesNear(x, GDUFS)

Meaning: Find all renting houses in the Baiyun district (a district in Guangzhou)
that have two bedrooms and one living-room and locate near GDUFS (Guang-
dong University of Foreign Studies).

Q4(x) = ∃y : House(x) ∧ locatesIn(x, Liwan) ∧ numOfBedrooms(x, y) ∧ y ≥ 1 ∧ y ≤
3 ∧ numOfLivingRooms(x, 1) ∧ numOfKitchens(x, 1) ∧ numOfBathrooms(x, 1)

Meaning: Find all renting houses in the Liwan district that have one to three
bedrooms, one living-room, one kitchen and one bathroom.

Q5(x) = House(x) ∧ locatesIn(x, ZhuJiangNewTown) ∧ towards(x, South)

Meaning: Find all southward renting houses in the Zhu Jiang New Town.

Q6(x) = ∃y, z : House(x) ∧ locatesIn(x, Liwan) ∧ locatesNear(x, y) ∧
isOriginalOf(y, z) ∧ Bus(z)

Meaning: Find all renting houses in the Liwan district that locate near the origin
stop of some bus line.

Q7(x) = ∃y1, y2 : House(x) ∧ locatesNear(x, y1) ∧ locatesNear(x, y2) ∧ y1 6= y2 ∧
isLineOf(y1, HEMC GDUFS) ∧ isLineOf(y2, HEMC GDUFS)

Meaning: Find all renting houses locating near two different traffic lines both of
which have a stop called HEMC GDUFS (the section of Guangdong University
of Foreign Studies which is in Higher Education Mega Center).

Q8(x) = House(x) ∧ locatesIn(x, Liwan) ∧ hasFacility(x, Club) ∧
hasFacility(x, SportsArea)

Meaning: Find all renting houses in the Liwan district that have clubs and sports
areas.

Q9(x) = ∃y : House(x) ∧ numOfBedrooms(x, 3) ∧ numOfLivingRooms(x, 2) ∧
rent(x, y) ∧ y ≤ 3000 ∧ hasFacility(x, Club) ∧ hasFacility(x, SportsArea)

Meaning: Find all renting houses that have three bedrooms and two living-rooms,
have a rental price no more than 3000 yuan per month, and have clubs and
sports areas.

Q10(x) = ∃y : House(x)∧locatesIn(x, GZ)∧floorNo(x, y)∧numOfFloors(x, z)∧y 6= z

Meaning: Find all renting houses in GZ (Guangzhou) that are not at the top
floor of a building.

Fig. 1. The benchmark queries for testing the proposed method

automatically generated URIs that correspond to names in Chinese, but they
are shown by meaningful names here for readability. The first query is the basic
one which can be directly answered by the original rental Website. The next four
queries are complex queries about multiple aspects of renting houses. The 6th
query and the 7th query are complex queries about renting houses and traffic



Fig. 2. The statistics for each benchmark query (Note: in the bottom table, row 1
shows the average execution time in milliseconds for computing one abductive answer,
row 2 shows the number of abductive answers, and row 3 shows the number of calls to
an external consistency checker.)

lines, and they are not supported by the original rental Website. The last three
queries involve more complex reasoning. For example, the 8th query and the 9th
query involve reasoning on the rules R1 and R2 in Sect. 2.

We tested the proposed method on computing all abductive answers to every
benchmark query in the rental ontology w.r.t. k, SA and SC , where k = 1, SA =
{locatesNear, hasFacility, rent, towards, floorNo, numOfFloors} (which consists of
all predicates on which the information may be incomplete) and SC = {House}
(which consists of one predicate on which the information is surely complete).

Our implemented system works in two phases. In the first phase, all informa-
tion except specific conjunctive queries is encoded into a Prolog program, which
is then loaded into XSB. This phase is independent of any given query and is
performed offline. In our experiments, this phase was done in 875 seconds. In the
second phase, every benchmark query is encoded into a Prolog rule. Then this
rule is added to the Prolog program obtained in the first phase and is evaluated
by XSB. The statistics in this phase are shown in Fig. 2. For 7/1/2 benchmark
queries, the first abductive answer was computed in 1/2/13 seconds. For 4/3/3
benchmark queries, all abductive answers were computed in 10/100/300 sec-
onds. For all benchmark queries, each abductive answer was computed in one
second on average. Note that all benchmark queries have abductive answers in
the rental ontology and the evaluation of six benchmark queries needs to call
an external consistency checker. This shows that the system is able to efficiently
handle nontrivial requests for renting houses.

6 Conclusion and Future Work

We have proposed a new semantic approach to matchmaking based on the abduc-
tive CQA semantics. By considering that data are often incomplete in Web-based



scenarios, this approach defines matches for a request as abductive answers to a
conjunctive query that expresses the request. Furthmore, we proposed a sound
and complete method for computing all abductive answers in a consistent ex-
tensionally reduced DLP ontology. Experimental results on rental matchmaking
demonstrated the feasibility of the proposed method.

For future work, we plan to define reasonable measures for ranking abduc-
tive answers. These measures can be computed according to the minimal sets of
added assertions attached with abductive answers. We also plan to define an-
other extended CQA semantics to perform matchmaking in an inconsistent and
incomplete ontology without rendering the ontology consistent beforehand.

Acknowledgement

Jianfeng Du and Shuai Wang are partly supported by the NSFC under grant
61005043 and the Undergraduate Innovative Experiment Project in Guangdong
University of Foreign Studies. Guilin Qi is partly supported by Excellent Youth
Scholars Program of Southeast University under grant 4009001011, the NSFC
under grant 61003157, Jiangsu Science Foundation under grant BK2010412, and
the Key Laboratory of Computer Network and Information Integration (South-
east University). Jeff Z. Pan is partly supported by the EU K-Drive project and
the RCUK dot.rural project. Yong Hu is partly supported by the NSFC under
grant 70801020.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Batabyal, A.A., DeAngelo, G.J.: To match or not to match: Aspects of marital
matchmaking under uncertainty. Operations Research Letters 36(1), 94–98 (2008)

3. Bianchini, D., Antonellis, V.D., Melchiori, M.: Flexible semantic-based service
matchmaking and discovery. World Wide Web 11(2), 227–251 (2008)

4. Cimiano, P., Völker, J.: Text2onto - a framework for ontology learning and data-
driven change discovery. In: Proc. of the 10th International Conference on Appli-
cations of Natural Language to Information Systems (NLDB). pp. 227–238 (2005)

5. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Concept ab-
duction and contraction for semantic-based discovery of matches and negotiation
spaces in an e-marketplace. Electronic Commerce Research and Applications 4(4),
345–361 (2005)

6. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M., Mottola, M.:
A formal approach to ontology-based semantic match of skills descriptions. Journal
of Universal Computer Science 9(12), 1437–1454 (2003)

7. Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical abox abduction in large OWL
DL ontologies. In: Proc. of the 25th AAAI Conference on Artificial Intelligence
(AAAI). pp. 1160–1165 (2011)



8. Du, J., Shen, Y.: Computing minimum cost diagnoses to repair populated DL-
based ontologies. In: Proc. of the 17th International World Wide Web Conference
(WWW). pp. 265–274 (2008)

9. Fazzinga, B., Gianforme, G., Gottlob, G., Lukasiewicz, T.: Semantic web search
based on ontological conjunctive queries. In: Proc. of the 6th International Sympo-
sium on Foundations of Information and Knowledge Systems (FoIKS). pp. 153–172
(2010)

10. Fenza, G., Loia, V., Senatore, S.: A hybrid approach to semantic web services
matchmaking. International Journal of Approximate Reasoning 48(3), 808–828
(2008)

11. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: The next step for OWL. Journal of Web Semantics 6(4), 309–322 (2008)

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Proc. of the 12th International
World Wide Web Conference (WWW). pp. 48–57 (2003)

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR). pp. 57–67 (2006)

14. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic
web technology. In: Proc. of the 12th International World Wide Web Conference
(WWW). pp. 331–339 (2003)

15. Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A system for principled
matchmaking in an electronic marketplace. In: Proc. of the 12th International
World Wide Web Conference (WWW). pp. 321–330 (2003)

16. Ragone, A., Straccia, U., Noia, T.D., Sciascio, E.D., Donini, F.M.: Fuzzy match-
making in e-marketplaces of peer entities using datalog. Fuzzy Sets and Systems
160(2), 251–268 (2009)

17. Ren, Y., Pan, J.Z., Zhao, Y.: Closed world reasoning for OWL2 with NBox. Journal
of Tsinghua Science and Technology 15(6), 692–701 (2010)

18. Shu, G., Rana, O.F., Avis, N.J., Chen, D.: Ontology-based semantic matchmaking
approach. Advances in Engineering Software 38(1), 59–67 (2007)


