
Distributed Stream Consistency Checking

Shen Gao1, Daniele Dell’Aglio1, Jeff Z. Pan2, and Abraham Bernstein1

1 DDIS, Department of Informatics, University of Zurich, Switzerland
[shengao,dellaglio,bernstein]@ifi.uzh.ch
2 The University of Aberdeen, United Kingdom

jeff.z.pan@abdn.ac.uk

Abstract. Dealing with noisy data is one of the big issues in stream pro-
cessing. While noise has been widely studied in settings where streams
have simple schemas, e.g. time series, few solutions focused on streams
characterized by complex data structures. This paper studies how to
check consistency over large amounts of complex streams. Our proposed
methods exploit reasoning to assess if portions of the streams are com-
pliant to a reference conceptual model. To achieve scalability, our meth-
ods runs on state-of-the-art distributed stream processing platforms, e.g.
Apache Storm or Twitter Heron. Our first method computes the closure
of Negative Inclusions (NIs) for DL-Lite ontologies and registers the NIs
as queries. The second method compiles the ontology into a processing
pipeline to evenly distribute the workload. Experiments compares the
two methods and show that the second one improves the throughput up
to 139% with the LUBM ontology and 330% with the NPD ontology.

1 Introduction

Web data streams are changing our lives. Continuously generated news streams
transform search engines in up-to-date newspapers, where breaking news is listed
at the top of query results. City-related sensor streams improve our driving expe-
rience, with real-time information about navigation, traffic, and events. Recently,
stream reasoning [22, 23] is also considered in Knowledge Graph [18, 17], where
frequent (or even constant) updates of knowledge graphs become a norm.

However, noise can lead to wrong and unexpected results, e.g. errors in traffic
sensors lead to wrong representations of the current status of a city, causing—in
the worst case—new jams. It is worth noting that noise is inevitable in streaming
settings, so technological solutions to cope with it are necessary. A possible way
to handle noise is through data integrity constraints, such as data range filters
that exclude outliers generated by sensors with hardware failures. However, those
methods may fail in detecting noise when data is described according to complex
conceptual models. The problem we study in this article is how to assess the
consistency of streams w.r.t. a fixed and known a-priori conceptual model.

In stream processing scenarios, an important requirement is responsiveness:
the consistency assessment process must be responsive and quick when analyz-
ing newly arrived data. Batch-based solutions are generally not efficient due to

the high latency involved. Furthermore, they have the overhead of processing
overlapped data between batches multiple times. Therefore, the stream scenario
calls for an incremental solution to cope with the velocity dimension.

The first challenge we cope with is: how to model the problem of stream con-
sistency checking? Checking if a (static) dataset is consistent w.r.t. a schema is a
well-known problem in data and knowledge management [2, 9, 16]. Moving to the
streaming setting, consistency checks in presence of data streams has only been
partially considered so far [22, 28]. Such studies assume that the input stream
can be managed as a whole. This creates a problem w.r.t. responsiveness, since
the whole input stream is needed to produce a result. It follows that methods
that compute the output incrementally are desirable in this setting.

In this paper, we consider the DL-litecore description logic to express the
schema of data streams. DL-litecore is a member of the well known DL-Lite
family, which provides the underpinnings for the standard ontology language
OWL2 QL.These logics are expressive enough to cover most features in UML
diagrams, and their data complexity for the conjunctive query answering task is
AC0, which is the same as conjunctive querying over relational databases.

The second problem arises from the volume of the data: if we consider the
set of streams as a whole, the size of the data may be too large to fit in one
computing node. We adopt a usual assumption in stream processing settings:
the more recent the data, the more relevant it is. This translates in the intro-
duction of windows to capture recent portions of the stream. However, even in
this way, the volume of the data may still be too big to be treated in a single
machine. A way to overcome this limitation is to perform the consistency check
in a distributed fashion. Therefore, a key question is how to distribute the stream
consistency reasoning task while guaranteeing correctness? This allows exploit-
ing a Distributed Stream Processing Engines (DSPEs), e.g. Apache Flink and
Twitter Heron, which require users to compile the business logics into processing
workflows. We focus on how to assess stream consistency on top of DSPEs.

Summarising, the main contributions of this paper include:

1. a formalisation of the stream consistency checking problem w.r.t. a static
DL-litecore conceptual schema;

2. two scalable and incremental methods for stream consistency checking. They
are designed for a distributed environment. Intermediate reasoning results
are cached in the system to check the consistency for newly arrived streams;

3. an analysis of these methods through comparative studies based on the
LUBM benchmark [11] and the NPD [26] ontology using Twitter Heron.

2 Preliminaries

In this section we introduce DL-litecore as the Description Logic (DL) we consider
in this study. We then describe evolving ontologies, and finally we discuss the
distributed stream processing concepts we used to build our solutions.

2

Static DL-litecore Ontology. DL-litecore is a description logic of the DL-Lite
family [3]. Its building blocks are named concepts (denoted with A) and named
roles (denoted with P). They can be used to build basic concepts C as C :=
⊥ | A | ∃R; and basic roles R as R := P | P−. A DL-litecore ontology is
composed of a TBox T and an ABox A. The TBox T contains axioms in the
forms of C1 ⊑ C2 or C1 ⊑ ¬C2. The former axiom, also known as Positive
Inclusion (PI), indicates that C1 is a subclass of C2, e.g. Student is a subclass
of Person (also denoted SC(Student, Person)). The latter one represents a
Negative Inclusion (NI), which expresses that two classes are disjoint, e.g. there
cannot be an instance of Person and Organization (also denoted DJ(C1, C2)).

The ABox A contains assertions about individuals, which can be either
Ck(x1) or Rk(x1, x2), where x1 and x2 are two individual instances. If an
NI in T is violated by assertions of A, (e.g. DJ(C1, C2) in T , C1(a) and C2(a)
in A), then the knowledge base is inconsistent. [6] shows that only NI axioms
can lead DL-litecore ontologies to inconsistency.

RDF and DL ontology streams. An RDF stream S = ((d1, t1), . . . , (dn, tn), . . .)
is a potentially unbounded sequence of timestamped informative units (di, ti)
ordered by the temporal dimension, where ti is the timestamp (we consider the
time as discrete) and di is an RDF statement. An RDF statement is a triple
(s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L), where I, B, and L identify the sets of IRIs,
blank nodes and literals, respectively. An RDF term is an element of the set
T = I ∪B ∪ L. RDF streams can be used to serialise DL ontology streams.

We define DL ontology streams starting from the notion of evolving ontology
as defined in [22, 15], which captures the dynamics of a knowledge base. Given a
discrete time interval [m,n], a DL ontology stream On

m is a pair On
m = (T ,An

m),
where T is a TBox and An

m is a stream of ABoxes from time m to n. We refer
with An

m(i) to the ABox (snapshot) at time i associated to An
m. Similarly, we

refer with On
m(i) to the pair (T ,An

m(i)), which is a static ontology.
When handling a stream, it may be important to analyze a portions of data

items, e.g., count the occurrences of a fact over a time interval. Inspired by the
research on stream and event processing [8], we employ the notion of window,
which is an operation that selects a portion of items in the stream. Let On

m be
a DL ontology stream . The application of a window W over On

m results in:

Oc
o = W (On

m,ω, c) = (On
m(o), . . . ,On

m(c)) = (T , ⟨An
m(o), . . . ,An

m(c)⟩) = (T ,Ac
o),

where ω is a natural number representing the size of the window, and c is
the time on which the window is applied. The following constraints hold: o =
max{m, c−ω} and c ≤ n. Finally, we define the window content as the union of
the axioms contained in the stream snapshots, i.e., u(An

m) =
⋃n

i=m An
m(i). Given

a DL ontology stream On
m, it follows that ⟨T , u(An

m)⟩, is a knowledge base.

Distributed Stream Processing Engines. Processing big amounts of streams usu-
ally relies on Distributed Stream Processing Engines (DSPEs). DSPEs provide
the advantages of automatic instantiating and distributing tasks onto computing

3

Fig. 1: Deploying a logical topology (left) into a physical (right) one (right). The
spout S and bolts B1, B2 are instantiated as tasks on two computing servers.

nodes. They also take care of the coordination of the tasks. Users just need to
provide the processing logics. In the following, we introduce basic concepts of
DSPE, adopting the nomenclature of Apache Storm and Heron.

Fig. 1 (left) shows the processing logics as a logical topology, which is a Di-
rected Acyclic Graph (DAG) composed of spout and bolt nodes. Spouts (S)
provide input data to bolts; they emit data to downstream nodes and are typi-
cally used to connect a topology with external data sources such as Web services
or data brokers. Bolts (Bi) embed the processing logics: they manipulate data
from upstream nodes and emit results to downstream nodes.

Each edge of the topology represents a data stream. Data streams flow
through the topology as sequences of tuples, i.e. sets of property-value pairs.
While defining the logical topology, the user should declare the tuple format
(i.e., the set of properties) for every edge.

In addition to the structure of the logical topology, the user should provide
configuration information to deploy the logical topology to a computing cluster.
First, the user needs to define how many instances of each node should be de-
ployed. These instances are named task instances or, shortly, tasks. Moreover,
for each edge in the logical topology, the user should define a grouping strategy
(e.g., a hashing function), which is used by the DSPE to partition the stream
among the tasks. For this reason, given a stream, a subset of the tuple attributes
acts as a key. The DSPE uses the logical topology and the configuration parame-
ters to decide how to distribute the tasks among the available computing servers.
This results in a physical topology, as depicted on the right of Fig. 1.

Problem definition. We study how to perform incremental stream consistency
checking over DL-litecore. That means, given a stream On

m and a time interval
of ω time units, we aim to check if ⟨T , u(W (An

m,ω, c))⟩ is consistent for every
c ∈ [m,n] in an incremental way. It is worth noting that when ω is large and the
window starts at the beginning of the input (i.e., ω ≥ n − m and m = 0), the
problem becomes the incremental consistency assessment over the whole stream.

4

3 Related Work

We first discuss related studies on consistency checking for knowledge bases.
Then, we introduce distributed stream processing and RDF stream processing.

Consistency Checking of an Ontology. Although there have been many studies
on consistency checking, e.g., Baclawski et al. [4] translate an ontology to the
language that can be executed by a logic programming engine, stream consis-
tency checking is only partially considered. [28] proposes an incremental method
that efficiently checks the consistency of new changes against the whole ontology.
Our study targets the consistency of streams over DL-litecore. Given a static DL
ontology, consistency checking is often reduced to query answering. There are
various query rewriting techniques that have been proposed [6, 12, 21]. Specially,
[6] shows that the computational complexity of a consistency checking task is ex-
ponential to the size of TBox at worst. Recently, [19, 20] proposed the adoption
of machine learning to achieve fact consistency checking. These methods ap-
ply standard reasoning techniques to label inconsistent data instances, and then
learn a model to classify new instances. While these approaches are interesting,
they cannot guarantee a 100% accuracy. When considering dynamic ontologies,
there are some studies on incremental reasoning and evolving ontologies [24, 15].
However, they do not consider distributed stream settings.

Distributed Stream Processing. Stream processing relies on the idea of managing
data in motion, by performing tasks in a continuous fashion. This paradigm has
recently gained popularity due to the rise of Distributed Stream Processing En-
gines (DSPEs), which process streams in clusters and cloud services. One of the
first DSPEs to gain popularity is Storm [27]. It relies on topologies: processing
workflows where each element is named task. Storm automatically handles the
distribution of tasks to computing nodes. Recently, Twitter proposed Heron [13]
as a successor of Storm. Heron overcomes some limitations of Storm: the limited
performance monitoring, impossibility to deploy in clusters with heterogeneous
nodes and complexity in debugging. Other DSPEs exist, each of those with dif-
ferent design goals but with the common idea of workflows, similarly to Apache
Storm’s topologies. For example, Apache Samza embeds a key-value store to
manage state between processing nodes. Apache Flink [7] emphasizes the com-
bination of batched-based and stream-based processing paradigms.

RDF Stream Processing. RDF Stream Processing (RSP) is a recent effort to
push the stream processing paradigm in the semantic web. Solutions like C-
SPARQL [5] and CQELS [14] adopts sliding windows to create time-varying
views over the streams, to be processed through SPARQL. Solutions like EP-
SPARQL [1] and INSTANS [25] propose to verify time-relation constraints over
the stream elements, usually in closed time intervals. The existing RSP solutions
have been developed in centralized systems, showing limitations in scalability
and in managing data characterized by high velocity and volume.

5

4 Solution

Given a Tbox, our solutions derive incremental consistency checking procedures
to be executed in a DSPE. We first present the running example used in this
section, followed by the basic building blocks used in our solutions.

Example 1. Fig. 2 shows the TBox Tex, used as running example and based on
the LUBM benchmark. Each node in the figure is a class, while edges denote
positive inclusion axioms (PIs), e.g., the axiom SC(Student, Person) is repre-
sented by the nodes Student, Person and the edge between them. The right
part of Fig. 2 contains the negative inclusion axioms (NIs) (e.g., Axiom (1) in-
dicates that an instance of Student cannot be an instance of Publication). In
total, there are ten classes, six PIs, and ten NIs that are explicitly stated in Tex.

A tuple is the basic unit of input, output, and intermediate streams. With
reference to the RDF stream model of Section 2, each stream item is a tuple
defines as (s, p, o, t). The adoption of DL-litecore implies that a tuple can describe
either a role or a class assertion. Class assertions C(x) and ∃R(x) in the snapshot
An

m(t) are represented as (x, isA,C, t) and (x, isA,CR, t), respectively.
A stream SC contains all tuples that state a class assertion of C(a), where a is

a generic individual, e.g., SPerson is a stream that has instances like (Bob, isA, Person, t1).
SCinc

is a special stream that contains the instances found to be inconsistent,
e.g., given Axiom (1) in Tex, if there are two instances (Bob, isA, Person, t1) and
(Bob, isA, Publication, t1), the output tuple (Bob, isFoundToBe, Inconsistent, t1)
is appended to SCinc

. Role assertions R(a, b) are managed by introducing two
class assertions: ∃R(a) and ∃R−(b), where R− is the inverse property of R.

Given a TBox T , the input to a topology is a set of streams S = {SC1
, . . . , SCn

},
where each stream corresponds to a class in T . The output of the topology is

Fig. 2: The PIs and NIs of the Tbox Tex in the running example.

6

SCinc
that reports all inconsistent instances. For the sake of illustration, we as-

sume that a topology has only one spout serving as a stream broker, i.e., it
collects streams from different sources and emits them as S.

A topology consists of a set of bolts B = {B1, . . . , Bn}. A bolt Bi encodes a
set of operations {o1, . . . , on}. An operation oi encodes a part of the consistency
check logics: it takes as input a set of streams Soi

input = {SC1
, ..., SCn

} and
emits output streams Soi

output. We define two kinds of operations. An inference
operation o→ encodes subclass to superclass inferences: it takes one stream SC1

as input and emits one output stream SC2
, i.e., o→ : SC1

(x) → SC2
(x). A

conjunction operation o∩ is similar to a join function that checks inconsistencies.
The input is a set of streams and the output is one stream, i.e., o∩ : SC1

(x) ∧
. . . ∧ SCn

(x) → SCoutput
(x). Differently from inference operations, conjunction

ones require the presence of several assertions together to trigger the underlying
rule. Therefore, a conjunction operation requires caching instances of each input
streams. We exploit windows for this purpose: they cache instances when they
arrive and delete them when their associated time instant expires.

For both operations, the key should be the value of the instance, e.g., an
instance of SPerson(Bob) uses “Bob” as a key. This allows the engine to partition
the streams and make sure that instances Person(Bob) and Publication(Bob)
are processed in the same task instance. The operation output can not serve as
input to another operation of the same bolt, i.e., the operations within one bolt
are independent of each other, enabling the distribution of workload. Lastly, if
an instance does not participate any operations, the bolt simply forwards it to
the downstream bolts, which guarantee that all the inconsistencies are detected.

Example 2. Given the Tex in Example 1, the inference operation o→i derives a
new instance of Person for each instance in the Student stream, since Student is
a subclass of Person, i.e., o→i := SStudent(x) → SPerson(x). Moreover, given the
Axiom (1) in Fig. 2, the conjunction operation o∩i is defined as o∩i := SPerson(x)∧
SPublication(x) → SCinc

(x). In this case, each stream of SPerson and SPublication

is associated with a window. When an instance SPerson(Bob) arrives, o∩i checks
whether SPublication(Bob) is cached. If yes, o

∩

i outputs SCinc(Bob), since it violates
the NI Axiom (1); otherwise, Person(Bob) is cached for future use.

4.1 The NIs Topology Method (NTM)

Fig. 3 depicts three alternative topologies that are compiled from Tex, produced
by the two methods we propose. Fig. 3a shows our basic solution, the NIs Topol-
ogy Method (NTM): it computes the set NIclosure, which contains all the dis-
jointness axioms that can be deduced from the NIs and PIs. Then, it compiles
each of them into one bolt as conjunction operations. Specifically, given an NI
in the TBox, NTM computes NIclosure as the list of subclasses for each class in
the NI. The permutation of the subclass elements gives all possible combinations
between subclasses, and hence the NIclosure. Each NI in NIclosure is of the form
DJ(C1, ..., Cn), which can be implemented as a conjunction operation. NTM
computes topology before runtime since it requires the TBox only.

7

(a) NIs Topology (b) Pipeline Topology 1 (c) Pipeline Topology 2

Fig. 3: The NIs (NTM) and the Pipeline (LTM) topologies. The workload in the
last bolt of the three topologies reduces as the length of the pipeline increases.

Example 3. The ten NIs in Tex of Fig. 1 lead to 37 NIs in NIclosure, e.g.,
given DJ(Person,Work) and the subclasses of Person, NTM infers NIs that
are not explicitly stated in Tex: DJ(Person,Work), DJ(Employee,Work),
DJ(Faculty,Work), and DJ(Admin,Work). As shown in Fig. 3a, B1 is the
only bolt that performs all the conjunction operations. When deploying this
topology, multiple task instances of the bolt partition the stream by the subject
field in a tuple, e.g., given a tuple (a, isA,C, t), a is the partition key.

As shown in the experiment, the single bolt of NTM creates a computational
bottleneck on the throughput. [6] explains that the size of NIclosure is expo-
nential to the size of TBox at worst. Consequently, the number of operations in
the bolt may be exponential. We considered two possible remedies to the bot-
tleneck problem, but neither of them solves it completely. A possible remedy is
to increase the number of tasks for the bolt. It increases the parallelism, but
it cannot reduce the complexity of the bolt. When the stream rate increases,
the workload on each task increases as well, which poses the same problem. An-
other possible remedy is to have a different topology layout. Consider Tex and
a topology where the spout connects to two bolts B1 and B2 (not chained in
a pipeline): it does not offer any advantages when processing the pairwise PIs
between Person, Publication, Organization, and Work (Axioms (1-6)), since
these four streams cannot be split into two bolts without duplication.

4.2 The Pipeline Topology Method (LTM)

We propose the Pipeline Topology Method (LTM) to improve NTM. LTM ar-
ranges the NIs in a hierarchical fashion to reduce their total number, and splits
the hierarchy in different bolts to distribute the consistency-checking workload.

8

The bolts in LTM are chained as a pipeline. Each bolt deals with a limited
amount of classes and their related NIs. The example below shows our idea.

Example 4. In Fig. 3b, bolt B1 is assigned to process only two classes Faculty
and Admin, as well as the only NI between them. In addition, B1 has two
inference operations that convert these two streams into one Employee stream
and output to bolt B2. B1 also forwards all other unused streams to B2. In this
way, B2 does not need to consider Faculty and Admin anymore. Their related
NIs with other classes are still ensured by the disjointness between Employee
and other classes. Comparing to Fig. 3a, this topology has the cost of adding
an extra bolt B1, however, it greatly reduces the number of NIs in the last bolt
from 37 to 24. Assuming each class has the same incoming stream rate, the
CPU bottleneck of the last bolt is significantly reduced. Furthermore, the total
number of NIs in B1 and B2 together is also smaller than the number of NIs in
Fig. 3a. The topology in Fig. 3c further extends this idea by using three bolts.
Bolt B2 handles DJ(Student, Employee) and DJ(Article, Book), while bolt B3

handles the rest of the classes and the six NIs among them. The topology in
Fig. 3c has the overhead of forwarding streams through B1 and B2.

By comparing the three topologies in Fig. 3, we observe that the excessive
amount of NIs in B1 of Fig. 3a can lead to a computational bottleneck. By
arranging the NIs in a hierarchal way, the total number of NIs are significantly
reduced. It is possible to use one bolt to hold the entire reduced NI hierarchy.
However, it still has the same problem that the single bolt can become a CPU
hot-spot. Therefore, by using the operations we defined in Section 2, we split the
hierarchy into different bolts, such as in Fig. 3b and 3c. In this way, we achieve
that the CPU cost of checking NIs is distributed along the pipeline and alleviate
the potential computational bottleneck. Essentially, our LTM method looks for
the best way of balancing the workload into a pipeline of bolts.

Algorithm 1 gives the details of LTM. The algorithm takes the TBox T of the
DL ontology stream as an input. The output is a chain (pipeline) of bolts. Each
bolt is filled with the operations it needs to perform. The algorithm develops two
parts: first, Steps 1-3 find the essential NIs and arrange them into hierarchical
groups. Steps 4-5 assign these groups to bolts and generate the corresponding
operations. Each step of Algorithm 1 is explained in below.

Step 1. As with NTM, Line 1 computes the NI closure set, denoted as NIclosure.

Step 2. Based on NIclosure, Line 2 computes NIroot, which is a set of all essential
NIs. The intuition of “essentialness” is that: given two NIs, if each class in one
NI is either a sub or an equivalent class of the other, we can first convert the
subclass to its superclass, then only process the NI with the superclasses. For
example, given Axiom (7) and (10) of Fig. 2, Faculty in Axiom (10) is a subclass
of Employee in Axiom (7). Therefore, we can first make an inference operation
(i.e., oi: Faculty → Employee), and then check Axiom (7) only. By iterating
through each pair of NIs in NIclosure, we can find and keep the essential NIs in
NIroot. Among the ten NIs in Fig. 2, Axiom (10) is removed from NIroot.

9

Algorithm 1: CompilePipelineTopology(T)

input : T , The TBox of a given DL Ontology
output: B, A pipeline of bolts filled with operations

1 NIclosure = ComputeSetOfNIClosure() ;
2 NIroot=ComputeSetOfNIRoots(NIclosure);
3 NIGroups=[];
4 while NIroot.size() is not reducing do

5 currNIGroup = GetAGroupOfNIs(NIroot);
6 NIGroups.add(currNIGroup);
7 NIroot.removeAll(currNIGroup);

8 end

9 NIGroups.add(NIroot);
10 NIInBolts = AssignNIGroupsToBolts(NIGroups);
11 processedClasses = [];
12 B= [];
13 for (i = 0; i< NIInBolts.size(); i++) do

14 B.add(bi = new Bolt());
15 bi.add(GetConjOps(NIInBolts[i]), processedClasses);
16 bi.add(GetInferOps(NIInBolts[i], NIInBolts[i+1]));
17 SC=Set(Ci of all DJ(C1, ..., Cn) ∈ NIInBolts[i]) ;
18 processedClasses.add(SC);

19 end

20 return B

Step 3. Lines 4-8 of Algorithm 1 group NIs into a sequential processing order.
Intuitively, an NI with no subclasses can be checked first. For example, classes
of NI Axiom (9) have no subclasses. It should be checked at the beginning of a
pipeline topology (e.g., Place it in bolt B1 of Fig. 3c. If placed in B3, its input
streams need to be forwarded via B1 and B2). These NIs can be found by count-
ing the “in-degree”. For example, in Fig. 4a, if there is a sub-to-super relationship
between classes of two NIs, we draw an edge between them. The NIs with no in-
coming edges have zero in-degree. However, not all NIs with zero in-degree should
be processed first. For example, DJ(Organization,Work) cannot be processed
in bolt B1 of Fig. 3c, since both Organization and Work are used again later in
the pipeline by other NIs. If placed in B1, every tuple of SOrganization still needs
to be forwarded to B3 for the Axiom (2) DJ(Organization, Person). Therefore,
DJ(Organization,Work) is placed together with Axiom (2) at the last group
in Fig. 4a. In total, there are three NI groups in Fig. 4a that should be checked
in a sequential order.

The algorithm of forming NI groups is adapted from the topological sorting
algorithm. It first finds all the NIs in NIroots that fulfill both conditions: 1) has
zero in-degree; and 2) its classes are used by the NIs outside the group. These NIs
are removed from NIroots and form an NI group. Then, the algorithms continue
to find another group from NIroots until no group can be found.

10

(a) NI groups (b) Combining NI groups

Fig. 4: Computing NI groups and assigning them to bolts

Step 4. After Step 3, each NI group can individually form a bolt in the pipeline.
This, however, may create too many bolts, and each new bolt incurs extra over-
head. To avoid this problem, several adjacent NI groups can be combined into
one bolt (Line 10). Fig. 4 gives two ways of combining NI groups to bolts. Fig. 4a
contains three NI groups separated by the dashed line. In Fig. 4b, the left topol-
ogy assigns Group 1 to bolt B1, and Group 2 and 3 to bolt B2. The right topology
has Group 1 and 2 assigned to B1, and Group 3 to B2. The way of combining
NI groups impacts system performance, as we discuss at the end of this section.

Step 5. Finally, Line 12-20 compiles the operations (o→ and o∩) in each bolt.
To compile conjunction operations o∩, we compute the closure of NIs in a

group to ensure correctness. For example, in the right topology of Fig. 4b, since
Group 1 and 2 are combined in bolt B1, the algorithm first computes their
NI closure and then checks each of them (e.g., the closure contains NIs from
the two groups together with DJ(Student, Faculty) and DJ(Student,Admin)).
The process of computing an NI closure has been discussed in NTM. The closure
also excludes the classes that have processed in the preceding bolts.

For compiling inference operations o→, we need to find the subclass axioms
between the classes of two consecutive bolts (Bi and Bi+1). For example, in
the left topology in Fig. 4b, bolt B1 should include the subclass axioms between
B1 and B2 (e.g., SC(Faculty, Employee) and SC(Admin,Employee)). We con-
sider only the direct subclass axioms. Axioms like SC(Faculty, Person) are not
included, since B2 handles the NIs between Employee and all other classes. Fur-
thermore, bolt B1 also needs to include all the subclasses of the classes in B2 that
do not participate in the NI roots. For example, if class Employee (handled in
B2) has a subclass FemaleEmployee, which is not disjoint with either Faculty
or Admin, it still needs to be inferred at bolt B1 to become Employee so that
the disjointness between FemaleEmployee and other classes are checked in B2.
Each of these subclass axioms can be compiled to an inference operation. Lastly,
Algorithm 1 returns a list of bolts that forms a pipeline. Each bolt is filled with
the necessary operations to check the consistency.

As mentioned in Step 4, the two ways of combining NI groups have different
performance. Based on the actual number of NIs we derived in Step 5 for Fig. 4b,

11

it follows that the right topology distributed the workload more evenly than the
left one. The difference of NIs numbers between B1 and B2 is much less on
the right topology. In the left topology, B2 will become a bottleneck for the
throughput assuming all input streams have the same stream rate. In practice,
combining NI groups to bolts is a parameter to be specified by the users. To
find the best way of combing NI groups, users can compile different topologies
beforehand and choose the one with less skewed workload based on the number
of operations. In future, we will extend our work to propose a cost model, where
the cost of each operation, the stream rate, the computation, and communication
overhead will be considered together to automatically find the best topology.

4.3 Limitations and Discussion

This study considers DL-litecore. One of its closest extensions is DL-litehorn [3],
which introduces the conjunction of concepts in the left operator, i.e. C1 ⊓ ... ⊓
Cn ⊑ C. The conjunction operation defined above supports this type of axioms.
Our above algorithm needs to be extended to cope with it.

LTM has a relatively high memory cost comparing with NTM. The reason
is that an instance of a stream can be potentially cached multiple times at
different bolts of a LTM topology. For example, in Fig. 3b, stream SFaculty

needs to be cached in B1, since B1 checks its NI with SAdmin. After stream
Faculty is inferred as Employee and sent to B2, its instances need to be cached
again in B2. Our experiments also show this shortcoming. LTM should consider
the memory limitation when assigning NI groups to bolts. This work assumes
enough memory to emphasize the CPU cost.

5 Experiments

This section first introduces the experiment setup and then report the results.

Setup. As in [28], we use two ontologies for experiment, LUBM [11] and NPD [26].
We adapted their TBoxes to be compliant with DL-litecore. LUBM is a well-
established benchmark, while NPD is an ontology from the real world. NPD is
larger than LUBM: there are 43 streams in the input stream set for LUBM and
329 of them for NPD. In the adapted TBox, LUBM has 56 PIs and 70 NIs; NPD
has 332 PIs and 51 NIs. Although NPD has less NIs its closure is bigger than
the LUBM’s one. We used HermiT [10] to calculate the closure set of PIs.

Both LTM and NTM have one spout, as discussed in Section 4. The generator
emits each stream at the same speed, fine tuned to target the system processing
capability. We compare the throughput of the topologies by measuring the num-
ber of tuples they process in a time interval. We use Heron 0.14.3 as the DSPE;
experiments run with 4-6 machines, each of them having 128 GB RAM and two
E5-2680 v2 at 2.80GHz processors, with 10 cores per processor.

12

(a) Results of LUBM benchmark

(b) Results of NPD benchmark

Fig. 5: Results of a NTM topology and LTM topologies with two bolts. The y
axis gives the throughput (number of tuples per minutes); the x axis denotes the
topologies: NTM stands for the NTM topology, LTM-n denotes a LTM topology.

Overall results. Fig. 5 plots the results for LUBM and NPD. We compare the
topology throughput by using two, four, and six computing servers and two bolts
for LTM, i.e., LTM topologies have two bolts, B1 and B2. A topology LTM-n
has the first n NI groups assigned to B1. Recall that given the three NI groups
in Fig. 4a, the LTM-2 topology has the first two NI groups assigned to B1 and
the others to B2, which results in the right topology in Fig. 4b. Note that LTM-0
places no NI groups in bolt B1, and has B2 to check all the NIs. The compiled
TBoxes of LUBM and NPD happen to have the same number of five NI groups.

Throughputs are compared under the same amount of tasks for both topolo-
gies, e.g. if they are set to have six tasks, in NTM (Fig. 3a) B1 will have six
tasks; in LTM, B1 and B2 will have three tasks each (Fig. 3b).

Let’s consider the results of LUBM in Fig. 5. First, when using two servers,
the throughput of NTM is about twice as much as LTM-0 under different task
numbers. SinceB1 in LTM-0 contains no NIs, its three tasks only forward streams
to B2. The three tasks of B2 in LTM-0 bear the same workload of the six tasks
of bolt B1 in NTM. This explains why the throughput of LTM-0 is roughly
half of NTM one. Second, we can observe that LTM-1 greatly improves the
throughputs of LTM-0 under different task numbers. This is because LTM-1
distributes the NI-checking workload between B1 and B2. Furthermore, the total
number of NIs is also reduced, when arranging them in a pipeline. However, the

13

(a) Operations breakdown (b) Memory cost (c) LTM with n bolts

Fig. 6: Conjunction operations breakdown, memory cost, and LTM with n bolts.

throughputs of NTM and LTM-1 are roughly the same. This suggests that the
way LTM-1 distributes the workload cannot outperform NTM. Given the same
amount computing resources, B2 in LTM-1 is still the bottleneck. Third, LTM-
2 shows the best performance: it outperforms NTM by up to 139% with six
tasks. This suggests that LTM-2 topology distributes NIs more evenly (there
are two NI groups assigned to B1 of LTM-2) than LTM-0 and LTM-1, and
LTM can perform better than NTM. Fourth, moving from LTM-2 to LTM-5
the throughput decreases, since more NI groups are placed onto B1 than on B2

and lead to an unbalanced situation. LTM-5 has all NI groups assigned to B1,
therefore, its performance is similar to that of LTM-0. The change of throughput
from LTM-0 to LTM-5 shows that evenly distributing the NI-checking workload
can avoid the bottleneck bolt slowing down the overall performance.

Looking at NPD in Fig. 5, the trend of throughput is similar to LUBM:
it grows from LTM-0 to LTM-3 and then decreases. NPD always has the best
performance at LTM-3 topology: it follows that LTM-3 has the most evenly dis-
tributed workload. The throughput improvement of LTM over NTM in the NPD
case is up to 330%, when LTM-3 topology has ten tasks running on six servers.
The improvement ratio is higher than that of the LUBM case: the reason is that
NPD has a much larger TBox. When arranging its NIs into a hierarchy, LTM
saves more conjunction operations by replacing them with inference operations.

Operations Breakdown and Memory Cost. Fig. 6a and 6b plot two metrics to
further investigate the reasons of the above results. Since the results are similar
on LUBM and NPD, we focus on the former for brevity. Fig. 6a gives the break-
down of the number of conjunction operations in each bolt. NTM, LTM-0, and
LTM-5 have the same amount of 773 conjunction operations (NIs) executed in
one bolt, since the closure of NIs is computed by using all the classes. The plot
shows that the conjunction number of B1 (green bar) decreases as the number
of B2 increases (red bar). LTM-2 has the smallest difference between B1 and
B2, suggesting the reasons for its best throughput. The number of inference
operations is relatively small (around 20), so it is not plotted in the figure.

Fig. 6b reports the memory cost (as the number of tuples cached). NTM,
LTM-0 and LTM-5 have the same memory footprint, since they have similar

14

NTM workloads. LTM-(1-4) incur higher memory costs than NTM, LTM-0 and
LTM-5. As discussed in Section 4.3, it reflects one shortcoming of LTM that some
instances need to be cached multiple times in the pipeline, e.g., in Fig. 3b, an
instance of Faculty is cached at B1, and after B1 infers Employee, the instance
needs to cached again in B2. Furthermore, the memory footprint grows from
LTM-1 to LTM-5. As B1 handles more classes and inference operations, more
instances need to be cached in B2. Hence, the total memory cost grows.

Results of LTM with multiple bolts. Fig. 6c compares NTM and LTM topolo-
gies with different number of bolts (using three servers). We increase the bolts
number for LTM from three to five (each bolt has one task). The task number
of B1 in NTM is set to be three, four, and five. We fine-tuned the NI groups
for LTM to give the best performance. Fig. 6c shows that the throughput of
LTM decreases when using more bolts. This is because the communication cost
increases. Moreover, the throughput of NTM increases linearly with the number
of tasks. This suggests that the benefits of reducing NIs might be offset by the
communication cost when the length of a pipeline topology grows.

6 Conclusions

While consistency checking is usually studied in the context of static knowledge
bases, in this paper, we focus on the problem of incremental consistency checking
over streams and propose scalable solutions that can be deployed on a DSPE.
More precisely, our two methods can compile a DL-litecore TBox into a processing
workflow of a DSPE. The baseline method NTM adapts techniques such as
NIs query rewriting to generate continuous queries to assess the consistency.
However, NTM involves an excessive number of operations that slow down its
performance. To overcome this issue, we propose LTM, where the workload of
consistency checking is distributed across a pipeline. This leads to a reduction
of the CPU overhead and an improvement of the throughput. Our experiment
results show that LTM outperforms NTM by up to 139% and 330%, based on
the LUBM benchmark and the NPD ontology, respectively.

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: EP-SPARQL: a unified language
for event processing and stream reasoning. In: WWW. pp. 635–644. ACM (2011)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent Query Answers in Inconsistent
Databases. In: PODS. pp. 68–79. ACM Press (1999)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family
and relations. CoRR abs/1401.3487 (2014)

4. Baclawski, K., Kokar, M.M., Waldinger, R.J., Kogut, P.A.: Consistency checking
of semantic web ontologies. In: ISWC ’02. pp. 454–459. ISWC ’02 (2002)

5. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Querying
RDF streams with C-SPARQL. SIGMOD Record 39(1), 20–26 (2010)

15

6. Botoeva, E., Artale, A., Calvanese, D.: Query Rewriting in DL-Lite(HN)
horn

. In: De-
scription Logics. CEUR Workshop Proceedings (2010)

7. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache FlinkTM: Stream and Batch Processing in a Single Engine. IEEE Data
Eng. Bull. 38(4), 28–38 (2015)

8. Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 44(3), 15 (2012)

9. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies,
Negations and Changes in Ontologies. In: AAAI2006. pp. 1295–1300 (2006)

10. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2
Reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)

11. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. J. Web Sem. 3(2-3), 158–182 (2005)

12. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to query answering in dl-lite. pp. 247–257. KR’10 (2010)

13. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel,
J.M., Ramasamy, K., Taneja, S.: Twitter Heron: Stream Processing at Scale. In:
SIGMOD. pp. 239–250 (2015)

14. Le Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive
approach for unified processing of linked streams and linked data. In: ISWC’11.
pp. 370–388 (2011)

15. Lecue, F., Pan., J.Z.: Consistent Knowledge Discovery from Evolving Ontologies.
In: Proc. of AAAI’15. (2015)

16. Lembo, D., Ruzzi, M.: Consistent Query Answering over Description Logic On-
tologies. In: Description Logics (2007)

17. Pan, J., Calvanese, D., Eiter, T., Horrocks, I., Kifer, M., Lin, F., Zhao, Y.: Rea-
soning Web: Logical Foundation of Knowledge Graph Construction and Querying
Answering. Springer (2017)

18. Pan, J., Vetere, G., Gomez-Perez, J., Wu, H.: Exploiting Linked Data and Knowl-
edge Graphs for Large Organisations. Springer (2016)

19. Paulheim, H., Gangemi, A.: Serving dbpedia with dolce — more than just adding
a cherry on top. In: ISWC. pp. 180–196 (2015)

20. Paulheim, H., Stuckenschmidt, H.: Fast approximate a-box consistency checking
using machine learning. In: ISWC. pp. 135–150 (2016)

21. Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting tech-
niques for dl-lite. In: Proceedings of DL’09 (2009)

22. Ren, Y., Pan, J.Z.: Optimising Ontology Stream Reasoning with Truth Mainte-
nance System. In: CIKM2011 (2011)

23. Ren, Y., Pan, J.Z., Guclu, I., Kollingbaum, M.: A Combined approach to Incre-
mental Reasoning for EL Ontologies. In: RR2016. pp. 167–183 (2016)

24. Ren, Y., Pan, J.Z., Guclu, I., Kollingbaum, M.J.: A combined approach to incre-
mental reasoning for EL ontologies. In: RR’16. pp. 167–183 (2016)

25. Rinne, M., Solanki, M., Nuutila, E.: Rfid-based logistics monitoring with semantics-
driven event processing. In: DEBS. pp. 238–245 (2016)

26. Skjæveland, M.G., Lian, E.H., Horrocks, I.: Publishing the norwegian petroleum
directorate’s factpages as semantic web data. In: ISWC. pp. 162–177 (2013)

27. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S.,
Jackson, J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D.V.:
Storm@twitter. In: SIGMOD. pp. 147–156 (2014)

28. Wu, J., Lécué, F.: Towards Consistency Checking over Evolving Ontologies. In:
CIKM. pp. 909–918. ACM (2014)

16

