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Abstract

Knowledge-intensive generation tasks like gen-
erative question answering require models to
retrieve appropriate passages from external
knowledge sources to support answer gener-
ation. The generation quality relies heavily
on the retrieved passages, which serve as con-
textual information. State-of-the-art Retrieval
Augmented Generation models with marginal-
ized output dominate this area but focus too
much on label-relevant passages, rather than
question-relevant passages and answers. This
work addresses this issue by incorporating rich
answer encoding through Dense Knowledge
Similarity (DKS) and Retriever as Answer
Classifier (RAC). We demonstrate the advan-
tages of our proposed approach in open do-
main question answering (MSMARCO) and
conversation (Wizard of Wikipedia) datasets,
reporting both generation and retrieval met-
rics. In the MSMARCO development set, our
best model achieves 12.1% relative improve-
ment1 on Recall@1 and 4.5% relative improve-
ment on BLEU-4 compared to the baseline
model. In the KILT-WoW leaderboard, our
best model achieves 8.9% relative improvement
on R-Precision and 13.3% relative improve-
ment on KILT-RL compared to the baseline
model. Our codes and models are available at
https://github.com/hwy9855/rag-ae.

1 Introduction

Knowledge-Intensive Generation (KIG) is a series
of tasks that requires external knowledge sources,
such as a passage corpus (focus of this paper) or
a knowledge graph (Pan et al., 2017) to generate
natural language responses to questions. Without
external knowledge, even the state-of-the-art Large
Language Models (LLMs) like GPT-4 (OpenAI,
2023) still suffer from the hallucination problem

∗ Work done while at Huawei Edinburgh Research Centre.
† Corresponding author.

1In this paper, we mainly report relative improvement for
better comparison between different methods.

Question: Definition of tactful personality
Reference Answer (label): Tactful is someone or some-
thing that shows a regard for other people’s feelings.

Passage 1 (label-relevant): The definition of tact-
ful is someone or something that shows a regard
for other people’s feelings. An example of some-
thing that would be described as tactful is a sug-
gestion that is worded very carefully so as not to
offend.

RAG
✓
ours
✓

Passage 2 (knowledge-relevant): ... tactful(adj)
having or showing a sense of what is fitting
and considerate in dealing with others. she
was tactful enough not to shatter his illusion; ...

RAG
✗
ours
✓

Table 1: Retrieval samples of MSMARCO training set.
Both models are trained with the given input (first row).
The RAG model only captures the label-relevant pas-
sage with high token matching (highlighted with italics)
in the reference answer, while our approach can also
capture the knowledge-relevant passage with knowledge
matching (highlighted with bold).

(Pan et al., 2023a; Zhang et al., 2023) that pro-
duces plausible-looking statements that are fac-
tually incorrect. State-of-the-art works focus on
the retrieval augmented generation (RAG) systems
(Karpukhin et al., 2020; Izacard and Grave, 2021),
which fit in a retrieve-generate architecture, where
the models first retrieve question-relevant passages
from external knowledge sources, then generate
responses based on the retrieved passages.

A high-quality retriever is essential for accom-
plishing KIG tasks. In the era of LLMs, a high-
quality off-the-shelf retriever is also important in
verifying and correcting the factual errors pro-
duced by LLMs (He et al., 2023; Zhao et al., 2023)
However, directly training the retriever (Karpukhin
et al., 2020; Khattab and Zaharia, 2020) requires
a large number of annotations of gold passages
according to the given questions. Current state-of-
the-art works (Lewis et al., 2020b; Paranjape et al.,
2022) provide an end-to-end training framework
for this task, where they marginalize the retrieval
step and use the natural language labels to guide the
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training of both retriever and generator. The gradi-
ent of both the retriever and generator is obtained
from token matches with reference answers (labels).
However, existing works prefer more label-relevant
passages (a subset of question-relevant passages),
this will result in missing some knowledge-relevant
passages which limits the generalisability of the
retriever. See the example presented in Table 1.
Given the question, the RAG framework can only
retrieve the Passage 1, due to label-relevance, but
not the Passage 2, which is also highly relevant
to the reference answer. Using limited gold label
passages when training a retrieve-generate model
harms the robustness resulting in overfitting the re-
trieval performance to the training data (as shown
in Table 5).

To mitigate the above issue, in this work, we pro-
pose a new framework for extending RAG with rich
answer encoding, based on knowledge relevant to
answers. More precisely, we introduce the follow-
ing two objectives: Retriever as Answer Classifier
(RAC), and Dense Knowledge Similarity (DKS),
for training the retriever to retrieve knowledge-
relevant passages. RAC incorporates answer en-
coding to check whether the retrieved passage con-
tains the knowledge inside the answer, where both
passages in Table 1 are positive as they both con-
tain knowledge inside the answer. DKS incorpo-
rates both answer encoding and passage encoding
to check how close the knowledge inside the an-
swer and that inside the passage are in the knowl-
edge representation2 space. The answer encod-
ing and passage encoding in DKS guarantees that
knowledge-relevant passages (both passages in Ta-
ble 1) are much closer to the label (than other pas-
sages) in the knowledge representation space.

Both proposed objectives focus on sequence sim-
ilarity (by answer encoding) instead of the token-
level similarity from the backbone architecture
(NLL objective), which fundamentally turns the
objective from token matching to sequence (knowl-
edge) matching. This allows the proposed loss
functions to capture knowledge-level information
(instead of token-level information) from answer
labels. This knowledge-level information can assist
with training the retriever to recall more knowledge-
relevant passages (instead of only label-relevant

2In this paper, we use the term "knowledge representation"
since the learned representation is for representing the knowl-
edge inside the answer and passage, which has a different
meaning from "knowledge representation" in the knowledge
graph area.

passages) and improve the performance and gener-
alisation ability of the end-to-end trained retrievers.

Our main contribution is a new training frame-
work for retrieve-generate models that 1) offers
two new objectives, RAC and DKS, incorporat-
ing rich answer encoding, and 2) paying more at-
tention to knowledge-relevant passages with the
two new objectives to train more robust retrieve-
generate models that generalize better in retrieval.
We evaluate the proposed framework in two KIG
tasks, which are the generative QA task on MS-
MARCO (Nguyen et al., 2016) and the informa-
tive conversation task on Wizard of Wikipedia (Di-
nan et al., 2019) organized by KILT benchmark
(Petroni et al., 2021). Compared with the base-
line model RAG (Lewis et al., 2020b), we get sub-
stantial improvement on both datasets. For the
retrieval quality, our best model achieves 12.1%
relative improvement (Recall@1) on MSMARCO
and 8.9% relative improvement (R-Prec) on KILT-
WoW. While for end-to-end generation quality, our
best model achieves 4.5% relative improvement
(BLEU-4) on MSMARCO and 13.3% relative im-
provement (KILT-RL) on KILT-WoW. The reliable
improvement in the retrieval quality also indicates
the potential contribution of the proposed work in
the era of LLM for training a powerful and robust
retriever for supporting LLMs.

2 Related Works

Knowledge-intensive Generation Knowledge-
intensive generation tasks are a series of Natural
Language Generation (NLG) tasks that require ac-
cess to large, external knowledge sources. Un-
like other knowledge-intensive NLP tasks such as
fact checking (Thorne et al., 2018) and slot filling
(Levy et al., 2017; Elsahar et al., 2018), knowledge-
intensive generation tasks further require models
to generate natural language response, which are
more challenging. Shuster et al. (2021) has shown
that in knowledge-intensive generation tasks, pre-
trained language models like BART (Lewis et al.,
2020a), T5 (Raffel et al., 2020) and GPT series
(Brown et al., 2020; OpenAI, 2023) significantly
suffer from the hallucination problem (Roller et al.,
2021), where they generate plausible looking state-
ments that are factually incorrect.

Retrieval Marginalization In retrieval-based
tasks, the false-negative passage problem refers
to passage labels not being fully annotated. Ni
et al. (2021) has shown that the false-negative pas-
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Figure 1: Overall architecture of the proposed model. MIPS indicates Maximum Inner Product Search. Green
arrows indicate a different information stream with black arrows. Orange components are trainable while gray
components are not trainable. The dashed box indicates the retrieve-generate backbone (Lewis et al., 2020b). Violet
boxes indicate the two objectives introduced by this work. The proposed DKS and RAC aim to help the retriever
focus more on knowledge-relevant passages instead of only label-relevant passages.

sage problem happens very frequently in multi-
document question tasks, with such cases appear-
ing in more than half of the sampled answerable
questions of the IIRC dataset (Ferguson et al.,
2020). Research has been made to mitigate this
problem by marginalizing the retrieval process and
directly training the retriever with the final goal,
e.g., answer label in multi-document QA (Ni et al.,
2021). However, in knowledge-intensive gener-
ation tasks, the marginalization methods do not
work so well. Lewis et al. (2020b) reported that
such marginalization methods get very limited im-
provement in benefiting the retrieval quality on the
generative QA task.

Retrieval Augmented Generation To overcome
the hallucination problem, people start to introduce
retrieve-generate architectures for building retrieval
augmented generation models. RAG (Lewis et al.,
2020b) outperforms DPR (Karpukhin et al., 2020)
by marginalizing the retrieval step to train the gen-
erator and retriever jointly with the supervision of
the label answer. FiD (Izacard and Grave, 2021)
encodes the concatenation of the passages retrieved
by pre-trained DPR and the original question sep-
arately, and then fuses them with concatenation
to the decoder. KG-FiD (Yu et al., 2022) utilize
knowledge graphs to further enhance the retrieval
quality by establishing the structural relationship
among the retrieved passages. This illustrates the
concept of integrating knowledge graphs with re-

trieval augmented generation, but indirectly (i.e.,
the generator does not benefit from knowledge
graphs). KGI (Chowdhury et al., 2022) provides a
robust implementation of RAG, where the retriever
is trained jointly with both the RAG setting and
the vanilla DPR setting. RE2G (Glass et al., 2022)
further extends RAG by adding a reranker in the
retrieval step to integrate statistical retriever (e.g.,
TF-IDF and BM25) with DPR trained by RAG to
improve the retrieval quality. Hindsight (Paranjape
et al., 2022) trains another hindsight retriever that
takes inputs of both queries and labels to retrieve
label-relevant passages. The original retriever is
trained by Evidence Lower Bound (ELBo) which
includes both the marginalized loss as in RAG and
the KL divergence for fitting the hindsight retriever.
The state-of-the-art methods tend to retrieve label-
relevant passages, whereas our approach seeks to
consider a more diverse set of passages as suitable
(knowledge-wise).

Retrieval Augmented Generation with LLMs
The utilization of retrieval augmented generation
can be further expanded within the context of Large
Language Models (LLMs) (Pan et al., 2023a), to
address a critical concern associated with LLMs:
the hallucination problem. He et al. (2023) use re-
trieved passages to help LLMs "rethink" the ques-
tion to remove factual errors in the decomposed
reasoning steps obtained from the chain-of-thought
(CoT) prompting (Wei et al., 2022). Zhao et al.



(2023) utilize retrieved passages to post-edit the
decomposed reasoning steps which contain factual
errors obtained from the CoT prompting, to in-
crease the prediction factuality. Besides retrieving
documents (passages), Baek et al. (2023) shows
that an off-the-shelf document retriever can also be
used to retrieve knowledge graph triples for sup-
porting LLMs. Most of these works utilize off-the-
shelf retrievers, which emphasize the importance
of powerful and robust retrievers. Their remark-
able achievements underscore the central theme of
our work, which focuses on training powerful and
robust retrievers.

3 Problem Statement

A typical Knowledge-Intensive Generation (KIG)
task can be formulated as follows: 1) given a ques-
tion q and a knowledge source (passage corpus)
P , retrieve question-relevant passages Pq ⊂ P;
2) conditioned on the question q and the retrieved
question-relevant passages Pq, generate the natu-
ral language response y. Since Pq is not available,
state-of-the-art works marginalize the first retrieval
step and train both retriever and generator based
on gradient from the negative log-likelihood loss.
This results in training a biased retriever which
favors label-relevant passages Pl ⊆ Pq, a biased
subset of question-relevant passages. Thus in train-
ing, the retriever will overfit to these label-relevant
passages.

In this work, we consider another subset of
question-relevant passages, which is knowledge-
relevant passages Pk ⊆ Pq. We define Pk as pas-
sages that contain the knowledge to generate label
answer y. Therefore it is obvious that Pl ⊆ Pk.
Unlike label-relevant passages that usually have
high token overlap with label answer y, knowledge-
relevant passages are defined at a higher knowledge
level. In examples from Table 1, the Passage 1 is
a label-relevant passage (also the gold passage),
while the Passage 2 is a knowledge-relevant pas-
sage, which has the same meaning as the label
answer but with little token overlap with the former.
By introducing a training framework that focuses
on retrieving knowledge-relevant passages, the re-
triever can be trained more robustly and provide
better generalization ability.

4 Methodology

In order to focus on retrieving knowledge-relevant
passages in KIG tasks, we introduce a new training

framework with two new objectives: Retriever as
Answer Classifier (RAC), and Dense Knowledge
Similarity (DKS). Both objectives aim to mitigate
the problem discussed in Section 3, that the re-
triever solely trained with NLL loss prefers label-
relevant passages rather than question-relevant pas-
sages. Figure 1 shows the overall architecture of
the proposed model.

4.1 Retrieve-Generate Backbone
Transformer-based retrieve-generate systems are
widely used in knowledge-intensive generation
tasks like generative QA and conversational search
(Cooper Stickland et al., 2021; Adiwardana et al.,
2020). To apply our knowledge-constrained objec-
tives, we need a retrieve-generate architecture as
the backbone. Here we choose to use the architec-
ture from the RAG paper (Lewis et al., 2020b) as
the retrieve-generate backbone. Given a question q
and passage corpus P , we first use a Dense Passage
Retriever (DPR; Karpukhin et al. (2020)) to com-
pute the similarity of each passage pi ∈ P with q:

sim(pi, q) = encq(q)⊤encp(pi), (1)

where encq is the question encoder and encp is the
passage encoder. To facilitate easier comparison
with prior works, we follow the settings in Lewis
et al. (2020b) to fix the parameters of the passage
encoder. Based on the similarity, we select top-
n passages with Maximum Inner Product Search
(MIPS) and calculate the probability

p(pi|q) =
exp (sim(pi, q))∑

pj∈Top-n(P|q) exp (sim(pj , q))
, (2)

where Top-n(P|q) is the selected top-n passages
with given q. Then these passages are concatenated
with the question and generate the probability dis-
tribution of response tokens through a sequence-to-
sequence encoder-decoder model:

p(yt|y:t−1, q, pi) = BART([q; pi], y:t−1) (3)

ppi(yt|q, y:t−1) = p(yt|y:t−1, q, pi)p(pi|q) (4)

pgen(yt|q, y:t−1) =
∑

pi∈Top-n(P|q)

ppi(yt|q, y:t−1)

(5)

pgen(y|q) =
T∏
t=1

pgen(yt|q, y:t−1), (6)

where BART([q; pi], y:t−1) is the BART generator
(Lewis et al., 2020a) that takes the concatenation



of q and pi, and y:t−1 as input. The goal of the
backbone is to maximize the probability of label
sentence ŷ, which is equal to minimizing the nega-
tive log-likelihood of ŷ:

Lgen = − log pgen(ŷ|q) (7)

4.2 Retriever as Answer Classifier
Since we would like our retriever to retrieve
knowledge-relevant passages instead of only re-
trieving label-relevant passages, we add a new an-
swer classification objective, which makes use of
rich answer encoding to capture knowledge inside
the answer. The answer classifier outputs whether
the retrieved top-n passages contain the knowledge
inside the answer. Here we reuse the DPR retriever
(sharing parameters) in the retrieve-generate back-
bone to generate answer encoding and use it for
classifying the matched answer.

We apply in-batch negative sampling (Karpukhin
et al., 2020) for the RAC objective. Given a
question-answer pair (q̂, ŷ), we use m answers in
the same batch as negative answers from the rest
of the training set:

Neg = {y(1), y(2), . . . , y(m)}, (8)

where the batch size is m + 1. We then compute
the probability of the answer (both positive and
negative) y given question q̂ as:

sim(y, pq̂i ) = encp(p
q̂
i )

⊤encq(y) (9)

S(y, q̂) =
∑

pq̂i∈Top-n(P|q̂)

p(pq̂i |q̂)sim(y, pq̂i )

(10)

pRAC(y|q̂) = σ(S(y, q̂)), (11)

where p(pq̂i |q̂) is computed with Eq. (2), encp and
encq are the same as described in Section 4.1, and
σ(·) is the sigmoid function for generating proba-
bility. We then use binary cross-entropy loss to get
the training signal:

LRAC = log(pRAC(ŷ|q̂))

+
∑

y′∈Neg

log(1− pRAC(y
′|q̂)) (12)

4.3 Dense Knowledge Similarity
Another way of focusing on knowledge-relevant
passages is to further marginalize the generation
process. This objective directly focuses on knowl-
edge instead of the answer label, which changes

the final goal from generating a natural language
response to answer the question p(y|q) to generat-
ing knowledge k required to answer the question
p(k|q):

p(k|q) =
∑
y

p(k|y)p(y|q) (13)

Thus the optimization process becomes maximiz-
ing p(k̂|q). To accomplish that, we need to get the
gold knowledge k̂ for training.

We choose to use the sentence bottleneck auto-
encoder3 introduced by Montero et al. (2021) to get
answer knowledge representations. The original
goal of sentence bottleneck auto-encoder is to re-
construct the input sequence through a bottleneck
representation between encoder and decoder (as
shown in Figure 2):

AE(y) = decAE(β(encAE(y))) = y′, (14)

where β(·) is the knowledge extractor, a multihead
attention mechanism that aggregates encoder states
H to a single bottleneck representation:

H = encAE(y) (15)

z = β(H) (16)

β(H) = MultiHead(q,K,V ) (17)

where q is the encoder states of [CLS] token, K
and V are the encoder states H . Here we treat the
bottleneck representation as the knowledge repre-
sentation of the input sequence:

k = z (18)

k is a rich answer encoding containing knowledge
needed to rebuild the sentence itself, and thus, im-
plicitly guarantees that the knowledge represented
by a wrong answer is different from the one by
a right answer. We, subsequently, train another
knowledge extractor α to extract knowledge repre-
sentation from question-passage pairs:

k′ =
∑

pi∈Top-n(P|q)

α(encAE([q; pi]))p(pi|q) (19)

We expect k′ to be similar to k in the knowledge
representation space, thus we use MSE loss to ob-
tain the training signal:

LDKS = ||k̂ − k′||22 (20)
3Appendix B provides more details about our reasoning

behind selecting sentence bottleneck auto-encoder.



encAE decAE

Figure 2: Sentence Bottleneck Auto-endoer. The en-
coder is initialized from pre-trained language models
and is not trainable.

By fitting the dense knowledge representations
(rich answer encoding) instead of the original label
answers, we change the goal from retrieving label-
relevant passages to retrieving knowledge-relevant
passages.

4.4 Overall Architecture
Using the retrieve-generate backbone and the two
objectives with rich answer encoding, we can train
the model with all these objectives in a multi-task
setting. In training, we optimize the summation of
all the different losses:

L = Lgen +w(LRAC , LDKS)
⊤, (21)

where Lgen, LRAC and LDKS are computed in
Eq. (7), (12) and (20) respectively. w ∈ R2 is the
weight vector for balancing different losses. We
compute w in each step to make sure that all the
losses will have the same value.

5 Experimental Setup

We evaluate the proposed methods on two KIG
tasks: generative question answering and informa-
tive conversations. The designed experiments aim
to answer the following research questions:

• RQ1 Effectiveness: Can the proposed meth-
ods improve the retrieval and end-to-end gen-
eration quality?

• RQ2 Robustness: Do the proposed methods
facilitate better generalization at retrieving rel-
evant passages?

5.1 Datasets
For generative question answering, we use the NL-
Gen split of the MSMARCO QA dataset (Nguyen
et al., 2016). The answers of the NLGen split
are rewritten by crowdworkers into well-formed
answers for reducing overlaps between answers
and gold passages. For the informative conversa-
tion task, we use the Wizard of Wikipedia (WoW)
dataset (Dinan et al., 2019) organized by KILT
(Petroni et al., 2021).

Since the test split of KILT-WoW is not pub-
lished, we only report our best result on the test

split as shown on the KILT leaderboard. All other
experiments are done on the public development
set. For MSMARCO dataset, since the challenge
is retired, and we do not have access to the full test
split, we further split the original train split to be
the train set and validation set in our experiment,
and report results on the original development split.
All the evaluation metrics reported in this paper
are obtained using the official scripts provided by
MSMARCO4 and KILT.5

5.2 Metrics
For the MSMARCO dataset, we report ROUGE-L
and BLEU-1/4 scores for evaluating the end-to-
end generation quality. We also report the recall
rate of retrieved passages to evaluate the retrieval
quality. For KILT-WoW dataset, we follow the
evaluation setup in Petroni et al. (2021) and report:
1) ROUGE-L score and F1 score for the end-to-
end evaluation; 2) R-Precision and Recall@5 for
the retrieval evaluation; 3) KILT-RL and KILT-F1
for the combined evaluation. R-Precision metric
is identical to Precision@1 in KILT-WoW dataset
since the gold passage for every conversation is
a single Wikipedia page. KILT-RL and KILT-F1
are two special metrics motivated by FEVER-score
(Thorne et al., 2018), which calculate ROUGE-L
score and F1 score as 0 when the retriever does
not perfectly select the gold passage. Furthermore,
for both datasets, we use METEOR (Banerjee and
Lavie, 2005), which is a metric with a high corre-
lation with human judgment, to mimic the human
preference for the generations.

5.3 Knowledge Sources
For both datasets, we retrieve passages from the
knowledge sources which the gold passages are
selected from. For MSMARCO, the knowledge
source contains 8.8M passages extracted from
3.6M web documents retrieved by Bing, while
for KILT-WoW, the knowledge source is extracted
from the 2019/08/01 Wikipedia dump, which after
our preprocessing contains approximately 24.5M
passages.

5.4 Model Configuration
Following Lewis et al. (2020b), we use DPR model
fine-tuned with Natural Questions (Kwiatkowski
et al., 2019) to initialize the retriever, and

4https://github.com/microsoft/
MSMARCO-Question-Answering

5https://github.com/facebookresearch/KILT

https://github.com/microsoft/MSMARCO-Question-Answering
https://github.com/microsoft/MSMARCO-Question-Answering
https://github.com/facebookresearch/KILT


Model
End-to-end Retrieval

B-1 B-4 R-L METEOR R@1 R@5 R@10

RAG (ours) 53.9 33.3 58.6 49.7 10.7 25.3 32.1
DPR (ours) - - - - 10.5 27.0 34.9

ours (RAC) 54.1 33.8 59.0 49.7 11.2 26.8 34.1
ours (DKS) 54.9 34.1 58.7 50.1 11.5 27.5 35.0

ours (multi-task) 55.1 34.8 59.1 50.5 12.0 28.3 36.0

Table 2: Effectiveness evaluation results in MSMARCO development set. R-L represents ROUGE-L, B-1 and B-4
represent BLEU-1 and BLEU-4. R@k represents for recall rate for top-k retrieved passages. Bold highlighted
values are the best among all.

Model
Retrieval End-to-end Combined

R-Prec Recall@5 RL F1 METEOR KILT-RL KILT-F1

RAG 42.21 61.98 15.68 17.92 12.90 7.74 8.83
DPR 26.92 49.64 - - - - -

ours (RAC) 44.95 65.39 16.81 18.93 14.47 8.80 9.95
ours (DKS) 47.02 64.87 16.10 18.64 14.07 9.17 10.68

ours (multi-task) 43.94 63.59 16.66 19.04 14.41 8.58 9.84

Table 3: Effectiveness evaluation results in KILT-WoW development set. RL and KILT-RL refer to ROUGE-L and
KILT ROUGE-L. R-Prec refers to R-Precision, which is identical to Precision@1 in the KILT-WoW dataset. Bold
highlighted values are the best among all.

BARTLARGE model to initialize the generator. For
the KILT-WoW dataset, we initialize all the models
using non-finetuned RAG checkpoint provided on
HuggingFace6. For the MSMARCO dataset, we
find that using the same initialization strategy does
not work well for baseline and our proposed meth-
ods. We hypothesize that this is due to the questions
of MSMARCO having a very different structure
compared to the Natural Question dataset (where
the initialized model is trained). Thus we first pre-
train the DPR retriever on the MSMARCO passage
ranking task, then use the pre-trained model as
the initialization point for all MSMARCO exper-
iments. For the training of sentence bottleneck
auto-encoder, we use RoBERTaBASE provided on
HuggingFace7 as the sentence encoder. At infer-
ence time, we use top-5 retrieved passages to sup-
port generation in both datasets. Other Detailed
settings are shown in Appendix A.

6https://huggingface.co/facebook/
rag-token-base

7https://huggingface.co/facebook/roberta-base

5.5 Comparison Models

We compare our model with RAG (Lewis et al.,
2020b), which also serves as the encoder-decoder
backbone of the proposed methods. For fair com-
parisons, we train our own RAG model with the
same configuration as our proposed methods. Addi-
tionally, to evaluate how baseline RAG and our pro-
posed model benefit the retriever training, we also
compare with the non-finetuned DPR (Karpukhin
et al., 2020) model on the retrieval evaluation.

We choose not to compare our model with other
state-of-the-art works on the KILT leaderboard
since the retriever settings are very different (both
the retriever architecture and size) and the com-
parison is helpless for showing the benefits of our
work.

6 Results

In this section, we show our results with respect to
RQ1 and RQ2.

6.1 RQ1: Effectiveness

Generative QA Table 2 shows the effectiveness
evaluation results on MSMARCO development

https://huggingface.co/facebook/rag-token-base
https://huggingface.co/facebook/rag-token-base
https://huggingface.co/facebook/roberta-base


Model
Retrieval End-to-end Combined

R-Prec Recall@5 RL F1 KILT-RL KILT-F1

RAG 50.99 65.98 15.61 17.86 8.98 10.46

ours 55.54 68.63 16.36 18.57 10.17 11.84

Table 4: Test results on KILT leaderboard. We reported our best model under the development set, which is DKS.
RL and KILT-RL refer to ROUGE-L and KILT ROUGE-L. R-Prec refers to R-Precision, which is identical to
Precision@1 in the KILT-WoW dataset. Bold highlighted values are the best.

Model
MSMARCO KILT-WoW

Train Dev ∆ ↓ Train Dev ∆ ↓

RAG (ours) 17.5 10.7 6.8 46.73 42.21 4.52

ours (RAC) 17.8 11.2 6.6 45.32 44.95 0.37
ours (DKS) 16.3 11.5 4.8 47.94 47.02 0.92

ours (multi-task) 16.6 12.0 4.6 46.47 43.94 2.53

Table 5: Robustness evaluation results for the proposed methods. For MSMARCO dataset we report Recall@1 and
for KILT-WoW dataset we report R-Prec. ∆ = Train - Dev indicates the overfitting level of the given model. Bold
highlighted values are the best among all.

set. First of all, we find that the proposed meth-
ods outperform the baseline in the retrieval step.
Both proposed methods achieve consistent im-
provement compared to the baseline RAG and the
non-finetuned DPR. The multi-task setting model
works best, which achieves about 14.3% relative
improvement (1.5% absolute improvement) to the
non-finetuned DPR on Recall@1, showing a large
benefit to the training of the retriever. In contrast,
the baseline RAG only gets 1.9% relative improve-
ment (0.2% absolute improvement). For the end-
to-end generation results, we also see a consistent
improvement, especially in BLEU scores. In the
multi-task setting, our method got a 4.5% relative
improvement on the BLEU-4 score. This indicates
that better retrieval quality benefits the end-to-end
generation results.

Informative Conversations Table 3 shows the
effectiveness evaluation results of proposed meth-
ods on KILT-WoW development set. Similarly to
the case of the MSMARCO experiments, for all
versions of our model, there is a consistent improve-
ment in the retrieval metrics. As a benefit of better
retrieval quality, we also get consistent improve-
ment in the end-to-end and combined evaluations.
Specifically, the DKS version achieves the best R-
Precision across all models, with 11.4% relative im-
provement compared to the baseline, showing that
the continuous sequence-level features are more

suitable for such casual conversational task where
the answer label can have less overlap with gold
passages.

We submit our best model and the fine-tuned
RAG baseline to the KILT-WoW leaderboard.8 Ta-
ble 4 shows the evaluation results. We do not in-
clude the official results of the RAG baseline re-
ported by KILT, since the dataset splits are updated
due to a mapping issue (Paranjape et al., 2022).
The proposed methods get improvements across all
metrics compared to the baseline RAG, with 13.3%
relative improvement on KILT-RL score and 13.2%
relative improvement on KILT-F1 score, proving
that the proposed methods benefit on both the re-
trieval part and generation part.

6.2 RQ2: Robustness

In this section, following Roelofs et al. (2019), we
use the differences between train set metrics and de-
velopment set metrics to measure the overfit degree
to evaluate RQ2 that is relevant to robustness. Ta-
ble 5 shows the robustness evaluation results of the
proposed methods in both datasets. We measure
the retrieval performance drop from the training
set to the development set as the overfit degree ∆.
In the result, we can find that the baseline RAG
model generalizes badly, with a significant per-

8https://eval.ai/web/challenges/
challenge-page/689/leaderboard/1909/KILT-F1

https://eval.ai/web/challenges/challenge-page/689/leaderboard/1909/KILT-F1
https://eval.ai/web/challenges/challenge-page/689/leaderboard/1909/KILT-F1


Context A: Do you like Gouda cheese, its a mild, yellow cheese.
B: Well I like most cheeses so I’d probably like it, yes. Do you know where it originated from?

Label Answer It is one of the oldest recorded cheeses still made today, from 1184, people were mentioning
Gouda Cheese

RAG Gouda cheese is a type of cheese made from gouda, which is a type of goat’s milk.

ours (RAC) The first mention of Gouda cheese dates from 1184, making it one of the oldest recorded cheeses
in the world still made today.

ours (DKS) The first mention of Gouda cheese dates from 1184, making it one of the oldest recorded cheeses
in the world still made today.

ours (multi-task) Gouda cheese is a type of cheese made from gouda, which is a type of cow’s milk.

Table 6: Sampled Generations from KILT-WoW development set.

formance drop in both datasets. In contrast, the
proposed methods have far less overfit degree, es-
pecially in the KILT-WoW dataset. We also note
that some of the proposed methods have better train
set results than the RAG model, indicating that the
proposed methods can also help to better fit the
training data while achieving better generalization
to unseen data.

6.3 Case Studies

Table 6 shows some sampled generations from the
KILT-WoW development set. In the example, both
RAC and DKS retrieve the same Wikipedia page
and give responses with a perfect knowledge match.
Though the baseline and the multi-task model both
failed in retrieving the gold passage, our model is
providing an acceptable answer encompassing the
correct knowledge, while the baseline generates
hallucination (‘goat’s milk’).

7 Conclusion

In this work, we introduced a new training frame-
work for retrieval augmented generation mod-
els, for training a more robust retriever. The
new training framework includes two knowledge-
constrained objectives, RAC and DKS, to help
guide the retriever to retrieve knowledge-relevant
passages instead of only label-relevant passages.
We evaluate the proposed methods on two well-
known KIG datasets, MSMARCO and KILT Wiz-
ard of Wikipedia. The results show a consistent
improvement of our proposed methods on both re-
trieval metrics and generation metrics compared
to the baseline model. On MSMARCO, our best
model achieves 12.1% relative improvement on Re-
call@1. In the KILT-WoW leaderboard, our best
model achieves 8.9% relative improvement on R-
Precision, 13.3% relative improvement on KILT-
RL, and 13.2% relative improvement on KILT-F1

compared to the baseline model. Furthermore, we
show that the focusing on label-relevant passages
for the KIG task can result in overfitting, which we
manage to mitigate considerably using our training
framework. The reliable improvement in the re-
trieval quality indicates that our work could further
contribute to the research community in the era of
LLM, where the proposed methods could be used
for training retrievers to reduce hallucinations from
LLMs.

We believe retrieval augmented methods are cru-
cial for LLMs. As future work, one idea is to com-
bine passages and structured knowledge, such as
databases (Vougiouklis et al., 2023) and/or knowl-
edge graphs, possibly including uncertain knowl-
edge graphs (Pan et al., 2005; Stoilos et al., 2006;
Qi et al., 2007; Chen et al., 2019), knowledge graph
with selected vocabulary (Wang et al., 2014) and
temporal knowledge graphs (García-Durán et al.,
2018; Bourgaux et al., 2021), for retrieval aug-
mented generations. Furthermore, as suggested
in (Pan et al., 2023a), there are a few pressing
challenges in this space, such as unifying knowl-
edge editing (Mitchell et al., 2022; Han et al.,
2023) and retrieval augmentation, complex reason-
ing via retrieval augmentation and semi-parametric
LLMs (Pan et al., 2023b) in general.
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Limitations

The first limitation is that the parameters of the
passage encoder is fixed during the training of the
retriever for a fair comparison with the baseline
model. This potentially limits the expressiveness
of the bi-encoder retriever and harms the overall



performance of the retrieve-generate model. How-
ever, unfixing the passage encoder will significantly
increase the training cost, which is not feasible for
us.

Another potential limitation is that we cannot
access the MSMARCO test set since the challenge
is retired, which limits the training samples for the
experiments.
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A Detailed Experiment Settings

Training Cost Our experiments are built on top
of the RAG research project provided on Hug-
gingFace9. We use pytorch-lightning (Falcon and
team, 2019) for fine-tuning the model, and use ray
(Moritz et al., 2018) and FAISS (Johnson et al.,
2019) for distributed retrieval with HNSW index
(Malkov and Yashunin, 2020). All the models are
trained under FP16 for memory and time efficiency.
We use 4 NVIDIA A100 80G GPUs for fine-tuning
the retrieve-generate models and 1 NVIDIA A100

9https://github.com/huggingface/transformers/
tree/main/examples/research_projects/rag
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80G GPU for inference. Specially, since the ex-
periment requires fast retrieval using FAISS, it re-
quires approximately 200GB CPU memory for run-
ning MSMARCO experiments, and 300GB CPU
memory for running KILT-WoW experiments (both
training and inference). The memory requirement
can be reduced by compressing the HNSW index.
Table 10 shows the average runtime for the experi-
ments. Since the fine-tuning runtime varies during
training as the retriever training on CPU gets faster
and faster, we only report the runtime of the first
epoch. Note that the training runtime is not very
comparable, as it depends largely on the FAISS
retrieval. Table 7 shows the trainable parameters of
our models.

Model Trainable Params

RAG 515M

ours (RAC) 515M
ours (DKS) 518M
ours (multi-task) 518M

Table 7: Trainable parameters of models.

Dataset Details Table 8 shows the statistics of
datasets used in our experiments. Both the datasets
and knowledge sources are in English. For the MS-
MARCO dataset, we split the original training set
into our training set and validation set, and report
all the experimental results on the original devel-
opment set. This setting is for better comparison
to the results reported in Lewis et al. (2020b). For
both knowledge sources, we use the script provided
by HuggingFace10 to build FAISS format corpus.
Specially, for KILT-WoW knowledge source, we
do an extra data cleaning process, including 1) re-
moving paragraphs starting with Section:::: and
BULLET::::; 2) removing all non-unicode charac-
ters.

Dataset Train Dev Test

MSMARCO 143,725 10,000 12,467
KILT-WoW 63,734 3,054 2,944

Table 8: Dataset Statistics. The original development
set of MSMARCO dataset is used as the test set in our
experiments, which is still referred to as the develop-
ment set in the result section.

10https://github.com/huggingface/transformers/
blob/main/examples/research_projects/rag/use_
own_knowledge_dataset.py

Hyperparameters Table 9 shows the hyperpa-
rameter settings for training and evaluation of the
proposed model. If some hyperparameters are not
mentioned, then keep them as default in Hugging-
Face. For Kilt-WoW experiments, we select the
best hyperparameter (batch size and passage nums
for training) based on the ROUGE-L score. No-
ticed that it is not possible for our experimental
setup to choose batch size of 16 and passage nums
of 10, as it explodes the GPU memory. For KILT-
WoW experiments, the best combination of (batch
size, passage nums) for our DKS model is (8, 10),
while for others is (16, 5). For receiving the refer-
ence knowledge representations, we train sentence
bottleneck auto-encoder (Montero et al., 2021) on
each dataset for 100,000 iterations with batch size
64 and learning rate 3e-5.

Hyperparam MSMARCO WoW
Random Seed 42 42
Learning Rate 1e-5 1e-5

Batch Size 8 {8, 16}
Largest Epochs 20 20

Early Stop Patience 3 3
Optimizer Adamax Adamax

Gradient Clip 0.1 0.1
Passage Nums 10 {5, 10}

Dropout 0.1 0.1
Beam Size 4 4

Table 9: Hyperparameter settings for experiments on
two different datasets in this work. All models share the
same hyperparameter settings.

B Sentence Bottleneck AutoEncoder

There could be different ways to obtain label
knowledge representations. In our preliminary
experiments, we tried to use [CLS] token repre-
sentation of pre-trained BERT model or simply
use average or maximum pooling to obtain label
knowledge representations. But all these methods
don’t work well, as they can not provide enough
knowledge about the answer without further fine-
tuning. Besides, the sentence bottleneck auto-
encoder fits our needs well and also works much
better. We initialise the encoder of the sentence bot-
tleneck auto-encoder with bert-base-uncased
checkpoint from huggingface, and then finetune
it with the MSMARCO and KILT-WoW datasets
before training the retrieve-generate model.

C More Generation Samples

Table 11 provides more generation samples from
KILT-WoW experiments.
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Model MSMARCO KILT-WoW
Fine-tuning Inference Fine-tuning Inference

RAG 6,918s 0.28s 3,228s 0.37s

ours (RAC) 8,202s 0.28s 6,702s 0.42s
ours (DKS) 9,980s 0.32s 5,134s 0.40s
ours (multi-task) 10,551s 0.32s 5,028s 0.41s

Table 10: Average runtime of experiments. Fine-tuning numbers are average seconds per training first epoch,
inference numbers are average seconds per generation sample. For MSMARCO, we report fine-tuning runtime with
batch size=16. For KILT-WoW, we report fine-tuning runtime with batch size=8.

Context

A: I have observed that after black hair Brown hair is the second most common human hair color.
B: Im not actually sure about my own i think its black but might just be dark brown.
A: Really, mine is black, but People with brown hair are often referred to as brunette.
B: Yea i think mine might be black but who knows.

Reference response Maybe, i have observed that brown hair is common in the western world

RAG Yea brown hair is the second most common hair color after black hair.

ours (RAC) Brown hair is the second most common human hair color after black hair.
ours (DKS) Brown hair is common among populations in the Western world, especially among those from

Central Europe, Southeastern Europe, Eastern Europe, Southern Europe, Southern Cone, the
United States, and also some Asians.

ours (multi-task) It is characterized by higher levels of the dark pigment eumelanin and lower levels of the pale
pigment pheomelanin.

Context

A: I really like cooking pasta, it is some of my favorite Italian food.
B: I do too. What type of pastas do you like to make?
A: Angel hair is always a great one to use in standard Italian cuisine.
B: Yes! I prefer angel hair in spaghetti instead of the traditional spaghetti noodles. Do you make
different pasta dishes?

Reference response One of my favorite pasta dishes is just standard meat sauce and angel hair pasta.

RAG I make a lot of different pasta dishes. I like to use rice flour instead of wheat flour.

ours (RAC) I like to make a lot of different pasta dishes. I like to use a lot of different types of pasta.
ours (DKS) I do, I like to use rice flour instead of wheat flour to get a different taste and texture.
ours (multi-task) I like to make a lot of different pasta dishes. I like to use eggs instead of water.

Context

A: Hey there!! How are ya?
B: Hey there! I’m very good! What do you know about the manta ray?
A: Not much really but it was the only thing to choose from.
B: Well it seems there are two different main types. One of them is very large and the other
decently small.
A: Okay so you know some about them. Great!! Have you ever seen one in the ocean before?
B: I have seen the larger ones in the ocean and the smaller ones in aquariums. These things are
super protected by government agencies in the wild and domestic.
A: I didn’t know that. Are the endangered then?

Reference response Not quite, but they will be very soon. They have a very slow reproductive rate so it takes awile
for new ones to be had.

RAG I’m not sure but I do know that the manta ray is one of the largest ray-finned fish.

ours (RAC) I’m not sure but I know that they are listed as endangered by the International Union for
Conservation of Nature (IUCN).

ours (DKS) Well they are protected in international waters by the Convention on Migratory Species of Wild
Animals, but they are more vulnerable closer to shore.

ours (multi-task) I’m not sure but I know that they are filter feeders and eat large amounts of zooplankton.

Table 11: More sampled Generations from KILT-WoW development set.


