
SAOR: Template Rule Optimisations for Distributed
Reasoning over 1 Billion Linked Data Triples

Aidan Hogan , Jeff Z. Pan , Axel Polleres , and Stefan Decker
Digital Enterprise Research Institute, National University of Ireland, Galway

firstname.lastname @deri.org
Dpt. of Computing Science, University of Aberdeen

jeff.z.pan@abdn.ac.uk

Abstract. In this paper, we discuss optimisations of rule-based materialisation
approaches for reasoning over large static RDF datasets. We generalise and re-
formalise what we call the “partial-indexing” approach to scalable rule-based
materialisation: the approach is based on a separation of terminological data,
which has been shown in previous and related works to enable highly scalable
and distributable reasoning for specific rulesets; in so doing, we provide some
completeness propositions with respect to semi-naı̈ve evaluation. We then show
how related work on template rules – T-Box-specific dynamic rulesets created
by binding the terminological patterns in the static ruleset – can be incorporated
and optimised for the partial-indexing approach. We evaluate our methods using
LUBM(10) for RDFS, pD* (OWL Horst) and OWL 2 RL, and thereafter demon-
strate pragmatic distributed reasoning over 1.12 billion Linked Data statements
for a subset of OWL 2 RL/RDF rules we argue to be suitable for Web reasoning.

1 Introduction
More and more structured data is being published on the Web in conformance with the
Resource Description Framework (RDF) for disseminating machine-readable informa-
tion, forming what is often referred to as the “Web of Data”. This data is no longer
purely academic: in particular, the Linked Data community – by promoting pragmatic
best-practices and applications – has overseen RDF exports from, for example, corpo-
rate bodies (e.g., BBC, New York Times, Freebase), community driven efforts (e.g.,
Wikipedia, GeoNames), the biomedical domain (e.g., DrugBank, Linked Clinical Tri-
als) and governmental bodies (e.g., data.gov, data.gov.uk). At a conservative estimate,
there now exists tens of billions of RDF statements on the Web.

Sitting atop RDF are the RDF Schema (RDFS) andWeb Ontology Language (OWL)
standards. Primarily, RDFS and OWL allow for defining the relationships between the
classes and properties used to organise and describe entities, providing a declarative
and extensible domain of discourse through use of rich formal semantics. One could
thereafter view the Web of Data as a massive, heterogeneous, collaboratively edited
knowledge-base amenable for reasoning: however, the prospect of applying reasoning
over (even subsets of) the Web of Data raises unique challenges, the most obvious of
which are the need for scale, and tolerance to noisy, conflicting and impudent data [6].

The work presented in this paper has been funded in part by Science Foundation Ireland under
Grant No. SFI/08/CE/I1380 (Lion-2), by the EU MOST project, the EPSRC LITRO project,
and by an IRCSET Scholarship.

Inspired by requirements for the Semantic Web Search Engine (SWSE) project [9]
– which aims to offer search and browsing over Linked Data – in previous work we in-
vestigated pragmatic and scalable reasoning for Web data through work on the Scalable
Authoritative OWL Reasoner (SAOR) [7, 8]; we discussed the formulation and suitabil-
ity of a set of rules inspired by pD* [16] for materialisation over Web data. We gave
particular focus to scalability and Web tolerance showing that by abandoning complete-
ness, materialisation over a diverse Web dataset – in the order of a billion statements –
is entirely feasible wrt. a significant fragment of OWL semantics. From the scalability
perspective, we introduced a partial-indexing approach based on a separation of termi-
nological data from assertional data in our rule execution model: terminological data –
the most frequently accessed segment of the knowledge base for reasoning which in our
scenario represents only a small fraction of the overall data [8] – is stored and indexed
in-memory for fast access, whereas the bulk of (assertional) data is processed by file-
scans. Related approaches have since appeared in the literature which use a separation
of terminological data for applying distributed RDFS and pD* reasoning over datasets
containing hundreds of millions, billions and hundreds of billions of statements [19, 18,
17]. However, each of these approaches has discussed completeness and implementa-
tion/optimisation based on the specific ruleset at hand.

In this paper, we reformulate the partial-indexing approach – generalising to arbi-
trary rulesets – and discuss when it is (i) complete with respect to standard rule closure;
and (ii) appropriate and scalable. We then introduce generic optimisations based on
“template rules” – where terminological data is bound by the rules prior to accessing
the A-Box – and provide some initial evaluation over a small LUBM dataset for RDFS,
pD*, and OWL 2 RL/RDF. Thereafter, we look to apply our optimisations for scalable
and distributed Linked Data reasoning, initially reintroducing our authoritative reason-
ing algorithm which incorporates provenance, detailing distribution of our approach,
and then providing evaluation for reasoning over 1.12b Web triples.

2 Preliminaries
Before we continue, we briefly introduce some concepts prevalent throughout the paper.
We use notation and nomenclature as is popular in the literature (cf. [4, 8]). Herein, we
denote infinite sets by and corresponding finite subsets by .

2.1 RDF and Rules
RDF Constant Given the set of URI references , the set of blank nodes , and the
set of literals , the set of RDF constants is denoted by .
RDF Triple A triple is called an RDF triple, where s is
called subject, p predicate, and o object. A triple is
called a generalised triple, which allows any RDF constant in any triple position: hence
forth, we assume generalised triples [2]. We call a finite set of triples a graph.
(For brevity, we sometimes use r: for the RDFS namespace, o: for OWL namespace,
and f: for the well-known FOAF namespace; we use ‘a’ as a shortcut for rdf:type.)
Triple Pattern, Basic Graph Pattern A triple pattern is a generalised triple where vari-
ables from the set are allowed; i.e.: , ,) ,

. We call a set (to be read as conjunction) of triple patterns a
basic graph pattern. We denote the set of variables in graph pattern by .

Variable Bindings Let be the set of endomorphic variable binding mappings
which map every constant to itself and every variable to

an element of the set . A triple t is a binding of a triple pattern (, ,
) iff there exists , such that , ,). A graph
is a binding of a graph pattern iff there exists a mapping such that

; we use the shorthand . We use
if to denote the set of variable binding mappings

for graph pattern in graph which map variables outside to themselves.
Inference Rule We define an inference rule as the pair (), where the
antecedent (or body) and the consequent (or head) are basic
graph patterns such that (range restricted) – rules with empty
antecedents model axiomatic triples. We write inference rules as .
Rule Application and Standard Closure A rule application is the immediate conse-
quences of a rule on a graph ;
accordingly, for a ruleset , . Now, let
and ; the exhaustive application of the operator on a graph is then the
least fixpoint (the smallest value for) such that . We call the closure
of wrt. ruleset , denoted as , or succinctly where the ruleset is obvious.

The above closure takes a graph and a ruleset and recursively applies the rules over
the union of the original graph and the inferences until a fixpoint. Usually, this would
consist of indexing all input and inferred triples; however, the cost of indexing and per-
forming query-processing over large graphs can become prohibitively expensive. Thus,
in [7] we originally proposed an alternate method based on a separation of terminolog-
ical data, which we now generalise and discuss.

3 Partial Indexing Approach: Separating Terminological Data
In the field of Logic Programming, the notion of a ‘linear program’ refers loosely to
a ruleset where only one pattern in each rule is recursive [12]. Our partial indexing
approach is optimised for linear rules, where the non-recursive segment of the data is
identified, separated and prepared, and thereafter each recursive pattern can then be
bound via a triple-by-triple stream: we cater for non-linear rules, but as the number
of recursive rules, the amount of recursion, and the amount of recursive data involved
increases, our approach performs worse than the “full-indexing” approach.

Specifically regarding RDFS and OWL, the terminological segment of the data
presents itself as relatively small and ‘non-recursive’ (or at least, mostly only recur-
sive within itself), which can be leveraged for partial indexing. Herein, we define our
notion of RDF(S)/OWL terminological data. (To generalise the following, the reader
can consider terminological data as the RDFS/OWL archetype for any non-recursive
and sufficiently small element of the data commonly required during rule application.)
Meta-class We consider a meta-class as a class specifically of classes or properties;
i.e., the members of a meta-class are themselves either classes or properties. Herein, we
restrict our notion of meta-classes to the set defined in RDF(S) and OWL specifications,
where examples include rdf:Property, rdfs:Class, owl:Restriction, owl:-
DatatypeProperty, owl:TransitiveProperty, etc.; rdfs:Resource, rdfs:-
Literal, e.g., are not meta-classes.

Meta-property A meta-property is one which has a meta-class as its domain; again, we
restrict our notion of meta-properties to the set defined in RDF(S) and OWL specifi-
cations, where examples include rdfs:domain, rdfs:subClassOf, owl:hasKey,
owl:inverseOf, owl:oneOf, owl:onProperty, owl:unionOf, etc.; rdf:type,
owl:sameAs, rdfs:label, e.g., do not have a meta-class as domain.
Terminological Triple We define the set of terminological triples as the union
of (i) triples with rdf:type as predicate and a meta-class as object; (ii) triples with
a meta-property as predicate; (iii) triples forming a valid RDF list whose head is the
object of a meta-property (e.g., a list used for owl:unionOf, etc.).
Terminological/Assertional Pattern We refer to a terminological -triple/-graph pattern
as one whose instance can only be a terminological triple or, resp., a set thereof. An
assertional pattern is any pattern which is not terminological.

Given the above notions of terminological data/patterns, we now define a -split
inference rule where part of the rule body is strictly matched by terminological data.

Definition 1. -split inference rule Given a rule), we define
a -split rule as the triple () where is the set of
terminological patterns in , and . We denote the
set of all -split rules by , and the mapping of a rule to its -split version as

; . We additionally give the convenient sets
, ,

, ,
and as the set of all -split rules with an

empty antecedent, only terminological patterns, only assertional patterns, both types
of patterns, some terminological patterns, and some assertional pattern respectively,
where . We also give the sets

, , denoting
the set of linear and non-linear rules respectively. Given a -split ruleset , herein
we may use, e.g., to denote .

Example 1. For the rule (?c1,r:subClassOf,?c2) (?x,a,?c1) (?x,a,?c2),
(?c1,r:subClassOf,?c2) and (?x,a,?c1) . Underlining

, we write (?c1,r:subClassOf,?c2) (?x,a,?c1) (?x,a,?c2).

We then define our T-Box as the set of terminological triples in a given graph which are
required by the terminological patterns of a given ruleset.

Definition 2. T-Box/A-Box Given a graph and a -split ruleset , let
represent the subset of rules in which require terminological data; the

T-Box of wrt. is then ,
representing the subset of terminological triples in which satisfy a terminological
pattern of a rule antecedent () in ; where ruleset and graph are obvious, we
may abbreviate to simply . Our A-Box is synonymous with : i.e., we also
consider our T-Box as part of our A-Box in a form of unidirectional meta-modelling.

Given the notion of a -split rule and our T-Box, we can now define how -split rules
are applied, and how -split closure is achieved wrt. a static T-Box.

Definition 3. -split rule application and closureWe define a -split rule application
for a -split rule wrt. a graph to be:

(1)

here formalising the notion that the terminological patterns of the rule are strictly in-
stantiated from a separate T-Box . Again, for a -split ruleset ,

. Now, let denote the set of axiomatic triples given by (the
same set as for), and be our initial T-Box derived from and
axiomatic triples, and ; we define our closed T-Box
as for the least value of such that , denoted , represent-
ing the closure of our initial T-Box wrt. rules requiring only terminological knowledge.
Finally, let and ; we now define the
exhaustive application of the operator on a graph wrt. a static T-Box as being
upto the least fixpoint such that . We call the -split closure of
with respect to the -split ruleset , denoted as or simply .

The -split closure algorithm consists of two main steps: (i) deriving the closed T-Box
from axiomatic triples, the input graph, and recursively applied rules; (ii) apply-
ing ‘A-Box’ reasoning for all triples wrt. the rules and the static T-Box. We now
give some propositions relating the -split closure with the standard rule application
closure described in the preliminaries; firstly, we must give an auxiliary proposition
which demonstrates how mappings for sub-graphs-patterns can be combined to give
the mappings for the entire graph pattern, which relates to the -split rule application.
Proposition 1. For any graph and graph pattern , it holds that

.

Proof. Firstly, since and are endomorphic. By definition,
for . Next, we need to show that if :

since by definition if and if , and since
and , then if

. By definition, and thus we have , and
; again by definition we have , and so

. We now have
for every , and need to show that

for every , there exists a such that ;
by definition, we know that there exists a such that for any
as defined, and that for every such there exists a such that

, and hence the proposition holds.

Theorem 1. Soundness For any given ruleset , its -split version ,
and any graph , it holds that .

Proof. Clearly, gives the same set of triples for and , and thus since
. From Proposition 1, it follows that

;
we can then show that by replacing with in Equation 1, from
which follows . Given that if ,

and if and – i.e., that our rule applications
are monotonic – we can show by induction that : given from above, we
can say that iff since
. Now, clearly , and since , we
can say that if , then ; by induction, .

Theorem 2. Conditional Completeness If , then .
Proof. First, since by definition only re-
moves triples from that cannot be bound by terminological patterns in . Given the
criteria – or, rephrasing, – we first know
that . Thus, . If

, then ,
which gives : i.e., is known to be the partial closure of . Given the
fixpoint condition , then must be the fixpoint: .
Proposition 2. A triple can only be produced for through an
inference for a rule in .
Proof. Any T-Box triples in the original graph, or T-Box triples produced by the ‘clo-
sure’ of rules are added to the initial T-Box . Any T-Box triples produced by
the closure of rules over are added to the closed T-Box . Since

, the only new triples – terminological or not – that can arise in the
computation of after deriving are from rules in .
We have shown that for an arbitrary ruleset and graph, the -split closure is sound
wrt. the standard closure, and that if no T-Box triples are produced by rules requiring
assertional knowledge, then -split closure is complete wrt. the standard closure. So,
when are T-Box triples produced by rules? Analysis must be applied per ruleset,
but for RDFS, pD* and OWL 2 RL/RDF, we informally posit that by inspection, one
can show that such a condition can only arise through so called non-standard usage [8]:
the assertion of terminological triples which use meta-classes and meta-properties in
positions other than the object of rdf:type triples or predicate position respectively –
e.g., my:subPropertyOf rdfs:subPropertyOf rdfs:subPropertyOf .

The -split approach can be implemented through partial indexing using two scans
of the data: the first separates and builds the T-Box and the second reasons over the
A-Box – note that the first scan can be over a separate T-Box graph. Algorithm 1 details
this approach, which largely follows the formalisms in Definition 3: the major variance
consists of the application of rules in , which one can convince themselves is equiv-
alent since all triples encountered are passed through every rule in . For brevity,
we omit some implementational details such as partial duplicate detection implemented
using an LRU locality cache. The “non-trivial” aspects of the implementation include
the indexing of the T-Box , and the indexing of the A-Box . Again, as is re-
quired to store more data, the two-scan approach becomes more inefficient than the
“full-indexing” approach; in particular, a rule in with an open pattern – e.g., OWL
2 RL/RDF rule eq-rep-s: (?s,o:sameAs,?s) (?s,?p,?o) (?s ,?p,?o) – will re-
quire indexing of all data, negating the benefits of the approach. Again, partial-indexing
performs well if remains small and performs best if – i.e., no rules require
A-Box joins and thus A-Box indexing is not required.

Algorithm 1: Partial indexing approach for -split closure
Required: ,

; ; ; /* get t-split rules & ax. T-Box triples */1
for do ; /* SCAN 1: extract T-Box from main data */2
while do ; ++ ; /* do T-Box reasoning */3

; ; ; /* initialise A-Box structures */4
for do /* SCAN 2: A-Box reasoning over all data */5

; ; ; /* initialise set to hold inferences from */6
while do /* while we find new triples to reason over */7

for do /* scan new triples */8
; /* do all ‘no A-Box join’ rules for */9

for do /* for each ‘A-Box join’ rule */10
for do /* for each assertional pattern */11

if then ; /* index if needed */12

; /* apply ‘A-Box join’ rule over index */13

++; /* recurse */14

; /* write set of recursive inferences for to output */15

Return :

4 Template Rules
We now discuss optimisations for deriving -split closure based on template rules,
which are currently used by DLEJena [13] and also used in RIF for supporting OWL
2 RL/RDF [15]; however, instead of manually specifying a set of template rules, we
leverage our general notion of terminological data to create a generic template func-
tion: after separating and closing the T-Box, we bind the T-Box patterns of rules before
accessing the A-Box to create a set of new templated rules (or -ground rules) which
themselves ‘encode’ the T-Box, thus avoiding repetitive T-Box pattern bindings during
the A-Box reasoning process. We now formalise these notions.

Definition 4. Template Function For a -split rule , the template function is given
as ; .

Example 2. Given a simple T-Box f:Person r:subClassOf f:Agent and
a rule (?c1,r:subClassOf,?c2) ?x a ?c1 ?x a ?c2 , then the template
function is given as ?x,a,f:Person ?x,a,f:Agent .
Templated rule application is synonymous with standard rule application. We may use
as intuitive shorthand to map a set of -split rules to the union of the set of resulting

templated rules. We now (i) propose that applying a -split rule gives the same result as
applying the respective set of templated rules wrt. arbitrary graphs & ; (ii) describe
the closure of a graph using templated rules; (iii) show that the templated-rule closure
equals the -split closure previously outlined.

Proposition 3. For any graphs and for any rule with a -split rule ,
it holds that .

Proof.
.

Definition 5. Templated rule closure Given a ruleset , its -split version
, and a graph , let represent the closed T-Box as derived in the -split

closure, and let . Again, let , but this time
; as before, the templated rule closure is for the smallest

value of such that , denoted as , or simply .
Theorem 3. For any graph , and any ruleset , its -split version , and the
respective templated ruleset , we can say that .
Proof. The only divergence between the -split closure and templated-rule closure is in
the fixpoint calculation: versus . Us-
ing induction, by def. ; if , then

.

The templated rules can be applied in lieu of the rules in Algorithm 1. Indeed,
a large number of rules can be templated for a sufficiently complex T-Box, and naı̈ve
application of all such rules on all triples could worsen performance; however, the tem-
plated rules are more amenable to further optimisations, which we now discuss.

4.1 Merging Equivalent Template Rules

The templating procedure may result in rules with equivalent antecedents – which can
be aligned by variable rewriting – being produced; these rules can subsequently be
merged. We formalise such notions here.
Definition 6. Equivalent Graph Patterns: Let be the set of automorphic variable
rewrite mappings containing all as follows:

if
otherwise

(2)

(Note:). We denote by an equivalence relation for graph patterns such that
iff there exists a mapping such that .

Proposition 4. The relation is reflexive, symmetric and transitive.
Proof. Reflexivity is trivially given by the identity morphism , symmetry
is given by the inverse morphism where if since is
automorphic, and transitivity is given by the presence of the composite morphism

where again since and are automorphic.
Definition 7. Rule Merge: Let be an equivalence relation – slightly abusing no-
tation – which holds between two rules such that iff .
Given an equivalence class – a set of rules between which holds – select a
canonical rule ; we can now describe the merge of the equivalence class as

where for some such
that . Now letting denote the quotient set
of by – the set of all equivalent classes wrt. in – we can generalise the
rule merge function for a set of rules as , .
Example 3. Taking the two templated rules: ?x,f:img,?y ?x,a,f:Person and
?s,f:img,?o ?s,f:depicts,?o ; they can be merged by where (?s) = ?x,
(?o) = ?y, giving ?x,f:img,?y ?x,a,f:Person ?x,f:depicts,?y .

The choice of canonical rule is unimportant since is automorphic; we now show that
the application of any ruleset and the respective merged ruleset are extensionally equal.

Proposition 5. For any graph and equivalence class , ;
for any ruleset , ; wrt. closure, = .

Proof. We denote as . If , then by def.
, and for any graph and any mapping , ; i.e., if

, = . Thus we give
. Let ; now,

it follows that
= . The rest of the proposition follows naturally.

4.2 Rule Index

We have reduced the amount of templated rules through merging; however, given a
sufficiently complex T-Box, we may still have a prohibitive number of rules for efficient
recursive application. We now look at the use of a rule index which maps a triple
to rules containing an antecedent pattern which is a binding for, thus enabling the
efficient identification and application of only relevant rules for a given triple.

Definition 8. Rule Lookup Given a triple and ruleset , the rule lookup function is
, .

Example 4. Given a triple ex:me,a,f:Person), and a simple example ruleset
?x,f:img,?y ?x,a,f:Person ; ?x,a,f:Person ?x,a,f:Agent ;

?x,a,?y) (?y,a,r:Class , returns a set containing the latter two rules.

A triple pattern has possible forms: , , , , ,
, , . Thus, we require eight indices for antecedent triple patterns,

and eight lookups to perform – to find all relevant rules for a triple. We use
seven in-memory hashtables storing the constants of the rule antecedent patterns as key,
and a set of rules containing such a pattern as value; e.g., (?x,a,f:Person) is put
into the index with a,f:Person as key. Rules containing patterns without
constants are stored in a set, as they are relevant to all triples.

4.3 Rule Dependency – Labelled Rule Graph

Within our rule index, there may exist rule dependencies: the application of one rule
may/will lead to the application of another. Thus, instead of performing lookups for
rules for each recursively inferred triple, we can model dependencies in our rule index
using a rule graph. In Logic Programming, a rule graph is defined as a directed graph

where (i.e., , read “ follows ”) iff there exists a
mapping such that for (cf. [14]).

By building and encoding such a rule graph into our index, we can “wire” the re-
cursive application of rules for a given triple. However, from the merge function (or
otherwise) there may exist rules with large consequent sets. We therefore extend the
notion of the rule graph to a directed labelled graph with inclusion of the labelling

function ; ;
in simpler terms, gives the set of consequent triple patterns in that would
be matched by patterns in the antecedent of , labelling the edges of the rule graph
with the consequent patterns that give the dependency.
Example 5. For a rule ?x,f:img,?y ?x,a,f:Person ?y,a,f:Image ,
and a rule ?s,a,f:Person ?s,a,f:Agent , we say that , where

?x,a,f:Person .
In practice, our rule index stores sets of elements of a linked list, where each element
contains a rule and links to rules which are relevant for that rule’s consequent pat-
terns. Thus, for each input triple, we can retrieve all relevant rules for all eight possible
patterns, apply those rules, and if successful, follow the respective labelled links to
recursively find relevant rules without re-accessing the index until the next input triple.

4.4 Rule Saturisation
We very briefly describe one final and intuitive optimisation technique we investigated
– which later evaluation demonstrates to be mostly disadvantageous – involving the sa-
turisation of rules; we say that a subset of dependencies in the rule graph are strong
dependencies, where the successful application of one rule will always lead to the suc-
cessful application of another. For linear rules, we can saturate rules by pre-computing
the recursive rule application of its dependencies; we give the gist with an example:
Example 6. Take rules ?x,f:img,?y ?x,a,f:Person ?y,a,f:Image ,

?s,a,f:Person ?s,a,f:Agent , ?x,a,?y ?y,a,r:Class .
We can see that , , . We can remove the links from to and
(and similarly from to) by saturating to ?x,f:img,?y ?x,a,f:Person
?y,a,f:Image ?x,a,f:Agent) (f:Person,a,r:Class) (f:Image,a,r:Class)
(f:Agent,a,r:Class) .
As we will see in Sections 4.6 & 5.2, saturisation produces more duplicates and thus
puts more load on the duplicate-removal cache, negatively affecting performance.

4.5 Optimised Partial Indexing Approach using Template Rules
We now integrate the above notions as optimisations for the partial indexing approach,
with the new procedure detailed in Algorithm 2. We no longer need to bind T-Box
patterns during A-Box access; we mitigate the cost of extra templated rules by first
merging rules, and instead of brute-force applying all rules to all triples in the A-Box
reasoning scan, we use our linked rule index to retrieve only relevant rules for a given
triple and to find recursively relevant rules. We now initially evaluate our methods.

4.6 Preliminary Performance Evaluation
In order to initially evaluate the above optimisations, we applied small-scale reasoning
for RDFS (minus the infinite rdf: n axiomatic triples [4]), pD* and OWL 2 RL/RDF
over LUBM(10) [3], consisting of about 1.3m triples – note that we do exclude lg/gl
rules for RDFS/pD* since we allow generalised triples [2]. All evaluation in this pa-
per has been run on single-core 2.2GHz Opteron x86-64 machine(s) with 4GB of main
memory. Table 1 gives the performance for the following partial-indexing configura-
tions: (i) N: ‘normal’ -split closure; (ii) NI: normal -split closure with linked rule

Algorithm 2: Partial-indexing approach using templated rule optimisations
Required: ,
derive and as in Algorithm 1; /* SCAN 1: See Algorithm 1 */1

; ; /* template and merge -split rules */2
build index for encoding graph with edges ; /* build rule index w/ dependencies */3

; ; /* init A-Box structures */4
for do /* SCAN 2: A-Box reasoning over all data */5

; ; ; /* initialise relevant rules for */6
while do /* while we find new rule/triple pairs to reason over */7

for do /* scan new rule/triple pairs */8
; ; /* initialise state for rule triple pair */9

if 1 then /* if rule requires A-Box join */10
for do /* for each assertional pattern */11

if then ; /* index if needed */12

; /* apply ‘A-Box join rule’ over index */13
else14

; /* apply ‘non A-Box join rule’ for */15
if then /* if rule creates inference */16

for do /* find successive rules in graph */17
for do /* for the consequent patterns bound */18

; /* add rule/triple pair */19

++; /* recurse for unique rule/triple pair */20

; /* write recursive inferences for to output */21

Return :

input LUBM(10) - 1.27M data triples, 295 ontology triples
fragment RDFS pD* OWL 2 RL
inferred 748k 1,328k 1,597k

tmpl. rules 149 175 378
after merge 87 108 119

config. N NI T TI TIM TIMS N NI T TI TIM TIMS N NI T TI TIM TIMS
time (s) 99 117 404 89 81 69 365 391 734 227 221 225 858 940 1,690 474 443 465

rule apps (m) 16.5 15.5 308 11.3 9.9 7.8 62.5 50 468 22.9 21.1 13.9 149 110 1,115 81.8 78.6 75.6
% success 43.4 46.5 2.4 64.2 62.6 52.3 18.8 23.4 2.6 51.5 48.7 61.3 4.2 5.6 0.8 10.5 6.8 15

cache hit (m) 10.8 10.8 8.2 8.2 8.2 8.1 19.1 19.1 15.1 15.1 14.9 38.7 16.5 16.5 13.1 13 12.7 34.4

Table 1. Details of reasoning for LUBM(10) given different reasoning configurations.

index; (iii) T: -split closure wrt. templated rules; (iv) TI: -split closure wrt. linked
templated rule index; (v) TIM: -split closure wrt. linked & merged templated rule
index; (vi) TIMS: -split closure wrt. linked, merged & saturated templated rule index.

In all approaches, exhaustively applying templated rules demonstrates the worst
performance; after indexing the approach becomes the most efficient. RDFS gains little
in the way of improvement, but in fact only contains 8 rules requiring A-Box data: the
reduction in rule applications given by templating and indexing is modest. OWL 2 RL
and pD* take just over half the time for TI* vs. N* approaches. A correlation between
increased rule applications and increased inferencing time is evident, but sometimes
fails: e.g., for pD*, TIMS gives less rule applications than TIM, but takes more time –
in such cases, we see the cache encountering more duplicates – as mentioned, saturated
rules can immediately produce a batch of duplicates that would otherwise halt a chain of
inferences mid-way. OWL 2 RL creates more templated rules than pD* due to expanded
T-Box level reasoning, but these are merged to a number just above pD*: OWL 2 RL

supports intersection-of inferencing used by LUBM and not in pD*. LUBM does not
contain OWL 2 constructs, but redundant rules are factored out during templating.

Although we improve the performance of pD* and OWL 2 RL/RDF inferencing, we
perform A-Box joins in-memory, and in fact cannot scale much beyond the limited scale
above for these fragments: again our optimisations focus on linear rules. We now reunite
with our original use-case of Linked Data reasoning, focussing on the application of
linear rules and shifting up three orders of magnitude.

5 Reasoning for Linked Data
Again, we aim at reasoning over Linked Data for the SWSE project. In previous works,
we have investigated the unique challenges of reasoning over the open Web, and identi-
fied the need for scale, incompleteness, and consideration of the source of data. In [8],
we applied reasoning over 1 billion Linked Data triples using T-Box optimisations spe-
cific to a subset of pD*; we (i) demonstrated that aside from equality reasoning, pD*
rules which do not require A-Box joins covered 99% of inferences possible in our
Web dataset, based on the observation that the most commonly instantiated vocabular-
ies on the Web typically use lightweight RDFS and OWL terms supportable by linear
rules; (ii) discussed the dangers of applying materialisation over open Web data, which
can naı̈vely lead to an explosion of inferences: for example, one document3 defines
owl:Thing to be a member of 55 union classes, another defines nine properties as the
domain of rdf:type4, etc. Observation (i) ties in with our linear-rule optimisations;
however, equality reasoning requires A-Box joins: we see owl:sameAs related infer-
encing as very important for data integration within the Linked Data use-case, but prefer
a decoupling of such reasoning – which entails its own requirements and challenges –
and have analysed the issue separately in previous works [10]. Observation (ii) moti-
vates our next discussion: we now reintroduce our notion of authoritative reasoning.

5.1 Authoritative Reasoning
In order to curtail the possible side-effects of open Web data publishing, we include
the source of data in inferencing. Our methods are based on the view that a publisher
instantiating a vocabulary’s term (class/property) thereby accepts the inferencing man-
dated by that vocabulary (and recursively referenced vocabularies) for that term. Thus,
once a publisher instantiates a term from a vocabulary, only that vocabulary and its
references should influence what inferences are possible through that instantiation.

Firstly, we must define the relationship between a term and a vocabulary. We view
a term as an RDF constant, and a vocabulary as a Web document: we give the func-
tion as the mapping from a URI (a Web location) to an RDF graph it
may provide by means of a given HTTP lookup. In Linked Data principles, dereferen-
cable URIs are encouraged; dereferencing can be seen as a function
which maps one URI to another by means of HTTP dereferencing mechanisms (this
may include removal of a URI fragment identifier and recursive but finite redirects, and
maps a URI to itself in case of failure; such functions are fixed to the time the data was
crawled).
3 http://lsdis.cs.uga.edu/ oldham/ontology/wsag/wsag.owl
4 http://www.eiao.net/rdf/1.0

We then give the authoritative function:
or (3)

where a Web document is authoritative for URIs which dereference to it and the blank
nodes it contains; e.g., the FOAF vocabulary is authoritative for terms in its namespace.

To negate the effects of non-authoritative axioms on reasoning over Web data, we
apply restrictions to the -split rule application of rules in , whereby, for the
mapping of the rule application as before, there must additionally exist a such
that , , .5

Example 7. Take rule (?c1,r:subClassOf,?c2) ?x,a,?c1 ?x a ?c2 .
Here, ?c1 . Take an A-Box triple (ex:me,a,f:Person);
(?c1) = f:Person. Let (f:Person) = f: the FOAF spec; now, ?c1

f: . Any triple of the form (f:Person,r:subClassOf,?c2) must come
from f: for the rule to be authoritatively applied. Note that ?c2 can be arbitrarily bound;
i.e., FOAF can extend any classes they like.
We refer the reader to [8] for more detail on authoritative reasoning. Note that the previ-
ous two examples from documents in Footnotes 3 & 4 are ignored by the authoritative
reasoning. Since authoritativeness is on a T-Box level, we can apply the above addi-
tional restriction to our templating function when binding the terminological patterns
of the rules to derive a set of authoritative templated rules.

5.2 Linked Data Reasoning Evaluation
We now give evaluation over 1.12b quads (947m unique triples) of Linked Data crawled
for SWSE in May 2010. Note that we use a GZip compressed file of quadruples as input
to the reasoning process: the fourth element element encodes the provenance (Web
source) of the contained triple; we also require information about redirects encountered
in the crawl to reconstruct the function. We output a flat file of GZipped triples.
We perform reasoning over a subset of OWL 2 RL/RDF containing 42 rules: firstly, we
omit datatype reasoning which can lead to the inference of near-infinite triples (e.g.,
1.000 xsd:float owl:sameAs 1.00 xsd:float); secondly, we currently omit
inconsistency checking rules (we will examine use-cases for these rules in later work);
thirdly, we omit rules which infer ‘tautologies’ – statements that hold for every term
in the graph, such as reflexive owl:sameAs statements (we also filter these from the
output). Given our use-case SWSE, we wish to infer a circumspect amount of data
with utility for query-answering – completeness is not a requirement (cf. [5] for related
discussion). For reasons of efficiency as described, we omit rules which require A-
Box joins. Thus, our subset consists of the OWL 2 RL/RDF axiomatic rules, ‘schema
rules’[2, Table 9], and rules with one assertional pattern which we give in Table 3.

Reasoning over the dataset described inferred 1.58b raw triples, which were filtered
to 1.14b triples removing non-RDF generalised triples and ‘tautological statements’ –
post-processing revealed that 962m (61%) were unique and had not been asserted
5 Note here that we restrict the T-Box segment of a rule to be instantiated by one doc-
ument; this is not so restrictive where in OWL 2 RL/RDF, all such rules contain one ‘T-Box
axiom’, possibly described using multiple triples; cf. [8]. Also, we do not consider the results
of T-Box level reasoning as authoritative.

T-Box (min) A-Box (hr)
N 8.9 118.4
NI 8.9 121.3
T 8.9 171609a

TI 8.9 22.1
TIM 8.9 17.7
TIMS 8.9 19.5

a Estimated as a linear product from
one day of reasoning.

 0

 2e+008

 4e+008

 6e+008

 8e+008

 1e+009

 1.2e+009

 1.4e+009

 1.6e+009

 0 200 400 600 800 1000

st

at
em

en
ts

time (min)

input
output

Fig. 1. Performance for reasoning over 1.1B statements on one machine for all approaches (left),
and detailed throughput performance for A-Box reasoning using the fastest approach TIM (right).

Machines Extract T-Box Build T-Box Reason A-Box Total
1 492 8.9 1062 1565
2 240 10.2 465 719
4 131 10.4 239 383
8 67 9.8 121 201

Table 2. Distributed reasoning in minutes using TIM for 1, 2, 4 & 8 machines.

(roughly a 1:1 reasoned:asserted ratio). The first step – extracting 1.1m T-Box triples
from the dataset – took 8.2 hrs. Subsequently, Figure 1 gives the results for reasoning
on one machine for each approach as before. T-Box level processing – e.g., templating,
rule indexing, etc. – took roughly the same time. For A-Box reasoning, saturation causes
the same problems with extra duplicate triples as before, and so the fastest approach is
TIM, which takes 15% of the time for the naı̈ve -split closure algorithm; we also
show the linear performance of TIM in Figure 1 (we would expect all methods to be
similarly linear). 301k templated rules with 2.23m links are merged to 216k with 1.15m
links; after saturation, each rule has an average of 6 consequent patterns and all links are
successfully removed. Note that with 301k templated rules without indexing, applying
all rules to all statements would take approx. 19 years.

Since all of our rules are linear, we can also distribute our approach by flooding
the templated rules to all machines. In Table 2, we give the performance of such an
approach for 1, 2, 4, and 8 machines using a simple RMI architecture [9]. Note that
the most expensive aspects of the reasoning process – extracting the T-Box from the
dataset and reasoning over the A-Box – can be executed independently in parallel. The
only communication required between machines is the aggregation of the T-Box, and
creation of the shared templated-rule index: this takes 10 mins, and becomes the lower
bound for time taken for distributed evaluation with arbitrary machine count. In sum-
mary, we perform reasoning over 1.12b Linked Data triples in 3.35 hours using 8 ma-
chines, deriving 1.58b inferred triples, of which 962m are novel and unique.

6 Related Work
We have discussed our previous work on SAOR throughout the paper. Following initial
work on SAOR – which had not yet demonstrated distribution – a number of scalable

distributed reasoners adopted a similar approach to partial indexing herein reformalised.
Weaver et al. [19] discuss a similar approach for distributed reasoning over RDFS;
however, their experiments were solely over LUBM and their discussion was specific
to RDFS. Urbani et al. [18] use MapReduce for distributed reasoning for RDFS over
850m Linked Data triples; they do not consider authority and produce 30b triples which
is too much for our SWSE use-case – interestingly, they also tried pD* on 35m Web
triples and stopped after inferring 3.8b inferences in 12 hours, lending strength to our
arguments for authoritative reasoning. In very recent work, the same authors [17] ap-
ply incomplete but comprehensive pD* to 100b LUBM triples, discussing rule-specific
optimisations for performing join rules over pD*: however, we feel that materialisation
wrt. rules over 1b triples of arbitrary Linked Data is still an open research goal.

A viable alternative approach to Web reasoning employed by Sindice [1] – the rela-
tion to which is discussed in depth in [8] – is to consider merging small “per-document”
closures which quarantines reasoning to a given document and the related documents it
either implicitly or explicitly imports. Works on LDSR select clean subsets of Linked
Data 0.9b triples and apply reasoning using the proprietary BigOWLIM reasoner [11].

With respect to template rules, DLEJena [13] uses the Pellet DL reasoner for T-Box
level reasoning, and uses the results to template rules for the Jena rule engine; they
only demonstrate methods on synthetic datasets up to a scale of 1M triples. We take
a somewhat different direction, discussing optimisations for partial-indexing.

7 Conclusion
We have introduced the notion of terminological data for RDF(S)/OWL, and have gen-
eralised and formalised the notion of partial indexing techniques which are optimised
for application of linear rules and which rely on a separation of terminological data –
a non-recursive segment of the data; we then related the derived closure to semi-naı̈ve
evaluation. We subsequently discussed inclusion of a template function in such an algo-
rithm, showing that naı̈vely, templated rules worsen performance, but with rule merging,
indexing and linking techniques, templated rules outperform the base-line -split clo-
sure esp. for a complex T-Box. This work, along with DLEJena, supports uncited claims
within the recently standardised RIF working group that rule templating offers a more
efficient solution for supporting OWL 2 RL than a direct translation of OWL 2 RL/RDF
rules [15, Section 1]. We then reintroduced some discussion relating to reasoning over
Linked Data, including our notion of authoritativeness, and demonstrated scalable dis-
tributed reasoning over a subset of OWL 2 RL for 1.1b quads (without need for manual
T-Box massaging or pre-selection). The SAOR system is actively used to provide rea-
soned data to the SWSE system [9] for live search and browsing over Linked Data:
http://swse.deri.org/.

References

1. R. Delbru, A. Polleres, G. Tummarello, and S. Decker. Context Dependent Reasoning for
Semantic Documents in Sindice. In Proc. of 4th SSWS Workshop, Oct. 2008.

2. B. C. Grau, B. Motik, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web Ontology Language:
Profiles. W3C Recommendation, Oct. 2009.

: only one assertional pattern in antecedent

OWL2RL Antecedent Consequentterminological assertional
eq-sym - ?x owl:sameAs ?y . ?y owl:sameAs ?x .
prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 ?p rdfs:subPropertyOf ?p . ?x ?p ?y . ?x ?p ?y .
prp-eqp1 ?p owl:equivalentProperty ?p . ?x ?p ?y . ?x ?p ?y .
prp-eqp2 ?p owl:equivalentProperty ?p . ?x ?p ?y . ?x ?p ?y .
prp-inv1 ?p owl:inverseOf ?p . ?x ?p ?y . ?y ?p ?x .
prp-inv2 ?p owl:inverseOf ?p . ?x ?p ?y . ?y ?p ?x .
cls-int2 ?c owl:intersectionOf (?c ... ?c) . ?x a ?c . ?x a ?c ...?c .
cls-uni ?c owl:unionOf (?c ... ?c ... ?c) . ?x a ?c ?x a ?c .
cls-svf2 ?x owl:someValuesFrom owl:Thing ; owl:onProperty ?p . ?u ?p ?v . ?u a ?x .
cls-hv1 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u a ?x . ?u ?p ?y .
cls-hv2 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u ?p ?y . ?u a ?x .
cax-sco ?c rdfs:subClassOf ?c . ?x a ?c . ?x a ?c .
cax-eqc1 ?c owl:equivalentClass ?c . ?x a ?c . ?x a ?c .
cax-eqc2 ?c owl:equivalentClass ?c . ?x a ?c . ?x a ?c .

Table 3. OWL 2 RL/RDF rules we apply for Web reasoning with exactly one assertional pattern.
Authoritative variable positions are given in bold. Not shown are axiomatic and schema rules [2].

3. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems. J.
Web Sem., 3(2-3):158–182, 2005.

4. P. Hayes. RDF semantics. W3C Recommendation, Feb. 2004.
5. P. Hitzler and F. van Harmelen. A Reasonable Semantic Web. Semantic Web Journal, 1(1),
2010. (to appear – available from http://www.semantic-web-journal.net/).

6. A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres. Weaving the Pedantic Web. In
Proc. of 3rd LDOW Workshop, Apr. 2010.

7. A. Hogan, A. Harth, and A. Polleres. SAOR: Authoritative Reasoning for the Web. In Proc.
of 3rd ASWC, Dec. 2008.

8. A. Hogan, A. Harth, and A. Polleres. Scalable Authoritative OWL Reasoning for the Web.
Int. J. Semantic Web Inf. Syst., 5(2), 2009.

9. A. Hogan, A. Harth, J. Umbrich, S. Kinsella, A. Polleres, and S. Decker. Searching and
Browsing Linked Data with SWSE: the Semantic Web Search Engine. Technical Report
DERI-TR-2010-07-23, 2010.

10. A. Hogan, A. Polleres, J. Umbrich, and A. Zimmermann. Some entities are more equal than
others: statistical methods to consolidate Linked Data. In Proc. of NeFoRS Workshop 2010.

11. A. Kiryakov, D. Ognyanoff, R. Velkov, Z. Tashev, and I. Peikov. LDSR: a Reason-able View
to the Web of Linked Data. In Proc. of 7th Semantic Web Challenge, 2009.

12. J. W. Lloyd. Foundations of Logic Programming (2nd edition). Springer-Verlag, 1987.
13. G. Meditskos and N. Bassiliades. DLEJena: A practical forward-chaining OWL 2 RL rea-

soner combining Jena and Pellet. J. Web Sem., 8(1):89–94, 2010.
14. R. Ramakrishnan, D. Srivastava, and S. Sudarshan. Rule Ordering in Bottom-Up Fixpoint

Evaluation of Logic Programs. In Proc. of 16th VLDB, pages 359–371, 1990.
15. D. Reynolds. OWL 2 RL in RIF. W3C Working Group Note, June 2010.
16. H. J. ter Horst. Completeness, decidability and complexity of entailment for RDF Schema

and a semantic extension involving the OWL vocabulary. J. Web Sem., 3:79–115, 2005.
17. J. Urbani, S. Kotoulas, J. Maassen, F. van Harmelen, and H. E. Bal. OWL reasoning with

WebPIE: Calculating the closure of 100 billion triples. In Proc. of 7th ESWC, (1), 2010.
18. J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen. Scalable Distributed Reasoning Using

MapReduce. In Proc. of 8th ISWC, 2009.
19. J. Weaver and J. A. Hendler. Parallel Materialization of the Finite RDFS Closure for Hun-

dreds of Millions of Triples. In Proc. of 8th ISWC, 2009.

