
Scalable OWL 2 Reasoning for Linked Data?

Aidan Hogan1, Jeff Z. Pan2, Axel Polleres1, and Yuan Ren2

1 Digital Enterprise Research Institute, National University of Ireland, Galway
aidan.hogan@deri.org

axel.polleres@deri.org
2 Department of Computing Science, University of Aberdeen

jeff.z.pan@abdn.ac.uk
y.ren@abdn.ac.uk

Abstract. The goal of the Scalable OWL 2 Reasoning for Linked Data tutorial
is twofold: first, to introduce scalable reasoning and querying techniques to SW
researchers as powerful tool to make use of linked data and large-scale ontolo-
gies, and second, to present interesting research problems for SW that arise in
dealing with TBox and ABox reasoning in OWL 2. The tutorial consists of three
parts. It will begin with an introduction of linked data, as well as its relationship
with ontologies, such as the ones in OWL2. It will then start with the instance re-
trieval reasoning service, introducing how to provide scalable reasoning services
for OWL 2 RL (a tractable fragment of OWL 2). The third part of the tutorial will
present recent work on faithful approximate reasoning for OWL2-DL

1 Introduction

Over the past few years, various Web publishers have turned to RDF and Linked Data
principles as a means of disseminating information in a machine-interpretable way, re-
sulting in a burgeoning Web of Data which now includes interlinked content provided
by corporate bodies (e.g., BBC [48], BestBuy [31], New York Times3, Freebase4),
community-driven efforts (e.g., WIKIPEDIA/DBpedia5 [13]), social networking sites
(e.g., hi56, LiveJournal7), biomedical datasets (e.g., DrugBank8, Linked Clinical Tri-
als9), governmental entities (e.g., data.gov.uk, data.gov), academia (e.g., DBLP10,
UniProt11), as well as some esoteric corpora (e.g., Poképédia12, Linked Open Num-
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bers13 [84]). See http://lod-cloud.net (retr. 15/10/2010) for Cyganiak and Jent-
zsch’s Linked Open Data cloud diagram which illustrates the datasets comprising the
current (and past) Web of Data. (Please see [2] in these proceedings for extensive in-
troduction and discussion relating to Linked Data and the Web of Data.)

As such, there now exists a rich vein of heterogeneous, structured and interlinked
data on the Web. To enable interoperability and subsequent data integration, Linked
Data literature encourages reuse of URIs—particularly those referential to classes and
properties (schema-level terminology)—across data sources: in the ideal case, a Linked
Data consumer can perform a simple (RDF-)merge of datasets, where consistent use of
terminology ensures that resources are described uniformly and thus can be accessed
and queried uniformly. Although this ideal is achievable in part by community agree-
ment and self-organising phenomena such as preferential attachment [6]—whereby, for
example, the most popular classes and properties would become the de-facto consensus
and thus more widely used—given the ad-hoc decentralised nature of the Web, com-
plete and appropriate agreement upon the broad spectrum of terminology needed to
fully realise the Web of Data is probably infeasible.

Instead, Linked Data publishers may use different but analogous terminology to de-
scribe their data: competing vocabularies may offer different levels of granularity or
expressivity more suitable to a given publisher’s needs, may be popular at different
times or within different communities, etc. Publishers may not only choose different
vocabularies, but may also choose alternate terms within a given vocabulary to model
analogous information; for example, vocabularies may offer pairs of inverse proper-
ties—e.g., foaf:made/foaf:maker—which poses the publisher with two options
for stating the same information (and where stating both could be considered redun-
dant). Further still, publishers may “cherry-pick” vocabularies, choosing a heteroge-
neous “bag of terms” to describe their data [12].

This becomes a significant obstacle for applications consuming a sufficiently het-
erogeneous corpus: for example, queries posed against the data must emulate the var-
ious terminological permutations possible to achieve (more) complete answers. Here,
we take the motivating example of a simple query described in prose as:

What are the webpages related to ex:resource?

Knowing that the property foaf:page is commonly used in Linked Data to define the
relationship from resources to the documents somehow concerning them, we can for-
mulate a simple structured query in SPARQL [66]—the W3C standardised RDF query
language—as given in Listing 1. (Please see [22] in these proceedings for an introduc-
tion to SPARQL, and further discussion on combining RDFS and OWL entailment with
SPARQL.)

However, within Linked Data, there exist various other, more fine-grained properties
for relating a resource to specific types of pages—these properties are not only given
by FOAF, but also by remote vocabularies. Thus, to ensure more complete answers,
the SPARQL query must use disjunction (UNION clauses) to reflect the possible triples
which may answer the query; we give such an example in Listing 2 involving properties
we found in a corpus of one billion triples of Linked Data crawled in May 2010, where

13 http://km.aifb.kit.edu/projects/numbers/; retr. 15/10/2010



Listing 1. Simple query for all pages relating to ex:resource

SELECT ?page
WHERE {
ex:resource foaf:page ?page .

}

we additionally annotate each pattern with the total number of triples found in our
corpus for the respective predicate; this gives a rough indicator of the relative likelihood
of finding additional answers with each additional pattern.

Not only is the resulting query much more cumbersome to formulate, but it also
requires a much more in-depth knowledge of the various vocabularies in the corpus.
However, since foaf:page is relatively well-known within the Linked Data com-
munity, all of the properties appearing in the extended query are (possibly indirectly)
related to foaf:page using RDFS and OWL connectives in their respective vocabu-
laries. In fact, all properties referenced in Listing 2 are chosen on the basis that they are
directly or indirectly related to foaf:page by rdfs:subPropertyOf or owl:-
inverseOf, where relations using these properties can be used to infer foaf:page
answers —note that we italicise patterns for properties which have an inverse (sub-
)relation to foaf:page in Listing 2. Thus, given these ad-hoc mappings provided by
the Linked Data publishers themselves, we have the necessary formal knowledge to
be able to answer the former simple query with all of the answers given by the latter
elaborate query. In order to exploit this knowledge and realise this goal in the general
case, we require some form of reasoning. (Of course, this problem of heterogeneity is
not purely specific to SPARQL querying, but likewise extends to many other consumer
applications or techniques operating over a corpus of Linked Data.)

Along these, in this tutorial, we look at two different complementary reasoning
approaches:

– in §2, we look at SAOR: a lightweight, pragmatic rule-based materialisation en-
gine which applies a scalable subset of OWL 2 RL/RDF, is designed to operate
over a cluster of commodity hardware in a distributed setting with little or no co-
ordination between machines, and conservatively discards terminological knowl-
edge given by unverifiable sources;

– in § 3, we describe a system for performing approximative, but relatively expres-
sive TBox reasoning with respect to OWL 2 DL, where SROIQ ontologies are
simplified into EL++, and where the approximate representation is then classified
using scalable techniques which typically demonstrate high recall when compared
with the non-approximative classification.

In particular, we note that the rule-based reasoning described in §2 offers linear scalable
with respect to assertional (instance) data, but is rather inexpressive, especially when
dealing with terminological knowledge. Conversely, the approximative reasoning of § 3
offers expressive PTIME-complete reasoning over terminological knowledge, but this
is still a memory based approach.



Listing 2. Extended query for all pages relating to ex:resource

SELECT ?page
WHERE {
{ ex:resource foaf:page ?page . } #4,923,026
UNION { ex:resource foaf:weblog ?page . } #10,061,003
UNION { ex:resource foaf:homepage ?page . } #9,522,912
UNION {?page foaf:topic ex:resource . } #6,163,769
UNION {?page foaf:primaryTopic ex:resource . } #3,689,888
UNION { ex:resource mo:musicbrainz ?page . } #399,543
UNION { ex:resource foaf:openid ?page . } #100,654
UNION { ex:resource foaf:isPrimaryTopicOf ?page . } #92,927
UNION { ex:resource mo:wikipedia ?page . } #55,228
UNION { ex:resource mo:myspace ?page . } #28,197
UNION { ex:resource po:microsite ?page . } #15,577
UNION { ex:resource mo:amazon_asin ?page . } #14,790
UNION { ex:resource mo:imdb ?page . } #9,886
UNION { ex:resource mo:fanpage ?page . } #5,135
UNION { ex:resource mo:biography ?page . } #4,609
UNION { ex:resource mo:discogs ?page . } #1,897
UNION { ex:resource rail:arrivals ?page . } #347
UNION { ex:resource rail:departures ?page . } #347
UNION { ex:resource mo:musicmoz ?page . } #227
UNION { ex:resource mo:discography ?page . } #195
UNION { ex:resource mo:review ?page . } #46
UNION { ex:resource mo:freedownload ?page . } #37
UNION { ex:resource mo:mailorder ?page . } #35
UNION { ex:resource mo:licence ?page . } #28
UNION { ex:resource mo:paiddownload ?page . } #13
UNION { ex:resource foaf:tipjar ?page . } #8
UNION { ex:resource doap:homepage ?page . } #1
UNION { ex:resource doap:old-homepage ?page . } #1
UNION { ex:resource mo:download ?page . } #0
UNION { ex:resource mo:event_homepage ?page . } #0
UNION { ex:resource mo:free_download ?page . } #0
UNION { ex:resource mo:homepage ?page . } #0
UNION { ex:resource mo:paid_download ?page . } #0
UNION { ex:resource mo:preview_download ?page . } #0
UNION { ex:resource mo:olga ?page . } #0
UNION { ex:resource mo:onlinecommunity ?page . } #0
UNION { ex:resource plink:addFriend ?page . } #0
UNION { ex:resource plink:atom ?page . } #0
UNION { ex:resource plink:content ?page . } #0
UNION { ex:resource plink:foaf ?page . } #0
UNION { ex:resource plink:profile ?page . } #0
UNION { ex:resource plink:rss ?page . } #0
UNION { ex:resource xfn:mePage ?page . } #0

}



2 Scalable, Incomplete, OWL 2 RL/RDF Rule-Based Reasoning

Herein, we detail our system for performing reasoning over large-scale Linked Data
corpora, which we call the Scalable Authoritative OWL Reasoner (SAOR) [35, 37, 34].
Our use-case scenario is the Semantic Web Search Engine (SWSE) [36],14 which offers
search and browsing over datasets consisting of approximately one billion Linked Data
triples crawled from the Web: we want to use reasoning to materialise inferences and
make them available in the SWSE results presented to users.

To validate our approach, we take a corpus of 1.12 billion quadruples (947 million
unique triples) crawled from 4 million RDF/XML documents in May 2010; the data
were taken from 783 different pay-level-domains (PLDS—e.g., dbpedia.org). Our
crawl was open (not domain restricted) and all HTTP URIs appearing in the data (except
those with filtered non-RDF/XML file extensions) were considered as candidates for
crawling. More details on this corpus are available in [34].

Thus, in this section we look at applying incomplete OWL 2 RL/RDF materialisa-
tion in a manner sympathetic with our use-case, over static corpora of unverified Linked
Data collected from millions of sources, consisting of approximately one billion input
facts. In particular:

– we begin by discussing the requirements of our system for performing Linked
Data/Web reasoning and high-level design decisions (§ 2.2);

– we continue by discussing a separation of terminological data during reasoning,
providing soundness and conditional completeness results (§ 2.3);

– we subsequently detail the generic optimisations that a separation of terminological
data allows (§ 2.4);

– we then look at identifying a subset of OWL 2 RL/RDF rules suitable for scalable
materialisation, and discuss our method for performing distributed authoritative
reasoning over our Linked Data corpus (§ 2.5);

– finally, we provide an overview of related work (§ 2.7) and give general discussion
(§ 2.8).

2.1 Preliminaries

Before we continue, we briefly give some necessary preliminaries relating to (i) RDF,
(ii) Linked Data principles, and (iii) rules.

RDF We briefly give some necessary notation relating to RDF constants and RDF
triples; see [30].

RDF Constant Given the set of URI references U, the set of blank nodes B, and the set
of literals L, the set of RDF constants is denoted by C := U∪B∪L. We interpret blank-
nodes as skolem constants signifying particular individuals, as opposed to existential
variables as prescribed by the RDF Semantics [30]; also, we rewrite blank-node labels
when merging documents to ensure uniqueness of labels across those documents [30].
Finally, note that we may use ‘a’ as a shortcut for rdf:type, following convention in
Turtle [7].
14 Prototype available at http://swse.deri.org/



RDF Triple A triple t := (s, p, o) ∈ (U∪B)×U×C is called an RDF triple, where s is
called subject, p predicate, and o object. A triple t := (s, p, o) ∈ G,G := C× C× C is
called a generalised triple [24], which allows any RDF constant in any triple position:
henceforth, we assume generalised triples unless explicitly stated otherwise. We call a
finite set of triples G ⊂ G a graph.

RDF Variable/RDF Triple Pattern We denote the set of all RDF variables as V; we call
a generic member of the set V ∪ C an RDF term. Again, we denote RDF variables as
alphanumeric strings with a ‘?’ prefix. We call a triple of RDF terms—where variables
are allowed in any position—an RDF triple pattern.

Variable Substitution We call a mapping from the set of variables to the set of constants
θ : V→ C a variable substitution; we denote the set of all such substitutions by Θ.

Linked Data Principles and Provenance In order to cope with the unique challenges
of handling diverse and unverified Web data, many of our components and algorithms
require inclusion of a notion of provenance: consideration of the source of RDF data
found on the Web. Thus, herein we provide some formal preliminaries for the Linked
Data principles, and HTTP mechanisms for retrieving RDF data. (Please see [2] in
these proceedings for extensive introduction and discussion relating to Linked Data
and the Web of Data.)

Linked Data Principles Herein, we will refer to the four best practices of Linked Data
as follows [9]:

– (LDP1) use URIs as names for things;
– (LDP2) use HTTP URIs so those names can be dereferenced;
– (LDP3) return useful information upon dereferencing of those URIs; and
– (LDP4) include links using externally dereferenceable URIs.

Data Source We define the http-download function get : U → 2G as the mapping
from a URI to an RDF graph it provides by means of a given HTTP lookup [20] which
directly returns status code 200 OK and data in a suitable RDF format, or to the empty
set in the case of failure; this function also performs a rewriting of blank-node labels
(based on the input URI) to ensure uniqueness when merging RDF graphs [30]. We
define the set of data sources S ⊂ U as the set of URIs S := {s ∈ U | get(s) 6= ∅}.

RDF Triple in Context/RDF Quadruple An ordered pair (t, c) with a triple t := (s, p, o),
and with a context c ∈ S and t ∈ get(c) is called a triple in context c. We may also refer
to (s, p, o, c) as an RDF quadruple or quad q with context c.

HTTP Redirects/Dereferencing A URI may provide a HTTP redirect to another URI
using a 30x response code [20]; we denote this function as redir : U → U which may
map a URI to itself in the case of failure (e.g., where no redirect exists). We denote
the fixpoint of redir as redirs, denoting traversal of a number of redirects (a limit may
be set on this traversal to avoid cycles and artificially long redirect paths). We define



dereferencing as the function deref := get ◦ redirs which maps a URI to an RDF graph
retrieved with status code 200 OK after following redirects, or which maps a URI to
the empty set in the case of failure.

Atoms and Rules In this section, we briefly introduce some notation as familiar partic-
ularly from the field of Logic Programming [52], which eventually gives us our notion
of a rule. As such, much of the notation in this section serves as a generalisation of the
RDF notation already presented; we will discuss this relation as pertinent.

Atom An atomic formula or atom is a formula of the form p(e1, . . . , en), where all
such e1, . . . , en are terms (like Datalog, function symbols are disallowed) and where p
is a predicate of arity n—we denote the set of all such atoms by Atoms. As such, this
notation can be thought of as generalising that of RDF triples, where we use a standard
RDF ternary predicate T to represent RDF triples in the form T (s, p, o)—for example,
T(Fred, age, 56)—where we will typically leave T implicit.

Note that a term ei can also be a variable, and thus RDF triple patterns can also be
represented directly as atoms. Atoms not containing variables are called ground atoms
or simply facts, denoted as the set Facts (a generalisation of G); a finite set of facts I
is called a (Herbrand) interpretation (a generalisation of a graph). Letting A and B be
two atoms, we say that A subsumes B—denoted A . B—if there exists a substitution
θ ∈ Θ of variables such that Aθ = B (applying θ to the variables of A yields B);
we may also say that B is an instance of A; if B is ground, we say that it is a ground
instance. Similarly, if we have a substitution θ ∈ Θ such that Aθ = Bθ, we say that θ
is a unifier of A and B; we denote by mgu(A,B) the most general unifier of A and B
which provides the “minimal” variable substitution (up to variable renaming) required
to unify A and B.

Rule A rule R is given as follows:

H ← B1, . . . , Bn(n ≥ 0) , (1)

where H,B1, . . . , Bn are atoms, H is called the head (conclusion/consequent) and
B1, . . . , Bn the body (premise/antecedent). We use Head(R) to denote the head H of
R and Body(R) to denote the body B1, . . . , Bn of R.15 The variables of our rules are
range restricted, also known as safe [80]: like Datalog, the variables appearing in the
head of each rule must also appear in the body, which means that a substitution which
grounds the body must also ground the head. We denote the set of all such rules by
Rules. A rule with an empty body is considered a fact; a rule with a non-empty body is
called a proper-rule. We call a finite set of such rules a program P .

Like before, a ground rule is one without variables. We denote with Ground(R) the
set of ground instantiations of a ruleR and with Ground(P ) the ground instantiations of
all rules occurring in a program P . Again, an RDF rule is a specialisation of the above
rule, where atoms strictly have the ternary predicate T and contain RDF terms; an RDF
program is one containing RDF rules, etc.

15 Such a rule can be represented as a definite Horn clause.



Note that we may find it convenient to represent rules as having multiple atoms in
the head, such as:

H1, . . . ,Hm(m ≥ 1)← B1, . . . , Bn(n ≥ 0) ,

where we imply a conjunction between the head atoms, such that this can be equiva-
lently represented as the set of rules:

{Hi ← B1, . . . , Bn | (1 ≤ i ≤ m)} .

Immediate Consequence Operator We give the immediate consequence operator TP
of a program P under interpretation I as:16

TP : 2Facts → 2Facts

I 7→
{
Head(R)θ | R ∈ P ∧ ∃I ′ ⊆ I s.t. θ = mgu

(
Body(R), I ′

)}

Intuitively, the immediate consequence operator maps from a set of facts I to the set of
facts it directly entails with respect to the program P—note that TP (I) will retain the
facts in P since facts are rules with empty bodies and thus unify with any interpretation,
and note that TP is monotonic—the addition of facts and rules to a program can only
lead to the same or additional consequences. We may refer to the application of a single
rule T{R} as a rule application.

Since our rules are a syntactic subset of Datalog, TP has a least fixpoint—denoted
lfp(TP )—which can be calculated in a bottom-up fashion, starting from the empty inter-
pretation ∆ and applying iteratively TP [87] (here, convention assumes that P contains
the set of input facts as well as proper rules). Define the iterations of TP as follows:
TP ↑ 0 = ∆; for all ordinals α, TP ↑ (α+ 1) = TP (TP ↑ α); since our rules are
Datalog, there exists an α such that lfp(TP ) = TP ↑ α for α < ω, where ω denotes the
least infinite ordinal—i.e., the immediate consequence operator will reach a fixpoint in
countable steps [80]. Thus, TP is also continuous. We call lfp(TP ) the least model, or
the closure of P , which is given the more succinct notation lm(P ).

2.2 Linked Data Reasoning: Overview

Performing reasoning over large amounts of arbitrary RDF data sourced from the Web
implies unique challenges which have not been significantly addressed by the literature.
Given that we will be dealing with a corpus in the order of a billion triples collected
from millions of unvetted sources, we must acknowledge two primary challenges:

– scalability: the reasoning approach must scale to billion(s) of statements;
– robustness: the reasoning approach should be tolerant to noisy, impudent and in-

consistent data.

These requirements heavily influence the design choices of our reasoning approach,
where in particular we (must) opt for performing reasoning which is incomplete with
respect to OWL semantics.
16 Note that in our Herbrand semantics, an interpretation I can be thought of as simply a set of

facts.



Incomplete Reasoning: Rationale Current standard RDFS/OWL reasoning approaches
are not naturally suited to meet the aforementioned challenges.

Firstly, standard RDFS entails infinite triples, although implementations commonly
support a decidable (finite) subset [76, 61, 62, 86]. In any case, RDFS does not support
reasoning over OWL axioms commonly provided by Linked Data vocabularies.

With respect to OWL, reasoning with respect to OWL (2) Full is known to be unde-
cidable. Reasoning with standard dialects such as OWL (2) DL or OWL Lite have more
than exponential worst-case complexity, and are typically implemented using tableau-
based algorithms which have yet to demonstrate scalability for reasoning over asser-
tional data which would be propitious to our scenario: certain reasoning tasks may
require satisfiability checking which touch upon a large proportion of the individuals in
the knowledgebase, and may have to operate over a large, branching search space [4].
Similarly, although certain optimisation techniques may make the performance of such
tableau-reasoning sufficient for certain reasonable inputs and use-cases, guarantees of
such reasonability do not extend to a Web corpus like ours. Reasoning with respect to
the new OWL 2 profiles—viz., OWL 2 EL/QL/RL—have polynomial runtime, which
although an improvement, may still be prohibitively expensive for our scenario.

Aside from complexity considerations, most OWL documents on the Web are in
any case OWL Full: “syntactic” assumptions made in DL-based profiles are violated by
even very commonly used ontologies. For example, the FOAF vocabulary knowingly
falls into OWL Full since, e.g., foaf:name is defined as a sub-property of the core
RDFS property rdfs:label, and foaf:mbox sha1sum is defined as a member
of both owl:InverseFunctionalProperty and owl:DatatypeProperty:
such axioms are disallowed by OWL (2) DL (and by extension, disallowed by the sub-
dialects and profiles).

Finally, OWL semantics prescribe that anything can be entailed from an inconsis-
tency, following the principle of explosion in classical logics. This is not only true of
OWL (2) Full semantics, but also of those sub-languages rooted in Description Logics,
where reasoners check entailment by reduction to satisfiability—if the original graph is
inconsistent, it is already in itself unsatisfiable, and the entailment check will return true
for any arbitrary graph. Given that consistency cannot be expected on the Web, we wish
to avoid the arbitrary entailment of all possible triples from our knowledge-base. Along
these lines, a number of paraconsistent reasoning approaches have been defined in the
literature (see, e.g., [41, 55, 89, 56, 51]) typically relying upon four-valued logic [8]—
however, again, these approaches have yet to demonstrate the sort of performance re-
quired for our scenario.

Thus, due to the inevitability of inconsistency and the prohibitive computational
complexity involved, complete reasoning with respect to the standardised RDFS/OWL
(sub-)languages is infeasible for our scenario. We instead argue that completeness (with
respect to the language) is not a requirement for our use-case, particularly given that the
corpus itself represents incomplete knowledge (cf. [19, 32]).

Moving forward, we opt for sound but incomplete support of OWL Full semantics
such that entailment is axiomatised by a set of rules which are applicable to arbitrary
RDF graphs (no syntactic restrictions) and which do not rely on satisfiability checking
(are not bound by the principle of explosion).



Rule-based Reasoning Predating OWL 2—and in particular the provision of the OWL
2 RL/RDF ruleset—numerous rule-based entailment regimes were proposed in the lit-
erature to provide a partial axiomatisation of OWL’s semantics. These regimes in-
cluded Description Logic Programs (DLP) [26, 57], pD* [75, 76], RDFS-Plus [1], etc.
Recognising the evident demand for rule-based support of OWL, in 2009, the W3C
OWL Working Group standardised the OWL 2 RL profile and accompanying OWL 2
RL/RDF ruleset [24].The OWL 2 RL profile is a syntactic subset of OWL 2 which is
implementable through translation to the Direct Semantics (DL-based semantics) or the
RDF-Based Semantics (OWL 2 Full semantics). As such, the OWL 2 RL/RDF ruleset
comprises a partial-axiomatisation of the OWL 2 RDF-Based Semantics which is appli-
cable for arbitrary RDF graphs, and thus is is compatible with RDF Semantics [30]. We
thus select OWL 2 RL/RDF as the most comprehensive, standard means of supporting
RDFS and OWL entailment using rules, which largely subsumes the entailment pos-
sible through RDFS, DLP, pD*, RDFS-Plus, etc. For reference, we provide the OWL
2 RL/RDF ruleset in Appendix A, highlighting various characteristics which we will
discuss as appropriate. (Please also see [29] in these proceedings for discussion on the
combination of rules and ontologies.)

Forward Chaining We opt to perform forward-chaining materialisation of inferred
data with respect to (a subset of) OWL 2 RL/RDF rules—i.e., we aim to make explicit
the implicit data inferable through these rules (as opposed to, e.g., rewriting/extending
queries and posing them against the original data in situ).

A materialisation approach offers two particular benefits:

– pre-runtime execution: materialisation can be conducted off-line (or, more accu-
rately while loading data) avoiding the run-time expense of query-specific backward-
chaining techniques which may adversely affect query response times;

– consumer independent: the inferred data provided by materialisation can subse-
quently be consumed in the same manner as explicit data, without the need for
integrating a reasoning component into the runtime engine.

Note that in the spirit of one size does not fit all, forward-chaining materialisation
is not a “magic-bullet”: backward-chaining may be more propitious to support infer-
ences where the amount of data involved is prohibitively expensive to materialise and
index, and where these inferred data are infrequently required by the consumer applica-
tion. Herein, we focus on materialisation, but grant that the inherent trade-off between
offline forward-chaining and runtime backward-chaining warrants further investigation
in another scope.

Alongside scalability and robustness, we identify two further requirements for our
materialisation approach:

– efficiency: the reasoning algorithm must not only be able to process large-amounts
of data, but should do so in as little computation time as possible;

– terseness: to reduce the burden on the consumer system—e.g., with respect to in-
dexing or query-processing—we wish to keep a succinct volume of materialised
data and aim instead for “reasonable” completeness.



Both of these additional requirements are intuitive, but also non-trivial, and so will
provide important input for our design decisions.

OWL 2 RL/RDF Scalability Full materialisation with respect to the entire set of OWL
2 RL/RDF rules is infeasible for our use-case. First, a subset of OWL 2 RL/RDF rules
are expressed informally—i.e., they are not formalised by means of Horn clauses—and
may introduce new terms as a consequence of the rule, which in turn affects decidability
(i.e., the achievability of a finite fixpoint). For example, OWL 2 RL/RDF rule dt-eq is
specified as:

∀lt1, lt2 ∈ L with the same data value, infer (lt1, owl : sameAs, lt2) .

Note that this rule does not constrain lt1 or lt2 to be part of any graph or interpretation
under analysis. Similarly, rule dt-diff entails pairwise owl:differentFrom rela-
tions between all literals with different data values, and rule dt-type2 entails an explicit
membership triple for each literal to its datatype. These rules applied to, e.g., the value
set of decimal-expressible real numbers (denotable by the datatype xsd:decimal)
entail infinite triples.17

Aside from these datatype rules, the worst-case complexity of applying OWL 2
RL/RDF rules is cubic with respect to the known set of constants (a.k.a. the Herbrand
universe); for example, consider the following two triples:

(owl:sameAs, owl:sameAs, rdf:type)
(owl:sameAs, rdfs:domain, bad:Hub)

Adding these two triples to any arbitrary RDF graph will lead to the inference of all pos-
sible (generalised) triples by the OWL 2 RL/RDF rules: i.e., the inference of C×C×C
(a.k.a. the Herbrand base), where C ⊂ C is the set of RDF constants (§ 2.1) mentioned
in the OWL 2 RL/RDF ruleset and the graph (a.k.a. the Herbrand universe). The pro-
cess involves the OWL 2 RL/RDF “equality rules” (eq-*) and the rule for supporting
rdfs:domain (prp-dom), which lead to the inference of |C|3 triples, as such emulat-
ing the explosive nature of inconsistency without actually requiring any inconsistency—
we leave the details of the inferencing as an exercise for the reader (available in [34]).

This simple example raises concerns with respect to all of our defined requirements:
materialising the required entailments for a large graph will be neither scalable nor
efficient; even assuming that materialisation were possible, the result would not be terse
(or be of any use at all to the consumer system); given that a single remote publisher
can arbitrarily make such assertions in any location they like, such reasoning is clearly
not robust.

Even for reasonable inputs, the result size and expense of OWL 2 RL/RDF materi-
alisation can be prohibitive for our scenario. For example, chains of transitive relations
of length n mandate quadratic (n

2−n
2 ) materialisation. Large equivalence classes (sets

17 Typically, materialisation engines support non-standard versions of these rules using heuristics
such as canonicalisation of datatype literals, or only applying the rules over literals that appear
in the ruleset or in the data under analysis.



of individuals who are pairwise related by owl:sameAs) similarly mandate the mate-
rialisation of n2 pairwise symmetric, reflexive and transitive owl:sameAs relations.
Given our input sizes and the distinct possibility of such phenomena in our corpus,
such quadratic materialisation quickly infringes upon our requirements for scalability,
efficiency and arguably terseness.

Moreover, certain rules can materialise inferences which hold for every term in
the graph—we call these inferences tautological. For example, the OWL 2 RL/RDF
rule eq-ref materialises a reflexive owl:sameAs statement for every known term,
reflecting the fact that everything is the same as itself. Thus, we omit such tautological
rules (eq-ref for OWL 2 RL/RDF), viewing them as contrary to our requirement for
terseness.

As such, the OWL 2 RL/RDF ruleset—and application thereof—requires significant
tailoring to meet our requirements; we begin with our first non-standard optimisation in
the following section.

2.3 Distinguishing Terminological Data

As previously described, RDFS/OWL allow for disseminating terminological data—
loosely schema-level data—which provide definitions of classes and properties. Given
a sufficiently large corpora collected from the Web, the percentage of terminological
data is relatively small when compared to the volume of assertional data: typically—
and as we will see in § 2.6—terminological data represent less than one percent of such
a corpus [35, 37]. Assuming that the proportion of terminological data is quite small—
and given that these data are among the most commonly accessed during reasoning—we
formulate an approach around the assumption that such data can be efficiently handled
and processed independently of the main bulk of assertional data. First, we provide
some preliminaries relating to our notion of terminological data.

Meta-class We consider a meta-class as a class specifically of classes or properties;
i.e., the members of a meta-class are themselves either classes or properties. Herein,
we restrict our notion of meta-classes to the set defined in RDF(S) and OWL spec-
ifications, where examples include rdf:Property, rdfs:Class, owl:Class,
owl:FunctionalProperty, owl:Restriction, owl:DatatypeProperty,
etc.; note that rdfs:Resource, rdfs:Literal, e.g., are not considered meta-
classes.

Meta-property A meta-property is one which has a meta-class as its domain; again,
we restrict our notion of meta-properties to the set defined in RDF(S) and OWL specifi-
cations, where examples include rdfs:domain, rdfs:subClassOf, owl:has-
Key, owl:inverseOf, owl:oneOf, owl:onProperty, owl:unionOf, etc.;
note that rdf:type, owl:sameAs, rdfs:label, e.g., do not have a meta-class as
domain and so are not considered meta-properties.

Terminological triple We define the set of terminological triples as the union of the
following sets of triples:



1. triples with rdf:type as predicate and a meta-class as object;
2. triples with a meta-property as predicate;
3. triples forming a valid RDF list whose head is the object of a meta-property (e.g.,

a list used for owl:unionOf, owl:intersectionOf, etc.);

Our approach for separating terminological data is related to the area of partial eval-
uation and program specialisation of Logic Programs [50, 53, 44]: we take a generic
(meta) program—such as RDFS, pD*, OWL 2 RL/RDF, etc.—and partially evaluate
this program with respect to terminological knowledge. The result of this partial evalu-
ation is a set of terminological inferences and a residual program which can be applied
over the assertional data; this specialised assertional program is then primed using fur-
ther optimisation before application over the bulk of assertional data.

Towards this goal, we begin by formalising the notion of a T-split rule which distin-
guishes between terminological and assertional atoms (T-atoms/A-atoms).

Definition 1 (T-split rule). A T-split rule R is given as follows:

H ← A1, . . . , An, T1, . . . , Tm (n,m ≥ 0) , (2)

where the Ti, 0 ≤ i ≤ m atoms in the body (T-atoms) are all those that can only have
terminological ground instances, whereas theAi, 1 ≤ i ≤ n atoms (A-atoms), can have
arbitrary ground instances. We use TBody(R) and ABody(R) to respectively denote
the set of T-atoms and the set of A-atoms in the body of R.

Henceforth, we assume rules are T-split such that T-atoms and A-atoms can be refer-
enced using the functions TBody and ABody when necessary.

Example 1. Let REX denote the following rule:

(?x, a, ?c2)← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

When writing T-split rules, we denote TBody(REX) by underlining: the underlined
T-atom can only be bound by a triple with the meta-property rdfs:subClassOf as
RDF predicate, and thus can only be bound by a terminological triple. The second atom
in the body can be bound by assertional or terminological triples, and so is considered
an A-atom. ♦

The notion of a T-split program—containing T-split rules and ground T-atoms and A-
atoms—follows naturally. Distinguishing terminological atoms in rules enables us to
define a form of stratified program execution, whereby a terminological fixpoint is
reached first, and then the assertional data is reasoned over; we call this the T-split
least fixpoint. Before we formalise this alternative fixpoint procedure, we must first de-
scribe our notion of a T-ground rule, where the variables appearing in T-atoms of a rule
are grounded separately by terminological data:

Definition 2 (T-ground rule). A T-ground rule is a set of rule instances for the T-split
rule R given by grounding TBody(R) and the variables it contains across the rest
of the rule. We denote the set of such rules for a program P and a set of facts I as
GroundT (P, I), defined as:

GroundT (P, I) :={Head(R)θ←ABody(R)θ | R ∈ P, ∃I ′ ⊆ I s.t. θ = mgu(TBody(R), I ′)}



The result is a set of rules whose T-atoms are grounded by the terminological data in I .

Example 2. Consider the T-split rule REX as before:

(?x, a, ?c2)← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

Now let

IEX := { (foaf:Person, rdfs:subClassOf, foaf:Agent),
(foaf:Agent, rdfs:subClassOf, dc:Agent) }

Here,

GroundT ({REX}, IEX) = { (?x, a, foaf:Agent)← (?x, a, ?foaf:Person);
(?x, a, dc:Agent)← (?x, a, ?foaf:Agent) }.

♦

We can now formalise our notion of the T-split least fixpoint, where a terminological
least model is determined, T-atoms of rules are grounded against this least model, and
the remaining (proper) assertional rules are applied against the bulk of assertional data
in the corpus. (In the following, we recall from § 2.1 the notions of the immediate
consequence operator TP , the least fixpoint lfp(TP ), and the least model lm(P ) for a
program P .)

Definition 3 (T-split least fixpoint). The T-split least fixpoint for a program P is bro-
ken up into two parts: (i) the terminological least fixpoint, and (ii) the assertional least
fixpoint. Let PF := {R ∈ P | Body(R) = ∅} be the set of facts in P ,18 let PT∅ :=
{R ∈ P | TBody(R) 6= ∅,ABody(R) = ∅}, let P ∅A := {R ∈ P | TBody(R) =
∅,ABody(R) 6= ∅}, and let PTA := {R ∈ P | TBody(R) 6= ∅,ABody(R) 6= ∅}. Note
that P = PF ∪ PT∅ ∪ P ∅A ∪ PTA. Now, let

TP := PF ∪ PT∅

denote the initial (terminological) program containing ground facts and T-atom only
rules, and let lm(TP ) denote the least model for the terminological program. Let

PA+ := GroundT (PTA, lm(TP ))

denote the set of (proper) rules achieved by grounding rules in PTA with the termino-
logical atoms in lm(TP ): Now, let

AP := lm(TP ) ∪ P ∅A ∪ PA+

denote the second (assertional) program containing all available facts and proper as-
sertional rules. Finally, we can give the least model of the T-split program P as lm(AP )
for AP derived from P as above—we more generally denote this by lmT (P ).

18 Of course, PF can refer to axiomatic facts and/or the initial facts given by an input knowledge-
base.



An important question thereafter is how the standard fixpoint of the program lm(P )
relates to the T-split fixpoint lmT (P ). Firstly, we show that the latter is sound with
respect to the former:

Theorem 1 (T-split soundness). For any program P , it holds that lmT (P ) ⊆ lm(P ).

Proof available in [34].

Thus, for any given program containing rules and facts (as we define them), the T-
split least fixpoint is necessarily a subset of the standard least fixpoint. Next, we look at
characterising the completeness of the former with respect to the latter; beforehand, we
need to define our notion of a T-Box:

Definition 4 (T-Box). We define the T-Box of an interpretation I with respect to a
program P as the subset of facts in I that are an instance of a T-atom of a rule in P :

TBox(P, I) := {F ∈ I|∃R ∈ P,∃T ∈ TBody(R) s.t. T . F} .

(Here we recall the . notation of an instance [§ 2.1] wherebyA.B iff ∃θ s.t. Aθ = B.)
Thus, our T-Box is precisely the set of terminological triples in a given interpretation
(i.e., graph) that can be bound by a terminological atom of a rule in the program.

We now give a conditional proposition of completeness which states that if no new
T-Box facts are produced during the execution of the assertional program, the T-split
least model is equal to the standard least model.

Theorem 2 (T-split conditional completeness). For any program P , its terminologi-
cal program TP and its assertional program AP , if it holds that TBox(P, lm(TP )) =
TBox(P, lm(AP )), then it holds that lm(P ) = lmT (P ).

Corollary 1 (Rephrased condition for T-split completeness). For any program P ,
if a rule with non-empty ABody does not infer a terminological fact, then lm(P ) =
lmT (P ).

Proofs available in [34].

So one may wonder when this condition of completeness is broken—i.e., when do
rules with assertional atoms infer terminological facts? Analysis of how this can happen
must be applied per rule-set, but for OWL 2 RL/RDF, we conjecture that such a sce-
nario can only occur through (i) so called non-standard use of the set of RDFS/OWL
meta-classes and meta-properties required by the rules, or, (ii) by the semantics of re-
placement for owl:sameAs (supported by OWL 2 RL/RDF rules eq-rep-*).19

We first discuss the effects of non-standard use for T-split reasoning over OWL 2
RL/RDF, starting with a definition.

Definition 5 (Non-standard triples). With respect to a set of meta-properties MP
and meta-classes MC, a non-standard triple is a terminological triple (T-fact wrt.
MP/MC) where additionally:

19 We note that the phrase “non-standard use” has appeared elsewhere in the literature with the
same intuition, but with slightly different formulation and intention; e.g., see [16].



– a meta-class in MC appears in a position other than as the value of rdf:type;
or

– a property in MP ∪ {rdf:type,rdf:first,rdf:rest} appears outside of
the RDF predicate position.

We call the set MP ∪MC ∪ {rdf:type,rdf:first,rdf:rest} the restricted
vocabulary. (Note that restricting the use of rdf:first and rdf:rest would be
superfluous for RDFS and pD* which do not support terminological axioms containing
RDF lists.)

Now, before we formalise a proposition about the incompleteness caused by such
usage, we provide an intuitive example thereof:

Example 3. As an example of incompleteness caused by non-standard use of the meta-
property owl:InverseFunctionalProperty, consider:

1a. (ex:KeyProperty, rdfs:subClassOf, owl:InverseFunctionalProperty)
2a. (ex:isbn13, a, ex:KeyProperty)
3a. (ex:The Road, ex:isbn13, "978-0307265432")
4a. (ex:Road%2C The, ex:isbn13, "978-0307265432")

where triple (1a) is considered non-standard use. The static T-Box in the terminologi-
cal program will include the first triple, and, through the assertional rule cax-sco and
triples (1a) and (2a) will infer:

5a. (ex:isbn13, a, owl:InverseFunctionalProperty)

but this T-fact will not be considered by the pre-ground T-atoms of the rules in the
assertional program. Thus, the inferences:

6a. (ex:The Road, owl:sameAs, ex:Road%2C The)
7a. (ex:Road%2C The, owl:sameAs, ex:The Road)

which should hold through rule prp-ifp and triples (3a), (4a) and (5a) will not be made.
A similar example follows for non-standard use of meta-classes; e.g.:

1b. (ex:inSubFamily, rdfs:subClassOf, rdfs:subClassOf)
2b. (ex:Bos, ex:inSubFamily, ex:Bovinae)
3b. (ex:Daisy, a, ex:Bos)

which through the assertional rule prp-spo1 and triples (1b) and (2b) will infer:

4b. (ex:Bos, rdfs:subClassOf, ex:Bovinae) ,

but not:

5b. (ex:Daisy, a, ex:Bovinae)



since triple (4b) is not included in the terminological program. ♦

Theorem 3 (Conditional completeness for standard use). Let O2R′ denote the set
of (T-split) OWL 2 RL/RDF rules excluding eq-rep-s, eq-rep-p and eq-rep-o; let I
be any interpretation not containing any non-standard use of the restricted vocabulary
which contains (i) meta-classes or meta-properties appearing in the T-atoms of O2R′,
and (ii) rdf:type, rdf:first, rdf:list; and let P := O2R′ ∪ I; then, it holds
that lm(P ) = lmT (P ).

Sketch of proof involving inspection of OWL 2 RL/RDF rules available in [34].

Briefly, we note that [86] have given a similar result for RDFS by inspection of
the rules, and that pD* inference relies on non-standard axiomatic triples whereby the
above results do not translate naturally.

With respect to rules eq-rep-* (which we have thus far omitted), new terminolog-
ical triples can be inferred from rules with non-empty ABody through the semantics
of owl:sameAs, breaking the condition for completeness from Theorem 2. However,
with respect to the T-split inferencing procedure, we conjecture that incompleteness
can only be caused if owl:sameAs affects some constant in the TBody of an OWL
2 RL/RDF rule; we refer the interested reader to [34] for some examples and fur-
ther discussion. In any case, note that (i) in our intended use-case, we do not apply
rules eq-rep-* in our inferencing procedure due to scalability concerns—this will
be discussed further in § 2.5; and (ii) we believe that in practice, T-split incompleteness
through such owl:sameAs relations would only occur for rare corner cases. (For more
detailed work looking at scalable “equality reasoning” for Linked Data, please see [34,
§ 7].)

Conceding the possibility of incompleteness—in particular in the presence of non-
standard triples or owl:sameAs relations affecting certain terminological constants—
we proceed by describing our implementation of the T-split program execution, how it
enables unique optimisations, and how it can be used to derive a subset of OWL 2
RL/RDF rules which are linear with respect to assertional knowledge.

Implementing T-split Inferencing Given that the T-Box remains static during the
application of the assertional program, our T-split algorithm enables a partial-indexing
approach to reasoning, whereby only a subset of assertional triples—in particular those
required by rules with multiple A-atoms in the body—need be indexed. Thus, the T-split
closure can be achieved by means of two triple-by-triple scans of the corpus:

1. the first scan identifies and separates out the T-Box and applies the terminolog-
ical program:
(a) during the scan, any triples that are instances of a T-atom of a rule are indexed

in memory;
(b) after the scan, rules with only T-atoms in the body are applied over the in-

memory T-Box until the terminological least model is reached, and rules with
T-atoms and A-atoms in the body have their T-atoms grounded by these data;



(c) novel inferences in the terminological least model are written to an on-disk file
(these will later be considered as part of the inferred output, and as input to the
assertional program);

2. the second scan applies the assertional program over the main corpus and the
terminological inferences;
(a) each triple is individually checked to see if it unifies with an atom in an asser-

tional rule body;
i. if it unifies with a single-atom rule body, the inference is immediately ap-

plied;
ii. if it unifies with a multi-atom rule body, the triple is indexed and the in-

dex is checked to determine whether the other atoms of the rule can be
instantiated by previous triples—if so, the inference is applied;

(b) inferred triples are immediately put back into step (2a), with an in-memory
cache avoiding cycles and (partially) filtering duplicates.

The terminological program is applied using standard semi-naı̈ve evaluation tech-
niques, whereby only instances of rule bodies involving novel data will fire, ensuring
that derivations are not needlessly and endlessly repeated (see, e.g., [80]).

We give a more formal break-down of the application of the assertional program
in Algorithm 2.1. For our purposes, the A-Box input is the set of axiomatic statements
in the rule fragment, the set of novel terminological inferences, and the entire corpus;
i.e., we consider terminological data as also being assertional in a unidirectional form
of punning [23].

First note that duplicate inference steps may be applied for rules with only one
atom in the body (Lines 11–14): one of the main optimisations of our approach is that it
minimises the amount of data that we need to index, where we only wish to store triples
which may be necessary for later inference, and where triples only grounding single
atom rule bodies need not be indexed. To provide partial duplicate removal, we instead
use a Least-Recently-Used (LRU) cache over a sliding window of recently encountered
triples (Lines 7 & 8)—outside of this window, we may not know whether a triple has
been encountered before or not, and may repeat inferencing steps.

Thus, in this partial-indexing approach, we need only index those triples which are
matched by a rule with a multi-atom body (Lines 15–25). For indexed triples, aside
from the LRU cache, we can additionally check to see if that triple has been indexed
before (Line 19) and we can apply a semi-naı̈ve check to ensure that we only materialise
inferences which involve the current triple (Line 20). We note that as the assertional
index is required to store more data, the two-scan approach becomes more inefficient
than the “full-indexing” approach; in particular, a rule with a body atom containing all
variable terms will require indexing of all data, negating the benefits of the approach;
e.g., if the rule OWL 2 RL/RDF rule eq-rep-s:

(?s′, ?p, ?o)← (?s, owl:sameAs, ?s′),(?s, ?p, ?o)

is included in the assertional program, the entire corpus of assertional data must be
indexed (in this case according to subject) because of the latter “open” atom. We em-
phasise that our partial-indexing performs well if the assertional index remains small
and performs best if every proper rule in the assertional program has only one A-atom



Algorithm 2.1. Reason over the A-Box
Require: ABOX: A /* {t0 . . . tm} */
Require: ASSERTIONAL PROGRAM: AP /* {R0 . . . Rn},TBody(Ri) = ∅ */
1: Index := {} /* triple index */
2: LRU := {} /* fixed-size, least recently used cache */
3: for all t ∈ A do
4: G0 := {}, G1 := {t}, i := 1
5: while Gi 6= Gi−1 do
6: for all tδ ∈ Gi \Gi−1 do
7: if tδ /∈ LRU then /* if tδ ∈ LRU, make tδ most recent entry */
8: add tδ to LRU /* remove eldest entry if necessary */
9: output(tδ)

10: for all R ∈ AP do
11: if |Body(R)| = 1 then
12: if ∃θ s.t. {tδ} = Body(R)θ then
13: Gi+1 := Gi+1 ∪ Head(R)θ
14: end if
15: else
16: if ∃θ s.t. tδ ∈ Body(R)θ then
17: card = |Index|
18: Index := Index ∪ {tδ}
19: if card 6= |Index| then
20: for all θ s.t. Body(Rθ) ⊆ Index, tδ ∈ Body(Rθ) do
21: Gi+1 := Gi+1 ∪ Head(Rθ)
22: end for
23: end if
24: end if
25: end if
26: end for
27: end if
28: end for
29: i++
30: Gi+1 := copy(Gi) /* copy inferences to new set to avoid cycles */
31: end while
32: end for
33: return output /* on-disk inferences */

in the body—in the latter case, no assertional indexing is required. We will use this
observation to identify a subset of T-split OWL 2 RL/RDF rules which are linear with
respect to the assertional knowledge in § 2.5, but first we look at some generic optimi-
sations for the assertional program.



2.4 Optimising the Assertional Program

Note that in Algorithm 2.1 Line 10, all rules are checked for all triples to see if an
inference should take place. Given that (i) the assertional program will be applied over
a corpus containing in the order of a billion triples; (ii) the process of grounding the T-
atoms of T-split rules may lead to a large volume of assertional rules given a sufficiently
complex terminology; we deem it worthwhile to investigate some means of optimising
the execution of the assertional program. Herein, we discuss such optimisations and
provide initial evaluation thereof—note that since our assertional program contains only
assertional atoms, we herein omit the T-split notation where Body(R) always refers to
a purely assertional body.

Merging Equivalent T-ground Rules Applying the T-grounding of rules to derive
purely assertional rules may generate “equivalent rules”: rules which can be unified by
an bijective variable rewriting. Similarly, there may exist T-ground rules with “equiv-
alent bodies” which can be merged into one rule. To formalise these notions, we first
define the bijective variable rewriting function used to determine equivalence of atoms.

Definition 6 (Variable rewriting). A bijective variable rewriting function is an auto-
morphism on the set of variables, given simply as:

ν : V 7→ V

As such, this function is a specific form of variable substitution, where two atoms which
are unifiable by such a rewriting are considered equivalent:

Definition 7 (Equivalent atoms). Two atoms are equivalent (denotedA1 /.A2 reflect-
ing the fact that both atoms are instances of each other) iff they are unifiable by a
bijective variable rewriting:20

A1 /.A2 ⇔ ∃ν s.t. A1ν = A2

Equivalence of a set of atoms follows naturally. Two rules are body-equivalent (R1 /.bR2)
iff their bodies are equivalent:

R1 /.bR2 ⇔ Body(R1) /.Body(R2)⇔ ∃ν s.t. Body(R1)ν = Body(R2)

Two rules are considered fully-equivalent if their bodies and heads are unifiable by the
same variable rewriting:

R1 /.rR2 ⇔ ∃ν s.t.
(
Body(R1)ν = Body(R2) ∧ Head(R1)ν = Head(R2)

)
20 Note that in the unification, only the variables in the left atom are rewritten and not both;

otherwise two atoms such as (?a, foaf:knows, ?b) and (?b, foaf:knows, ?c) would
not be equivalent: they could not be aligned by any (necessarily injective) rewriting function
ν.



Note that fully-equivalent rules are considered redundant, and all but one can be re-
moved without affecting the computation of the least model. Using these equivalence
relations, we can now define our rule-merge function (again recall from § 2.1 our inter-
pretation of multi-atom heads as being conjunctive, and a convenient representation of
the equivalent set of rules):

Definition 8 (Rule merging). Given an equivalence class of rules [R]/.b—a set of
rules between which /.b holds—select a canonical rule R ∈ [R]/.b ; we can now de-
scribe the rule-merge of the equivalence class as

merge([R]/.b) := Head[R]/.b
← Body(R)

where

Head[R]/.b
:=

⋃
Ri∈[R]/.b

Head(Ri)νi s.t. Body(Ri)νi = Body(R)

Now take a program P and let:

P//.b := {[R]/.b | R ∈ P}

denote the quotient set of P given by /.b: the set of all equivalent classes [R]/.b wrt.
the equivalence relation /.b in P . We can generalise the rule merge function for a set
of rules as

merge : 2Rules → 2Rules

P 7→
⋃

[R]/.b∈P//.b

merge([R]/.b)

Example 4. Take three T-ground rules:

(?x, a, foaf:Person)← (?x, foaf:img, ?y)
(?s, foaf:depicts, ?o)← (?s, foaf:img, ?o)
(?a, foaf:depicts, ?b)← (?a, foaf:img, ?b)

The second rule can be merged with the first using ν1 = {?s/?x, ?o/?y}, which gives:

(?x, a, foaf:Person),(?x, foaf:depicts, ?y)← (?x, foaf:img, ?y)

The third rule can be merged with the above rule using ν1 = {?a/?x, ?b/?y} to give:

(?x, a, foaf:Person),(?x, foaf:depicts, ?y)← (?x, foaf:img, ?y)

...the same rule. This demonstrates that the merge function removes redundant fully-
equivalent rules. ♦

Merging the rules thus removes redundant rules, and reduces the total number of rule
applications required for each triple without affecting the final least model:

Proposition 1. For any program P , lm(P ) = lm(merge(P )).

Sketch of proof available in [34].



Rule Index We have reduced the amount of rules in the assertional program through
merging; however, given a sufficiently complex T-Box, we may still have a prohibitive
number of rules for efficient recursive application. We now look at the use of a rule index
which maps a fact to rules containing a body atom for which that fact is an instance,
thus enabling the efficient identification and application of only relevant rules for a
given triple.

Definition 9 (Rule lookup). Given a fact F and program P , the rule lookup function
returns all rules in the program containing a body atom for which F is an instance:

lookup : Facts× 2Rules → 2Rules

(F, P ) 7→
{
R ∈ P | ∃Bi ∈ Body(R) s.t. Bi . F

}

Now, instead of attempting to apply all rules, for each triple we can perform the above
lookup function and return only triples from the assertional program which could po-
tentially lead to a successful rule application.

Example 5. Given a triple:

t :=(ex:me, a, foaf:Person)

and a simple example ruleset:

P := {(?x, a, foaf:Person)← (?x, foaf:img, ?y),
(?x, a, foaf:Agent)← (?x, a, foaf:Person),

(?y, a, rdfs:Class)← (?x, a, ?y)}

lookup(t, P ) returns a set containing the latter two rules. ♦

With respect to implementing this lookup function, we require a rule index. A triple pat-
tern has 23 = 8 possible forms: (?, ?, ?), (s, ?, ?), (?, p, ?), (?, ?, o), (s, p, ?), (?, p, o),
(s, ?, o), (s, p, o). Thus, we require eight indices for indexing body patterns, and eight
lookups to perform lookup(t, P ) and find all relevant rules for a triple. We use seven
in-memory hashtables storing the constants of the rule antecedent patterns as key, and
a set of rules containing such a pattern as value; e.g., {(?x, a, foaf:Person)} is
put into the (?, p, o) index with (a,foaf:Person) as key. Rules containing (?, ?, ?)
patterns without constants are stored in a set, as they are relevant to all triples—they are
returned for all lookups.

We further optimise the rule index by linking dependencies between rules, such that
once one rule fires, we can determine which rules should fire next without requiring an
additional lookup. This is related to the notion of a rule graph in Logic Programming
(see, e.g., [67]):

Definition 10 (Rule graph). A rule graph is defined as a directed graph:

Γ := (P, ↪→)



such that:21

Ri ↪→ Rj ⇔ ∃B ∈ Body(Rj),∃H ∈ Head(Ri) s.t. B . H

where Ri ↪→ Rj is read as “Rj follows Ri”.

By building and encoding such a rule graph into our index, we can “wire” the recur-
sive application of rules for the assertional program. However, from the merge function
(or otherwise) there may exist rules with large sets of head atoms. We therefore extend
the notion of the rule graph to a directed labelled graph with the inclusion of a labelling
function

Definition 11 (Rule-graph labelling). Let Λ denote a labelling function as follows:

Λ : Rules× Rules→ 2Atoms

(Ri, Rj) 7→
{
H ∈ Head(Ri) | ∃B ∈ Body(Rj) s.t. B . H

}
A labelled rule graph is thereafter defined as a directed labelled graph:

ΓΛ := (P, ↪→, Λ)

Each edge in the rule graph is labelled with Λ(Ri, Rj), denoting the set of atoms in
the head of Ri that, when grounded, would be matched by atoms in the body of Rj .

Example 6. Take the two rules:

Ri. (y, a, foaf:Image),(?x, a, foaf:Person)← (?x, foaf:img, ?y)
Rj . (s, a, foaf:Agent)← (?s, a, foaf:Person)

We say that Ri
λ
↪→ Rj , where λ = Λ(Ri, Rj) = {(?x, a, foaf:Person)}. ♦

In practice, our rule index stores sets of elements of a linked list, where each element
contains a rule and links to rules which are relevant for the atoms in that rule’s head.
Thus, for each input triple, we can retrieve all relevant rules for all eight possible pat-
terns, apply those rules, and if successful, follow the respective labelled links to recur-
sively find relevant rules without re-accessing the index until the next input triple.

Rule Saturation We briefly describe the final optimisation technique we investigated,
but which later evaluation demonstrated to be mostly disadvantageous: rule saturation.
We say that a subset of dependencies in the rule graph are strong dependencies, where
the successful application of one rule will always lead to the successful application
of another. Now, we can saturate rules with single-atom bodies by pre-computing the
recursive rule application of its dependencies; we give the gist with an example:

Example 7. Take rules
21 Here, we recall from § 2.1 the ‘.’ notation for an instance.



Ri. (?x, a, foaf:Person),(?y, a, foaf:Image)← (?x, foaf:img, ?y)
Rj . (?s, a, foaf:Agent)← (?s, a, foaf:Person)
Rk. (?y, a, rdfs:Class)← (?x, a, ?y)

We can see that Ri ↪→ Rj , Ri ↪→ Rk, Rj ↪→ Rk as before. Now, we can remove
the links from Ri to Rj and Rk by saturating Ri to:

R′i. (?x, a, foaf:Person),(?y, a, foaf:Image),(?x, a, foaf:Agent),
(foaf:Person, a, rdfs:Class),(foaf:Image, a, rdfs:Class),

(foaf:Agent, a, rdfs:Class)← (?x, foaf:img, ?y)

and, analogously, we can remove the links from Rj to Rk by saturating Rj to:

R′j . (?s, a, foaf:Agent),(foaf:Agent, a, rdfs:Class)← (?s, a, foaf:Person)

Thus, the index now stores R′i, R
′
j , Rk, but without the links between them. ♦

However, as we will see in § 2.4, our empirical analysis found rule saturation to be
mostly disadvantageous: although it decreases the number of necessary rule applica-
tions, as a side-effect, saturated rules can immediately produce a large batch of dupli-
cates which would otherwise have halted a traversal of the rule graph early on. Using
the above example, consider encountering the following sequence of input triples:

1. (ex:Fred, a, foaf:Person)
2. (ex:Fred, foaf:img, ex:FredsPic)

The first triple will fire rule R′j and Rk; the second triple will subsequently fire rule R′i,
and in so doing, will produce a superset of inferences already given by its predecessor.
Without saturation, the second triple would fire Ri, identify (ex:Fred, a, foaf:-
Person) as a duplicate, and instead only fire Rk for (ex:FredsPic, a, foaf:Im-
age).

Preliminary Performance Evaluation We now perform some (relatively) small-scale
experiments to empirically (in)validate our optimisations for the assertional program
execution. Experiments are run on a 2.2GHz Opteron x86-64, 4GB main memory,
160GB SATA hard-disks, running Java 1.6.0 12 on Debian 5.0.4.

We applied reasoning for RDFS (minus the infinite rdf: n axiomatic triples [30]),
pD* and OWL 2 RL/RDF over LUBM(10) [27], consisting of about 1.27 million as-
sertional triples and 295 terminological triples.22 For each rule profile, we applied the
following configurations:

1. N: no partial evaluation: T-Box atoms are bound at runtime from an in-memory
triple-store;

22 Note that we exclude lg/gl rules for RDFS/pD* since we allow generalised triples [24]. We
also restrict OWL 2 RL/RDF datatype reasoning to apply only to literals in the program.



2. NI: no partial evaluation with linked (meta-)rule index;
3. P: partial-evaluation: generating and applying an assertional program;
4. PI: partial evaluation with linked rule index;
5. PIM: partial evaluation with linked rule index and rule merging;
6. PIMS: partial evaluation with linked rule index, rule merging and rule satura-

tion.

Table 1 enumerates the results for each profile, with a breakdown of (i) the number
of inferences made, (ii) the total number of assertional rules generated, (iii) the total
number of merged rules; and for each of the six configurations; (iv) the time taken,
(v) the total number of attempted rule applications—i.e., the total number of times a
triple is checked to see if it grounds a body atom of a rule to produce inferences—
and the percent of rule applications which generated inferences, and (vi) the number of
duplicate triples filtered out by the LRU cache (Lines 7 & 8, Algorithm 2.1).

In all approaches, applying the non-optimised partially evaluated (assertional) pro-
gram takes the longest: although the partially evaluated rules are more efficient to apply,
this approach requires an order of magnitude more rule applications than directly ap-
plying the meta-program, and so applying the unoptimised residual assertional program
takes approximately 2× to 4× longer than the baseline.

With respect to rule indexing, the technique has little effect when applying the meta-
program directly—many of the rules contain open patterns in the body. Although the
number of rule applications diminishes somewhat, the expense of maintaining and ac-
cessing the rule index actually worsens performance by between 10% and 20%. How-
ever, with the partially evaluated rules, more variables are bound in the body of the
rules, and thus triple patterns offer more selectivity and, on average, the index returns
fewer rules. We see that for PI and for each profile respectively, the rule index sees a
78%, 69% and 72% reduction in the equivalent runtime (P) without the rule index; the
reduction in rule applications (73%, 80%, 86% reduction resp.) is significant enough to
more than offset the expense of maintaining and using the index. With respect to the
baseline (N), PI makes a 10%, 38% and 45% saving respectively; notably, for RDFS,
the gain in performance over the baseline is less pronounced, where, relative to the more
complex rulesets, the number of rule applications is not signficantly reduced by partial
evaluation and indexing.

Merging rules provided a modest saving across all rulesets, with PIM giving a 9%,
3% and 6.5% saving in runtime and a 12%, 8% and 4% saving in rule applications over
PI respectively for each profile. Note that although OWL 2 RL/RDF initially creates
more residual rules than pD* due to expanded T-Box level reasoning, these are merged
to a number just above pD*: OWL 2 RL supports intersection-of inferencing used by
LUBM and not in pD*. LUBM does not contain OWL 2 constructs, but redundant
meta-rules are factored out during the partial evaluation phase.

Finally, we look at the effect of saturation and approach PIMS. For RDFS, we en-
countered a 15% reduction in runtime over PIM, with a 21% reduction in rule applica-
tions required. However, for pD* we encountered a 2% increase in runtime over that
of PIM despite a 34% reduction in rule applications: as previously alluded to, the cache
was burdened with 2.6× more duplicates, negating the benefits of fewer rule applica-
tions. Similarly, for OWL 2 RL/RDF, we encountered a 4% increase in runtime over



RDFS
inferred 0.748 million

T-ground rules 149
after merge 87

config. N NI P PI PIM PIMS
time (s) 99 117 404 89 81 69

rule apps (m) 16.5 15.5 308 11.3 9.9 7.8
% success 43.4 46.5 2.4 64.2 62.6 52.3

cache hits (m) 10.8 10.8 8.2 8.2 8.2 8.1
pD*

inferred 1.328 million
T-ground rules 175

after merge 108
config. N NI P PI PIM PIMS

time (s) 365 391 734 227 221 225
rule apps (m) 62.5 50 468 22.9 21.1 13.9

% success 18.8 23.4 2.6 51.5 48.7 61.3
cache hits (m) 19.1 19.1 15.1 15.1 14.9 38.7

OWL 2 RL/RDF
inferred 1.597 million

T-ground rules 378
after merge 119

config. N NI P PI PIM PIMS
time (s) 858 940 1,690 474 443 465

rule apps (m) 149 110 1,115 81.8 78.6 75.6
% success 4.2 5.6 0.8 10.5 6.8 15

cache hits (m) 16.5 16.5 13.1 13 12.7 34.4

Table 1. Details of reasoning for LUBM(10)—containing 1.27M assertional triples
and 295 terminological triples—given different reasoning configurations (the most
favourable result for each row is highlighted in bold)

that of PIM despite a 4% reduction in rule applications: again, the cache encountered
2.7× more duplicates.

The purpose of this evaluation is to give a granular analysis and empirical justifica-
tion for our optimisations for different rule-based profiles: one might consider different
scenarios (such as a terminology-heavy corpus) within which our optimisations may
not work. However, we will later demonstrate these optimisations—with the exception
of rule saturation—to be propitious for our scenario of reasoning over Linked Data.

It is worth noting that—aside from reading input and writing output—we performed
the above experiments almost entirely in-memory. Given the presence of (pure) asser-
tional rules which have multi-atom bodies where one such atom is “open” (all terms are



variables)—viz., pD* rule rdfp11 and OWL 2 RL/RDF rules eq-rep-*—we currently
must naı̈vely store all data in memory, and cannot scale much beyond LUBM(10).23

2.5 Towards Linked Data Reasoning

With the notions of a T-split program, partial evaluation and assertional program opti-
misations in hand, we now reunite with our original use-case of Linked Data reasoning,
for which we move our focus from clean corpora in the order of a million statements
to our corpus in the order of a billion statements collected from almost four million
sources—we will thus describe some trade-offs we make in order to shift up (at least)
these three orders of magnitude in scale, and to be tolerant to noise and impudent data
present in the corpus. More specifically, we:

1. first describe, motivate and characterise the scalable subset of OWL 2 RL/RDF that
we implement based partially on the discussion in the previous section;

2. introduce and describe authoritative reasoning, whereby we include cautious con-
sideration of the source of terminology into the reasoning process;

3. outline our distribution strategy for reasoning;
4. evaluate our methods by applying reasoning over our Linked Data evaulation cor-

pus of 1.12 billion quadruples crawled from 4 million RDF/XML documents.

“A-linear” OWL 2 RL/RDF Again, for a generic set of RDF rules (which do not cre-
ate new terms in the head), the worst case complexity is cubic—in § 2.2 we have already
demonstrated a simple example which instigates cubic reasoning for OWL 2 RL/RDF
rules, and discussed how, for many reasonable inputs, rule application is quadratic.
Given our use-case, we want to define a profile of rules which will provide linear com-
plexity with respect to the assertional data in the corpus: what we call “A-linearity”.

In fact, in the field of Logic Programming (and in particular Datalog) the notion of
a linear program refers to one which contains rules with no more than one recursive
atom in the body—a recursive atom being one which cannot be instantiated from an
inference (e.g., see [15]).24 For Datalog, recursiveness is typically defined on the level
of predicates using the notion of intensional predicates, which represent facts that can
(only) be inferred by the program, and extensional predicates, which represent facts in
the original data; atoms with intensional predicates are non-recursive [15]. Since we
deal with a single ternary predicate, such a predicate-level distinction does not apply,
but the general notion of recursiveness does. This has a notable relationship to our dis-
tinction of terminological knowledge—which we deem to be recursive only within itself
(assuming standard use of the meta-vocabulary and “well-behaved equality” involving
owl:sameAs)—and assertional knowledge which is recursive.
23 We could consider storing data in an on-disk index with in-memory caching; however, given

the morphology and volume of the assertional data, and the frequency of lookups required,
we believe that the cache hit rate would be low, and that the naı̈ve performance of the on-
disk index would suffer heavily from hard-disk latency, becoming a severe bottleneck for the
reasoner.

24 There is no relation between a linear program in our case, and the field of Linear Program-
ming [83].



Based on these observations, we identify an A-linear subset of OWL 2 RL/RDF
rules which contain only one recursive/assertional atom in the body, and apply only
these rules. Taking this subset as our “meta-program”, after applying our T-grounding
of meta-rules during partial evaluation, the result will be a set of facts and proper rules
with only one assertional atom in the body. The resulting linear assertional program
can then be applied without any need to index the assertional data (other than for the
LRU duplicates soft-cache); also, since we do not need to compute assertional joins—
i.e., to find the most general unifier of multiple A-atoms in the data—we can employ a
straightforward distribution strategy for applying the program.

Definition 12 (A-linear program). Let P be any T-split (a.k.a. meta) program. We
denote the A-linear program of P by P∝A defined as follows:

P∝A := {R ∈ P : |ABody(R)| ≤ 1}

(Note that by the above definition, P∝A also includes the pure-terminological rules and
the facts of P.)

Thus, the proper rules of the assertional program AP∝A generated from an A-linear
meta-program P∝A will only contain one atom in the head. For convenience, we denote
the A-linear subset of OWL 2 RL/RDF byO2R∝A, which consists of rules in Tables 13–
16 (Appendix A).

Thereafter, the assertional program demonstrates two important characteristics with
respect to scalability: (i) the assertional program can be independently applied over
subsets of the assertional data, where a subsequent union of the resultant least models
will represent the least model achievable by application of the program over the data in
whole; (ii) the volume of materialised data and the computational expense of applying
the assertional program are linear with respect to the assertional data.

Proposition 2 (Assertional partitionability). Let I be any interpretation, and {I1, . . . ,
In} be any set of interpretations such that:

I =

n⋃
i=1

Ii

Now, for any meta-program P , its A-linear subset P∝A, and the assertional program
AP∝A derived therefrom, it holds that:

lm(AP∝A ∪ I) =
n⋃
i=1

lm(AP∝A ∪ Ii)

Proof. (Sketch) Follows naturally from the fact that rules in AP∝A (i) are monotonic
and (ii) only contain single-atom bodies. ut

Thus, deriving the least model of the assertional program can be performed over any
partition of an interpretation; the set union of the resultant least models is equivalent to
the least model of the unpartitioned interpretation. Aside from providing a straightfor-
ward distribution strategy, this result allows us to derive an upper-bound on the cardi-
nality of the least model of an assertional program.



Proposition 3 (A-Linear least model size). Let AP∝A denote any A-linear asser-
tional program composed of RDF proper rules and RDF facts composed of ternary-
arity atoms with the ternary predicate T . Further, let I∝A denote the set of facts in
the program and PR∝A denote the set of proper rules in the program (here, AP∝A =
I∝A ∪ PR∝A). Also, let the function Const denote the Herbrand universe of a set of
atoms (the set of RDF constants therein), and let τ denote the cardinality of the Her-
brand universe of the heads of all rules in PR∝A (the set of RDF constants in the heads
of the proper T-ground rules of AP∝A) as follows:

τ =
∣∣∣Const( ⋃

R∈PR∝A

Head(R)
)∣∣∣

Finally, let α denote the cardinality of the set of facts:

α = |I∝A|

Then it holds that:

|lm(AP∝A)| ≤ τ3 + α(9τ2 + 27τ + 27)

Proof given in [34].
Note that τ is given by the terminology (more accurately the T-Box) of the data and

the terms in the heads of the original meta-program. Considering τ as a constant, we
arrive at the maximum size of the least model as c + cα: i.e., the least model is linear
with respect to the assertional data. In terms of rule applications, the number of rules
is again a function of the terminology and meta-program, and the maximum number of
rule applications is the product of the number of rules (considered a constant) and the
maximum size of the least model. Thus, the number of rule applications remains linear
with respect to the assertional data. This is a tenuous result with respect to scalability,
and constitutes a refactoring of the cubic complexity to separate out a static terminology.
Thereafter, assuming the terminology to be small, the constant c will be small and the
least model will be terse; however, for a sufficiently complex terminology, obviously
the τ3 and ατ2 factors begin to dominate—for a terminology heavy program, the worst-
case complexity again approaches τ3. Thus, applying an A-linear subset of a program
is again not a “magic bullet” for scalability, although it should demonstrate scalable
behaviour for small terminologies (i.e., where τ is small) and/or other reasonable inputs.

Moving forward, we select an A-linear subset of the OWL 2 RL/RDF ruleset for
application over our ruleset. This subset is enumerated in Appendix A, with rule tables
categorised by terminological and assertional arity of rule bodies. Again, we also make
some other amendments to the ruleset:

1. we omit datatype rules which lead to the inference of (near-)infinite triples;
2. we omit inconsistency checking rules;
3. for reasons of terseness, we omit rules which infer ‘tautologies’—statements that

hold for every term in the graph, such as reflexive owl:sameAs statements (we
also filter these from the output).



Authoritative Reasoning In preliminary evaluation of our Linked Data reasoning [35],
we encountered a puzzling deluge of inferences: We found that remote documents
sometimes cross-define terms resident in popular vocabularies, changing the inferences
authoritatively mandated for those terms. For example, we found one document25 which
defines owl:Thing to be an element (i.e., a subclass) of 55 union class descriptions—
thus, materialisation wrt. OWL 2 RL/RDF rule cls-uni [24, Table 6] over any mem-
ber of owl:Thing would infer 55 additional memberships for these obscure union
classes. We found another document26 which defines nine properties as the domain of
rdf:type—again, anything defined to be a member of any class would be inferred
to be a member of these nine properties by rules prp-dom. Even aside from “cross-
defining” core RDF(S)/OWL terms, popular vocabularies such as FOAF were also af-
fected (we will see more in the evaluation presented in § 2.6).

In order to curtail the possible side-effects of open Web data publishing (as also
exemplified by the two triples which cause cubic reasoning in § 2.2), we include the
source of data in inferencing. Our methods are based on the view that a publisher in-
stantiating a vocabulary’s term (class/property) thereby accepts the inferencing man-
dated by that vocabulary (and recursively referenced vocabularies) for that term. Thus,
once a publisher instantiates a term from a vocabulary, only that vocabulary and its
references should influence what inferences are possible through that instantiation. As
such, we ignore unvetted terminology at the potential cost of discounting serendipitous
mappings provided by independent parties, since we currently have no means of distin-
guishing “good” third-party contributions from “bad” third-party contributions. We call
this more conservative form of reasoning authoritative reasoning, which only considers
authoritatively published terminological data, and which we now describe. (Please also
see [77] in these proceedings for discussion on trust models for the Web.)

Firstly, we must define the relationship between a class/property term and a vocab-
ulary, and give the notion of term-level authority. We view a term as an RDF constant,
and a vocabulary as a Web document: from § 2.1, we recall the get mapping from a URI
(a Web location) to an RDF graph it may provide by means of a given HTTP lookup,
and the redirs mapping for traversing the HTTP redirects given for a URI.

Definition 13 (Authoritative sources for terms). Letting B(G) denote the set of blank-
nodes appearing in the graph G, we denote a mapping from a source URI to the set of
terms it speaks authoritatively for as follows:27

auth : S→ 2C

s 7→ {c ∈ U | redirs(c) = s} ∪ B(get(s))

Thus, a Web source is authoritative for URIs which dereference to it and the blank
nodes it contains; for example, the FOAF vocabulary is authoritative for terms in its
namespace since it follows best-practices and makes its class/property URIs dereference

25 http://lsdis.cs.uga.edu/˜oldham/ontology/wsag/wsag.owl; retr. early 2010, offline
2011/01/13

26 http://www.eiao.net/rdf/1.0; retr. 2011/01/13
27 Even predating Linked Data, dereferencable vocabulary terms were encouraged; cf. http:
//www.w3.org/TR/2006/WD-swbp-vocab-pub-20060314/; retr. 2011/01/13



to an RDF/XML document defining the terms. Note that we consider all documents to
be non-authoritative for all literals.

To negate the effects of non-authoritative terminological axioms on reasoning over
Web data, we add an extra condition to the T-grounding of a rule (see Definition 2):
in particular, we only require amendment to rules where both TBody(R) 6= ∅ and
ABody(R) 6= ∅.

Definition 14 (Authoritative T-ground rule instance). Let TAVars(R) ⊂ V denote
the set of variables appearing in both TBody(R) and ABody(R), letG denote a graph,
and let s denote the source of that graph. Now, we define the set of authoritative T-
ground rule instances for a program P in the graph G as:
̂GroundT (P,G, s) :={
GroundTθ ({R}, G) | R ∈ PT∅∪P ∅A∨

(
R ∈ PTA∧∃v ∈ TAVars(R) s.t. θ(v) ∈ auth(s)

)}
where GroundTθ is the T-grounding (as per Definition 2) using the the most general
unifier θ, and where we recall the PTA, PT∅, P ∅A conventions from Definition 3.

The additional condition for authoritativeness states that if ABody(R) 6= ∅ and
TBody(R) 6= ∅, then the unifier θ must substitute at least one variable appearing in both
ABody(R) and TBody(R) for an authoritative term (wrt. source s)—i.e., source s must
speak authoritatively for a term that necessarily appears in each instance of ABody(R),
and cannot create rule instances which could apply over arbitrary assertional data not
mentioning any of its terms. We now formalise this notion:

Theorem 4 (Authoritative reasoning guarantee). Let Const denote a function which
returns the Herbrand universe of a set of rules (including facts): i.e., a function which
returns the set of RDF constants appearing in a program P or a graph G. Next, let G′

be any graph, let s′ be the source of graph G′ such that get(s′) = G′, and let P be any
(T-split) program and G be any graph such that

Const(P ∪G) ∩ auth(s′) = ∅ ;

i.e., neither P nor G contain any terms for which s′ speaks authoritatively. Finally, let
P ′ be the set of partially evaluated rules derived from G with respect to P , where:

P ′ := {R ∈ ̂GroundT (P,G′, s′)|Body(R) 6= ∅}

Now, it holds that lm(P ∪G) = lm(P ∪ P ′ ∪G).

Corollary 2. Given the same assumption(s) as Theorem ??, it also holds that lmT (P ∪
G) = lmT (P ∪ P ′ ∪G).

Proofs available in [34].

Example 8. Take the T-split rule REX as before:

(?x, a, ?c2)← (?c1, rdfs:subClassOf, ?c2), (?x, a, ?c1)

and let GEX be the graph from source s:



GEX := { (foaf:Person, rdfs:subClassOf, foaf:Agent),
(foaf:Agent, rdfs:subClassOf, dc:Agent) }

Here, TAVars(REX) = {?c1}. Now, for each substitution θ, there must exist v ∈
TAVars(REX) such that s speaks authoritatively for θ(v). In this case, s must speak
authoritatively for the ?c1 substitution foaf:Person for the rule:

(?x, a, foaf:Agent)← (?x, a, foaf:Person)

to be an authoritatively T-ground rule instance, and speak authoritatively for the ?c1
substitution foaf:Agent for:

(?x, a, dc:Agent)← (?x, a, foaf:Agent)

to be authoritative. In other words, for these T-ground rules to be authoritative, GEX
must be served by the document referenced by the FOAF terms—i.e., the FOAF vocab-
ulary. Note that this authoritatively ground rule contains the term foaf:Agent in the
body, and thus can only generate inferences over graphs containing this term (for which
s is authoritative). ♦

For reference, we highlight variables in TAVars(R) with boldface in the rule tables
of Appendix A (only applies to rules with A-atoms and T-atoms in the body).

It is worth noting that for rules where ABody(R) and TBody(R) are both non-
empty, authoritative instantiation of the rule will only consider unifiers for TBody(R)
which come from one source: however, in practice for OWL 2 RL/RDF this is not so
restrictive: although TBody(R) may contain multiple atoms, in such rules TBody(R)
usually refers to an atomic axiom which requires multiple triples to represent—indeed,
the OWL 2 Structural Specification [58] enforces usage of blank-nodes and cardinalities
on such constructs to ensure that the constituent triples of the multi-triple axiom appear
in one source. To take an example, for the T-atoms:

(?x, owl:hasValue, ?y)
(?x, owl:onProperty, ?p)

we would expect ?x to be ground by a blank-node skolem and thus expect the instance
to come from one graph. Although it should be noted that such restrictions do not carry
over for OWL 2 Full—which is applicable for arbitrary RDF graphs—it still seems
reasonable for us to restrict those OWL 2 Full terminological axioms which require
multiple triples to express to be given entirely within one Web document (here, perhaps
even making our reasoning more robust).

Note finally that terminological inferences—produced by rules with only T-atoms—
are never considered authoritative. Thus, by applying authoritative reasoning, we do
not T-ground rules from such facts. For OWL 2 RL/RDF, this only has a “minor” ef-
fect on the least model computation since OWL 2 RL/RDF (intentionally) contains
redundant rules [24], which allow for deriving the same inferences on a purely asser-
tional level. Along these lines, in Appendix A, Table 20, we list all of the T-atom only
rules; assuming that the inferences given by each rule are not considered terminologi-
cal, we show how the omissions are covered by the recursive application of other asser-
tional rules. We note that we may miss some inferences possible through inference of



rdfs:subClassOf relations between owl:someValuesFrom restriction classes,
and also between owl:allValuesFrom restriction classes, since we do not support
the respective assertional rules cls-svf1 and cls-avf.

Distributed Reasoning As previously mentioned, Proposition 2 lends itself to a straight-
forward distribution strategy for applying our A-linear OWL 2 RL/RDF subset. We
briefly discuss our distribution strategy, where we use one master machine to compute
and coordinate “global knowledge” and use several slave machines to perform tasks
in parallel over the bulk of the corpus. We assume that all machines are in a shared-
nothing configuration [72]; we also assume that the corpus is evenly split over the slave
machines in preparation for reasoning (in our setting, this is the direct result of our
distributed crawler), and that the slave machines have roughly even specifications. For
more information about our distribution architecture, we refer the interested reader to
[34, § 3.6].

As a first step for the distributed reasoning, we extract the T-Box data from each
machine, use the master machine to execute the terminological program and create the
residual assertional program, and then distribute this assertional program (the proper
rules) to each slave machine and let it apply the program independently (and in parallel)
over its local segment of the corpus. This process is summarised as follows:

1. parallel: identify and separate out the T-Box from the main corpus in parallel on
the slave machines;

2. local: the master machine then
(a) gathers and merges the T-Box segments from the slave machines;
(b) generates axiomatic triples from the meta-program and applies T-atom only

rules over the T-Box;
(c) authoritatively grounds the T-atoms in rules with one A-atom, thus generating

the A-linear assertional program;
(d) optimises the assertional program by merging rules and building a linked rule

index;
3. parallel: send the assertional linked rule index to all slave machines and reason

over the main corpus in parallel on each machine.

The results of the above three-step operation are: (a) axiomatic triples and termino-
logical inferences resident on the master machine; and (b) assertional inferences split
over the slave machines. Note further that the output of this process may contain (both
local and global) duplicates.

2.6 Linked Data Reasoning Evaluation

We now give evaluation of applying our subset of OWL 2 RL/RDF over the 1.12b
quads (947m unique triples) of Linked Data crawled in the previous section. Note that
we also require information about redirects encountered in the crawl to reconstruct
the redirs function required for authoritative reasoning (see Definition 13) and that we
output a flat file of G-Zipped triples. All of our evaluation is based on nine machines



(1 master/8 slaves) connected by Gigabit ethernet28, each with uniform specifications;
viz.: 2.2GHz Opteron x86-64, 4GB main memory, 160GB SATA hard-disks, running
Java 1.6.0 12 on Debian 5.0.4. Please note that much of the evaluation presented in this
tutorial assumes that the slave machines have roughly equal specifications in order to
ensure that tasks finish in roughly the same time, assuming even data distribution.

Survey of Terminology In [34], we presented an analysis of the use of RDFS and
OWL in the terminology given by our corpus, in particular with respect to OWL 2
RL/RDF rules. By extension, we provided insights into which RDFS and OWL con-
structs feature prominently in Linked Data vocabularies. We refer [34] for the details,
but in summary we found that our A-linear rules support 99.3% of the total T-ground
rules generated from the terminology in the Linked Data corpus, and authoritative rea-
soning with respect to these rules supports 81.7% of the total; excluding one docu-
ment from the ontologydesignpatterns.org domain which publishes 61,887
non-authoritative axioms, the latter percentage increases to 95.1%. Our authoritative
A-linear rules fully support (with respect to OWL 2 RL/RDF rules) 90.6% of the doc-
uments containing unique terminology, and partially support 99% of these documents.
The summation of the ranks of documents fully supported by our A-linear rules was
77% of the total, and the analagous percentage for documents supported by authoritative
reasoning over these rules was 70.3% of the total; we found that the top-ranked docu-
ments favour RDFS/OWL 1 axioms which are expressible as a single RDF triple (as op-
posed to, e.g., class descriptions requiring use of lists, or restrictions), and that the high-
est ranked document serving non-authoritative axioms was FOAF (#7), which makes an
owl:equivalentClass assertion between foaf:Agent and dct:Agent, and
an owl:equivalentProperty assertion between foaf:maker and dct:cr-
eator (in effect, our authoritative reasoning algorithm would treat axioms these as
uni-directions sub-class/-property mappings from FOAF to DC).

Authoritative Reasoning In [34], we also compared the effects of authoritative vs.
non-authoritative reasoning for our corpus. We refer [34] for the details, but in summary
we found that for the instance data of the top five most popular classes and properties,
non-authoritative inference sizes are on average 55.46× larger than the authoritative
equivalent. Much of this is attributable to noise in and around core RDF(S)/OWL terms,
in particular rdf:type, owl:Thing and rdfs:Resource;29 without these core
terms, non-authoritative inferencing creates 12.74× more inferences than the authori-
tative equivalent.

We present a selected example for the most popular class in our data: foaf:Per-
son. Excluding the top-level concepts rdfs:Resource and owl:Thing, and the
inferences possible therefrom, each rdf:type triple with foaf:Person as value

28 We observe, e.g., a max FTP transfer rate of 38MB/sec between machines.
29 We note that much of the noise is attributable to 107 terms from the opencalais.com

domain; cf. http://d.opencalais.com/1/type/em/r/PersonAttributes.rdf (retr.
2011/01/22) and http://groups.google.com/group/pedantic-web/browse_thread/

thread/5e5bd42a9226a419 (retr. 2011/01/22).



Class (Raw) Count
Authoritative

foaf:Agent 8,165,989
wgs84:SpatialThing 64,411
contact:Person 1,704
dct:Agent 35
contact:SocialEntity 1

Non-Authoritative (additional)
po:Person 852
wn:Person 1
aifb:Kategorie-3AAIFB 0
b2r2008:Controlled vocabularies 0
foaf:Friend of a friend 0
frbr:Person 0
frbr:ResponsibleEntity 0
pres:Person 0
po:Category 0
sc:Agent Generic 0
sc:Person 0
wn:Agent-3 0

Table 2. Breakdown of non-authoritative and authoritative inferences for
foaf:Person, with number of appearances as a value for rdf:type in the
raw data

leads to (at least) five authoritative inferences and twenty-six additional non-authoritative
inferences (all class memberships). Of the latter twenty-six, fourteen are anonymous
classes. Table 2 enumerates the five authoritatively-inferred class memberships and the
remaining twelve non-authoritatively inferred named class memberships; also given
are the occurrences of the class as a value for rdf:type in the raw data. Although we
cannot claim that all of the additional classes inferred non-authoritatively are noise—
although classes such as b2r2008:Controlled vocabularies appear to be—
we can see that they are infrequently used and arguably obscure. Although some of the
inferences we omit may of course be serendipitous—e.g., perhaps po:Person—again
we currently cannot distinguish such cases from noise or blatant spam; for reasons of
robustness and terseness, we conservatively omit such inferences.

Single-machine Reasoning We first applied authoritative reasoning on one machine:
reasoning over the dataset described inferred 1.58 billion raw triples, which were fil-
tered to 1.14 billion triples removing non-RDF generalised triples and tautological state-
ments (see § 2.2)—post-processing revealed that 962 million (∼61%) were unique and
had not been asserted (roughly a 1:1 inferred:asserted ratio). The first step—extracting
1.1 million T-Box triples from the dataset—took 8.2 h.

Subsequently, Table 3 gives the results for reasoning on one machine for each ap-
proach outlined in § 2.4. T-Box level processing—e.g., applying terminological rules,



partially evaluation, rule indexing, etc.—took roughly the same time (∼9 min) for each
approach. During the partial evaluation of the meta-program, 301 thousand assertional
rules were created with 2.23 million links; these were subsequently merged down to
216 thousand (71.8%) with 1.15 million (51.6%) links. After saturation, each rule has
an average of 6 atoms in the head and all links are successfully removed; however, the
saturation causes the same problems with extra duplicate triples as before, and so the
fastest approach is PIM, which takes ∼15% of the time for the baseline N algorithm.
Note that with 301 thousand assertional rules and without indexing, applying all rules
to all statements—roughly 750 trillion rule applications—would take approximately 19
years. In Figure ??, we also show the linear performance of the fastest approach: PIM
(we would expect all methods to be similarly linear).

T-Box (min) A-Box (hr)
N 8.9 118.4
NI 8.9 121.3
P 8.9 171609a

PI 8.9 22.1
PIM 8.9 17.7
PIMS 8.9 19.5

Table 3. Performance for reasoning over
1.1 billion statements on one machine for
all approaches

a Estimated as a linear product from one day
of reasoning.

Fig. 1. Detailed throughput performance
for application of assertional program us-
ing the fastest approach: PIM

Distributed Reasoning We also apply reasoning over 1, 2, 4 and 8 slave machines
using the distribution strategy outlined in § 2.5; Table 4 gives the performance. Note
that the most expensive aspects of the reasoning process—extracting the T-Box from
the dataset and executing the assertional program—can be executed in parallel by the
slave machines without coordination. The only communication required between the
machines is during the aggregation of the T-Box and the subsequent partial evaluation
and creation of the shared assertional-rule index: this takes ∼10 min, and becomes the
lower bound for time taken for distributed evaluation with arbitrary machine count.

In summary, taking our best performance, we apply reasoning over 1.12 billion
Linked Data triples in 3.35 h using 9 machines (1 master/8 slaves), deriving 1.58 billion
inferred triples, of which 962 million are novel and unique.

2.7 Related Work

Herein, we discuss related works specifically in the field of scalable and distributed
reasoning as well as works in the area of robust Web reasoning.



Machines Extract T-Box Build T-Box Reason A-Box Total
1 492 8.9 1062 1565
2 240 10.2 465 719
4 131 10.4 239 383
8 67 9.8 121 201

Table 4. Distributed reasoning in minutes using PIM for 1, 2, 4 & 8 slave machines

Scalable/Distributed Reasoning From the perspective of scalable RDF(S)/OWL rea-
soning, one of the earliest engines to demonstrate reasoning over datasets in the order
of a billion triples was the commercial system BigOWLIM [11], which is based on a
scalable and custom-built database management system over which a rule-based ma-
terialisation layer is implemented, supporting fragments such as RDFS and pD*, and
more recently OWL 2 RL/RDF. Most recent results claim to be able to load 12 billion
statements of the LUBM synthetic benchmark, and 20.5 billion statements statements
inferrable by pD* rules on a machine with 2x Xeon 5430 (2.5GHz, quad-core), and
64GB (FB-DDR2) of RAM.30 We note that this system has been employed for rela-
tively high-profile applications, including use as the content management system for a
live BBC World Cup site.31 BigOWLIM features distribution, but only as a replication
strategy for fault-tolerance and supporting higher query load.

A number of scalable and distributed reasoners adopt a similar approach to SAOR.
Weaver and Hendler [86] discuss a similar approach for distributed materialisation

with respect to RDFS—they also describe a separation of terminological (what they
call ontological) data from assertional data. Thereafter, they identify that all RDFS
rules have only one assertional atom and, like us, use this as the basis for a scalable
distribution strategy: they flood the ontological data and split the assertional data over
their machines. They demonstrate the completeness of their approach—arriving to a
similar conclusion to us—but by inspection of the RDFS fragment. Inferencing is done
over an in-memory RDF store. They evaluate their approach over a LUBM-generated
synthetic corpus of 345.5 million triples using a maximum of 128 machines (each with
two dual-core 2.6 GHz AMD Opteron processors and 16 GB memory); with this setup,
reasoning in memory takes just under 5 minutes, producing 650 million triples.

Similarly following our earlier work on SAOR, Urbani et al. [82] use MapRe-
duce [17] for distributed RDFS materialisation over 850m Linked Data triples. They
also consider a separation of terminological (what they call schema) data from asser-
tional data as a core optimisation of their approach, and—likewise with [86]—identify
that RDFS rules only contain one assertional atom. As a pre-processing step, they sort
their data by subject to reduce duplication of inferences. Based on inspection of the
rules, they also identify an ordering (stratification) of RDFS rules which (again assum-
ing standard usage of the RDFS meta-vocabulary) allows for completeness of results
without full recursion—unlike us, they do reasoning on a per-rule basis as opposed to

30 http://www.ontotext.com/owlim/benchmarking/lubm.html; retr. 2011/01/22
31 http://www.readwriteweb.com/archives/bbc_world_cup_website_semantic_

technology.php; retr. 2012/01/22



our per-triple basis. Unlike us, they also use a 8-byte dictionary encoding of terms. Us-
ing 32 machines (each with 4 cores and 4 GB of memory) they infer 30 billion triples
from 865 million triples in less than one hour; however, they do not materialise or de-
code the output—a potentially expensive process. Note that they do not include any
notion of authority (although they mention that in future, they may include such analy-
sis): they attempted to apply pD* on 35 million Web triples and stopped after creating
3.8 billion inferences in 12 h, lending strength to our arguments for authoritative rea-
soning.

In more recent work, (approximately) the same authors [81] revisit the topic of ma-
terialisation with respect to pD*. They again use a separation of terminological data
from assertional data, but since pD* contains rules with multiple assertional atoms,
they define bespoke MapReduce procedures to handle each such rule, some of which
are similar in principle to those presented in [35] (and later on) such as canonicalisation
of terms related by owl:sameAs. They demonstrate their methods over three datasets;
(i) 1.51 billion triples of UniProt data, generating 2.03 billion inferences in 6.1 h using
32 machines; (ii) 0.9 billion triples of LDSR data, generating 0.94 billion inferences in
3.52 h using 32 machines; (iii) 102.5 billion triples of LUBM, generating 47.6 billion
inferences in 45.7 h using 64 machines. The latter experiment is two orders of mag-
nitude above our current experiments, and features rules which require A-Box joins;
however, the authors do not look at open Web data, stating that:

“[...] reasoning over arbitrary triples retrieved from the Web would result in
useless and unrealistic derivations.”

—[81]

They do, however, mention the possibility of including our authoritative reasoning al-
gorithm in their approach, in order to prevent such adverse affects.

In very recent work, [49] have presented an (Oracle) RDBMS-based OWL 2 RL/RDF
materialisation approach. They again use some similar optimisations to the scalable
reasoning literature, including parallelisation, canonicalisation of owl:sameAs infer-
ences, and also partial evaluation of rules based on highly selective patterns—from dis-
cussion in the paper, these selective patterns seem to correlate with the terminological
patterns of the rule. They also discuss many low-level engineering optimisations and Or-
acle tweaks to boost performance. Unlike the approaches mentioned thus far, [49] tackle
the issue of updates, proposing variants of semi-naı̈ve evaluation to avoid rederivations.
The authors evaluate their work for a number of different datasets and hardware config-
urations; the largest scale experiment they present consists of applying OWL 2 RL/RDF
materialisation over 13 billion triples of LUBM using 8 nodes (Intel Xeon 2.53 GHz
CPU, 72GB memory each) in just under 2 hours.

Web Reasoning As previously mentioned, [82] discuss reasoning over 850m Linked
Data triples—however, they only do so over RDFS and do not consider any issues
relating to provenance.

[47] apply reasoning over 0.9 billion Linked Data triples using the aforementioned
BigOWLIM reasoner; however, this dataset is manually selected as a merge of a number



of smaller, known datasets as opposed to an arbitrary corpus—they do not consider any
general notions of provenance or Web tolerance. (Again, [81] also apply reasoning over
the LDSR dataset.)

Related to the idea of authoritative reasoning is the notion of “conservative exten-
sions” described in the Description Logics literature (see, e.g., [21, 54, 43]). However,
the notion of a “conservative extension” was defined with a slightly different objective
in mind: according to the notion of deductively conservative extensions, a dataset Ga
is only considered malicious towards Gb if it causes additional inferences with respect
to the intersection of the signature—loosely, the set of classes and properties defined in
the dataset’s namespace—of the original Gb with the newly inferred statements. Thus,
for example, defining ex:moniker as a super-property of foaf:name outside of
the FOAF spec would be “disallowed” by our authoritative reasoning: however, this
would still be a conservative extension since no new inferences using FOAF terms can
be created.

Work presented by [14] use a notion of an authoritative description which aligns
very much with our notion of authority. They use their notion of authority to do reason-
ing over class hierarchies, but only include custom support of rdfs:subClassOf
and owl:equivalentClass, as opposed to our general framework for authorita-
tive reasoning over arbitrary T-split rules.

A viable alternative approach—which looks more generally at provenance for Web
reasoning—is that of “quarantined reasoning”, described by [18] and employed by
Sindice [63]. The core intuition is to consider applying reasoning on a per-document
basis, taking each Web document and its recursive (implicit and explicit) imports and
applying reasoning over the union of these documents. The reasoned corpus is then gen-
erated as the merge of these per-document closures. Their evaluation was performed in
parallel using three machines (quad-core 2.33GHz CPU with 8GB memory each); they
reported loading, on average, 40 documents per second.

2.8 Critical Discussion and Future Directions

Herein, we have demonstrated that materialisation with respect to a carefully selected—
but still inclusive—subset of OWL 2 RL/RDF rules is currently feasible over large cor-
pora (in the order of a billion triples) of arbitrary RDF data collected from the Web;
in order to avoid creating a massive bulk of inferences and to protect popular vocab-
ularies from third-party interference, we include analyses of the source of termino-
logical data into our reasoning, conservatively ignoring third-party contributions and
only considering first-party definitions and alignments. Referring back to our motivat-
ing foaf:page example in the introduction, we can now get the same answers for the
simple query if posed over the union of the input and inferred data as for the extended
query posed over only the input data.

We do however identify some shortcomings of our approach. Firstly, the scalability
of our approach is predicated on the assumption that the terminological fragment of the
corpus remain relatively small and simple—as we have seen in § 2.6, this holds true
for our current Linked Data corpus. The further from this assumption we get, the closer
we get to quadratic (and possibly cubic) materialisation on a terminological level, and
a high τ “multiplier” for the assertional program. Thus, the future feasibility of our



approach for the Web (in its current form) depends on the assumption that assertional
data dwarves terminological data. We note that almost all highly-scalable approaches in
the literature currently rely on a similar premise to some extent, especially for partial-
evaluation and distribution strategies.

Secondly, we adopt a very conservative authoritative approach to reasoning which
may miss some interesting inferences given by independently published mappings: al-
though we still allow one vocabulary to map its local terms to those of an external
vocabulary, we thus depend on each vocabulary to provide all useful mappings in the
dereferenced document. In future work, it would be worthwhile to investigate identi-
fying “trusted” third-party mappings in the wild, perhaps based on links-analysis or
observed adoption.

Thirdly, thus far we have not considered rules with more than one A-atom—rules
which could, of course, lead to useful inferences for our query-answering use-case.
Many such rules—for example supporting property-chains, transitivity or equality—
can naı̈vely lead to quadratic inferencing with respect to many reasonable corpora of
assertional data. As previously discussed, a backward-chaining or hybrid approach may
often make more sense in cases where materialisation produces too many inferences;
in fact, we discuss such an approach for equality reasoning in [34]. Note however that
not all multiple A-atom rules can produce quadratic inferencing with respect to asser-
tional data: some rules (such as cls-int1, cls-svf1) are what we call A-guarded, whereby
(loosely) the head of the rule contains only one variable not ground by partial evalua-
tion with respect to the terminology, and thus we posit that such rules also abide by our
maximum least-model size for A-linear programs (these are highlighted in Table 18).
Despite this, such rules would not fit neatly into our distribution framework (would
not be conveniently partitionable), where assertional data must then be coordinated be-
tween machines to ensure correct computation of joins (such as in [81]); similarly, some
variable portion of assertional data must also be indexed to compute these joins.

Finally, despite our authoritative analysis, reasoning may still introduce significant
noise and produce unwanted or unintended consequences; in particular, publishers of
assertional data are sometimes unaware of the precise semantics of the vocabulary terms
they use. An interesting avenue to explore would be non-standard reasoning approaches
(e.g., using statistical models or inductive reasoning) as an alternative or complement
to the standard approaches presented herein. (Please see [73] in these proceedings for
discussion on combining probabalistic and logical reasoning for Web data; see [10]
in these proceedings for an introduction to scalable non-standard reasoning for the
Semantic Web; also, see [28] in these proceedings for discussion on building models
for the Web of Data)

Along similar lines, in [34], we looked at a use-case for annotated reasoning whereby
we rank triples in the input data (based on a PageRank analysis of the sources of data)
and propagate these ranks to inferences through the annotated reasoning framework.
Thereafter, we perform a granular repair of inconsistencies, with the core approach be-
ing to removing the weakest triple causing the underlying inconsistency. We refer the
interested reader to [34] for more detail.



3 Scalable Approximative OWL 2 DL Reasoning

Ontologies have been so phenomenally successful, as a machine-understandable com-
pilation of human knowledge, that OWL2 (the second version of OWL) is recently
standardised by W3C. As more and more large ontologies become available [64], there
is a pressing need for efficient and robust reasoning services. Such reasoning services
will help us gain insight of the semantic relations among vocabularis of ontologies and
facilitate further processings such as the materialisation that we introduced in § 2.1.

Expressive Description Logics (DLs) [5] have high worst case computational com-
plexity. For example, TBox (terminological box) reasoning in the DL SROIQ [39],
the adjacent logic of OWL2-DL, is N2EXPTIME-complete [45]. Mainstream reasoners
for expressive DLs provide reasoning services, such as classification (computing sub-
sumption relations among all the named concepts), based on tableau [40] and hyper-
tableau [59] algorithms. Such model constructing algorithms classify an ontology, in
general, by iterating all necessary pairs of concepts, and trying to construct a model of
the ontology that violates the subsumption relation between them [46]. On the other
hand, light-weight DLs can have very efficient reasoning algorithms. For example,
TBox reasoning in EL++ [3], the logic underpinning of an OWL2 tractable profile
OWL2-EL, is PTIME-complete. However, they only provide limited expressive power.

This brings a new challenge: can users use OWL2-DL to build their ontologies and
still enjoy the efficient reasoning as in tractable profiles? For example, the Foundational
Model of Anatomy ontology (FMA) , which is built inALCOIF , beyond any tractable
DLs, can hardly be classified by any mainstream DL reasoners [60]. Given the current
efforts of ontology construction, it might not take long before many other FMA-like (or
even larger and more complicated) ontologies appear and go beyond the capability of
existing DL reasoners.

Approximation [74, 25, 33, 85, 65] has been identified as a potential way to reduce
the complexity of ontology reasoning. However, many of these approximation approaches
still rely on the reasoners of the more expressive DLs. For example, [25] replaces cer-
tain parts of a concept expression with> or⊥ to obtain a simpler expression that can be
classified more easily with a tableau reasoner. [65] requires the use of reasoners of the
more expressive DLs to pre-compute the entailments to achieve efficient online perfor-
mance. Furthermore, most of the above approaches are on ABox reasoning and query
answering. To the best of our knowledge, the only approach on TBox reasoning is [25],
which presents an overview of approximation approaches (including language weaken-
ing, knowledge compilation and approximate deduction), as well as investigating and
reporting negative results of the approximate deduction approach – a problematic side
effect of using their approximate deduction approach is that the collapsing of concept
expressions leading to many unnecessary approximation steps.

In this section, we propose to combine the idea of language weakening and ap-
proximate deduction [25] into soundness preserving approximation for ontology TBox
reasoning.

1. After an informative discussion of the technical challenges (§ 3.1), we propose a
syntactic language weakening approach (§ 3.3, § 3.4 and § 3.5) to approximating
an arbitrary SROIQ TBox with a corresponding EL++ TBox and additional data



structures maintaining the complementary information and cardinality information.
It is shown that the proposed approximation is in linear time (Lemma 1, 2 and 3).

2. We present soundness-guaranteed approximate deduction rules to classify the ap-
proximated TBox (§ 3.4 and § 3.5). In contrast to the twisted trade-off between
tractability and expressiveness, our approach compromises the completeness of
reasoning to yield large portion of logical consequences in polynomial time while
imposing no restrictions on expressivity of the language used in source ontologies
and preserve correctness of results (§ 3.6).

3. We present our implementation and preliminary evaluations (§ 3.7). Evaluation
against a set of real world ontologies [64] suggested that, a naive implementation of
our approach can (i) outperform existing OWL2-DL reasoners such as Pellet and
FaCT++, and (ii) provide rather complete results with high recall (over 95% for
EL++
C and over 99% for EL++

CQ , where EL++
C and EL++

CQ are two more and more
fine-grained approximation).

Proofs of all propositions, lemmas and theorems can be found in tech report avail-
able at http://www.box.net/shared/nm913g22ie.

3.1 Technical Motivations

In order to motivate our investigation on syntactic approximation of SROIQ ontolo-
gies to EL++ ontologies, this section first briefly introduces SROIQ and EL++ and
then illustrates the technical challenges in their TBox reasoning and approximation.

In SROIQ, concept C, D can be inductively composed with the following con-
structs:

> | ⊥ | A | C uD | ∃R.C | {a} | ¬C | ≥ nR.C | ∃R.Self

where > is the top concept, ⊥ the bottom concept, A atomic concept, n an integer
number, a an individual, ∃R.Self the self-restriction and R a role that can be either an
atomic role r or the inverse of another role (R−). Conventionally, C tD,∀R.C and ≤
nR.C are used to abbreviate ¬(¬Cu¬D),¬∃R.¬C and ¬ ≥ (n+1)R.C, respectively.
{a1, a2, . . . , an} can be regarded as abbreviation of {a1}t {a2}t · · · t {an}. Without
loss of generality, in what follows, we assume all the concepts to be in their negation
normal forms (NNF)32 and use ~C to denote the NNF of ¬C. We also call>,⊥, A, {a}
basic concepts because they are not composed by other concepts or roles. Given a TBox
T , we use CNT (RNT ) to denote the set of basic concepts (atomic roles) in T . The EL
family is dedicated for large TBox reasoning and has been widely applied in some
largest ontologies, e.g. SNOMED [71]. EL++ supports

> | ⊥ | A | C uD | ∃r.C | {a}.

Both SROIQ and EL++ support concept inclusions (CIs, e.g. C v D) and role
inclusions (RIs, e.g. r v s, r1 ◦ · · · ◦ rn v s). SROIQ supports also other axioms

32 An SROIQ concept is in NNF iff negation is applied only to atomic concepts, nominals or
Self-restriction. NNF of a given concept can be computed in linear time[38].



such asymmetric of roles. If C v D and D v C, we write C ≡ D. If C is non-
atomic, C v D is a general concept inclusion (GCI). For more details about syntax and
semantics of DLs, we refer the readers to [69] in these proceedings and [5].

A TBox is a set of concept and role axioms. TBox reasoning services include con-
cept subsumption checking, concept satisfiability checking (to check if a given concept
is instantiatable ) and classification (to compute the concept hierarchy). For example,
given the following TBox T1 (in ALC), we can infer Koala v Herbivore.

Example 9. An example TBox T1.

– α1 : Koala v ∀eat.(∃partof.Eucalypt)
– α2 : Eucalypt v Plant
– α3 : Plant t ∃partof.P lant v V egeFood
– α4 : ∀eat.V egeFood v Herbivore

The tableau algorithm [40] constructs a tableau (as a witness of a model of the TBox
T1) as a graph in which each node x represents an individual and is labelled with a set of
concepts it must satisfy, each edge 〈x, y〉 represents a pair of individuals satisfying a role
that labels the edge. Subsumption checking C v D can be reduced to unsatisfiability
checking C u ¬D v ⊥. To test this, a tableau is initialised with a single node labelled
with C u ¬D, and is then expanded by repeatedly applying the completion rules [40].

One of the major difficulties for tableau algorithms is the high degree of non-
determinism introduced by GCIs. For each GCI C v D in the ontology, the algorithm
generates a meta-constraint ¬C t D for each node of the tableau. The algorithm first
extends a node with ¬C. If it finds a clash, it backtracks and extends the node with D.
If there are n GCIs, this expands to 2n combinations for each node of the tableau. This
significantly enlarges the search space.

Some techniques have been developed to deal with GCIs. Absorption [79] can re-
duce, e.g. a GCI AuC v D, where A is a named concept, into non-GCI A v ¬C tD;
however, it is only applicable for GCIs whose LHS is a conjunction with a named
concept as conjunct or whose RHS is a negated named concept or a disjunction with
a negated named concept as disjunct. (Extended) Role Absorption [78, Sec.4.1] can
absorb GCIs of form ∃r.C v D (C v ∀r.D) into domain (range) constrains. For ex-
ample α3 can be decomposed into ∃partof.P lant v V egeFood and thus absorbed as
Domain(partof, V egeFood t ¬∃partof.P lant). But its applicability is still limited
and it still contains a disjunction in the domain. Binary Absorption [42] tries to rewrite
GCIs into form A1 u A2 v C where A1 and A2 are named concepts. To sum up, the
above absorptions can only be applied to a limited patterns of GCIs; e.g., α4 can not be
dealt with by any absorption optimisation.

Reasoning with EL++ is more efficient. [3] presents a set of completion rules (Ta-
ble 5) 33 to compute, given a normalised EL++ TBox T , for each A ∈ CNT , a sub-
sumer set S(A) ⊆ CNT ∪ {⊥} in which for each B ∈ S(A), T |= A v B, and for
each r ∈ RNT , a relation set R(r) ⊆ CNT × CNT in which for each (A,B) ∈ R(r),
T |= A v ∃r.B.

33 in R6 X  R A iff there exists C1, . . . , Ck ∈ CNT s.t. C1 = X or C1 = {b}, (Cj , Cj+1) ∈
R(rj) for some rj ∈ RNT (1 ≤ j ≤ k) and Ck = A



R1 If A ∈ S(X), A v B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R2
If A1, A2, . . . , An ∈ S(X),
A1 uA2 u · · · uAn v B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R3 If A ∈ S(X), A v ∃r.B ∈ T and (X,B) /∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

R4
If (X,A) ∈ R(r) A′ ∈ S(A), ∃r.A′ v B ∈ T
and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R5 If (X,A) ∈ R(r), ⊥ ∈ S(A) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R6 If {a} ∈ S(X) ∩ S(A), X  R A and S(A) 6⊆ S(X)
then S(X) := S(X) ∪ S(A)

R7 If (X,A) ∈ R(r), r v s ∈ T and (X,A) 6∈ R(s)
then R(s) := R(s) ∪ {(X,A)}

R8
If (X,A) ∈ R(r1), (A,B) ∈ R(r2), r1 ◦ r2 v r3 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

Table 5. EL++ completion rules (no datatypes)

Reasoning with rules R1-R8 is tractable. However, these rules can not handle T1
because the ontology is in a language beyond the EL++.

Groot et al. [25] attempt to speed up concept unsatisfiability checking via approxi-
mation. Given a concept C, it constructs a sequence of C>i such that C v · · · v C>1 v
C>0 , and a sequence of C⊥i such that C⊥0 v C⊥1 v . . . C by replacing all existential
restrictions (∃R.D) after i universal quantifiers (∀) inside C with> and⊥ respectively.
Then C is unsatisfiable (satisfiable) if some C>i (C⊥i ) is unsatisfiable (satisfiable). In
case C>i (C⊥i ) is usually simpler than C, its (un)satisfiability checking should also be
easier. For example, a conceptC ≡ ¬Herbivoreu∀eat.(V egeFoodu∃partof.P lant)
can be approximated toC>1 ≡ ¬Herbivoreu∀eat.(V egeFoodu>) ≡ ¬Herbivoreu
∀eat.V egeFood, which is unsatisfiable in T1. Thus C is unsatisfiable. However, this
approach has several limitations when applied to TBox reasoning:

1. It only approximates the tested concept, but not the ontology, thus the unsatisfia-
bility checking still requires reasoners for the original language of the ontology. In
other words, it does not reduce the complexity of reasoning.

2. Similar to the Tableau algorithms, to classify an ontology, one has to reduce concept
subsumption C v D to unsatisfiability of C u¬D for each necessary pair of C, D.

3. When the test concept subsumption contains no existential restriction, such as
Koala v Herbivore, this approach can not help. Hence, it does not help for clas-
sification (subsumption checking among named concepts).

Due to the above reasons, this approximation technology is not suitable for TBox
Reasoning, especially computing the atomic concept hierarchies.



To sum up, tableau algorithms have difficulties to handle complex structured ax-
ioms; tractable DL algorithms can not support more expressive languages; while tradi-
tional approximation approach lacks usability in TBox reasoning. In what follows, we
present our approach which is motivated and inspired by these works, and show that it
overcomes these difficulties with evaluations.

3.2 Approach Overview and Preliminary

Different from Groot et al.’s approximation approach, we approximate both the ontol-
ogy and the tested concept (if needed) by replacing concept sub-expressions (role ex-
pressions) that are not in the target DL, e.g. EL++, with atomic concepts (atomic roles)
and rewrite axioms accordingly (§ 3.3). Then, additional data structures and comple-
tion rules (§ 3.4 and § 3.5) are used to maintain and restore some semantic relations
among basic concepts, respectively. We show that all these approachs are tractable and
soundness-guaranteed (§ 3.6).

In approximation, we only consider concepts corresponding to the particular TBox
in question. We use the notion term to refer to these “interesting” concept expressions.
More precisely, a term is:

1. a concept expression on the LHS or RHS of any CI, or
2. the singleton of any individual in the ontology, or
3. the syntactic sub-expression of a term, or
4. the complement of a term.

In order to represent all these terms and role expressions that will be used in EL++

reasoning, we first assign names to them.

Definition 15. (Name Assignment) Given S a set of concept expressions, E a set
of role expressions, a name assignment fn is a function as for each C ∈ S (R ∈
E), fn(C) = C (fn(R) = R) if C is a basic concept (R is atomic), otherwise
fn(C) (fn(R)) is a fresh name.

As an example, name assignments of some terms in Example 9 are illustrated in
Table 6.

From § 3.1 we can see that there is an expressivity gap between SROIQ and
EL++, especially in concept constructs. In the rest of this section, we present 3 stages
of approximation to (partially) bridge this gap.

3.3 EL++ Approximation

A naive EL++ approximation is to approximate an arbitrary TBox into an EL++ TBox.

Definition 16. (EL++ Transformation) Given a TBox T and a name assignment fn,
its EL++ transformation Afn,EL++(T ) is a set of axiom T constructed as follows:

1. T is initialised as ∅.
2. for each C v D (C ≡ D) in T , T = T ∪{fn(C) v fn(D)} (T = T ∪{fn(C) ≡
fn(D)}).



Term Name

∀eat.∃partof.Eucalypt C1

∃eat.∀partof.¬Eucalypt nC1

∀partof.¬Eucalypt C2

∃partof.Eucalypt nC2

Plant t ∃partof.P lant C3

¬Plant u ∀partof.¬Plant nC3

∀partof.¬Plant C4

∃partof.P lant nC4

∀eat.V egeFood C5

∃eat.¬V egeFood nC5

¬Plant nP lant
¬V egeFood nV egeFood

Table 6. Name Assignment

3. for each EL++ role axiom β ∈ T , add β[R/fn(R)] into T .
4. for each term C in T ,

(a) ifC is the formC1u· · ·uCn, then T = T∪{fn(C) ≡ fn(C1)u· · ·ufn(Cn)},
(b) if C is the form ∃R.D, then T = T ∪ {fn(C) ≡ ∃fn(R).fn(D)},
(c) otherwise T = T ∪ {fn(C) v >}.

In the above definition, Step 2 rewrites all the concept axioms; Step 3 rewrites all
the EL++ role axioms; Step 4 rewrites all the EL++ terms. We call this procedure an
EL++ approximation.

Lemma 1. For a TBox T and a name assignment fn, let Afn,EL++(T ) = T . Then
T is an EL++ TBox and |T | ≤ nT + |T | where nT is the number of terms in T and
|T | (|T |) is the number of axioms in T (T ) .

According to Table 6, we can transform the TBox T1 into TKoala as follows:

Example 10. TKoala contains axioms generated by Step 2 and 4, the most important
ones include:

– α1→Koala v C1, nC1 ≡ ∃eat.C2, nC2 ≡ ∃partof.Eucalypt;
– α2 is preserved;
– α3→C3 v V egeFood, nC3 ≡ nP lant u C4, nC4 ≡ ∃partof.P lant;
– α4→C5 v Herbivore, nC5 ≡ ∃eat.nV egeFood.

3.4 Complement-enriched EL++
C Approximation

In Example 10, reasoning can be performed directly with the completion rules R1-R8
presented in Table 5. However, TKoala 6|= Koala v Herbivore because the relations
between a term and its complement, e.g. C1 and nC1, can not be directly represented
in EL++. To solve this problem, we maintain such relations in a separate complement
table (CT), and apply additional completion rules in reasoning.



Approximate Complement We first extend the naive EL++ approximation with a
complement table (CT ).

Definition 17. (EL++
C Transformation) Given a TBox T and a name assignment fn,

its complement-enriched EL++
C transformation Afn,EL++

C
(T ) is a pair (T,CT ) con-

structed as follows:

1. T = Afn,EL++(T ) (Ref. Def. 16).
2. CT is initialised as ∅.
3. for each term C in T , CT = CT ∪ {(fn(C), fn(~C))}.

We call this procedure an EL++
C approximation. The following proposition shows

the structure of the approximation results:

Proposition 4. (EL++
C Approximation) For a TBox T , let Afn,EL++

C
(T ) = (T,CT ),

we have:

1. T is an EL++ TBox
2. for each A ∈ CNT , there exists (A,B) ∈ CT
3. if (A,B) ∈ CT then A,B ∈ CNT and (B,A) ∈ CT

This indicates that, by Def.17, a TBox can be syntactically transformed into an
EL++ TBox with a table maintaining complementary relations for all names in the
EL++ TBox.

Example 11. The EL++
C approximation of T1 in Example 9 is (TKoala, CTKoala),

where TKoala is the same as in Example 10, and CTKoala contains pairs such as
(C1, nC1), (C2, nC2), (C3, nC3), (C4, nC4), (C5, nC5), (Plant, nP lant), (V egeFood,
nV egeFood), etc.

Lemma 2. For any TBox T and (T,CT ) its EL++
C approximation, if T contains nT

terms, then |T | ≤ nT + |T | and |CT | = nT , where |T |(|T |) is the number of axioms
in T (T ) and |CT | is the number of pairs in CT .

Completion Rules for Complement Given an EL++
C transformation (T,CT ), we nor-

malise axioms of form C v D1u · · ·uDn into C v D1, . . . , C v Dn, and recursively
normalise role chain r1 ◦ · · · ◦ rn v s with n > 2 into r1 ◦ · · · ◦ rn−1 v u and u v s.
This procedure can be done in linear time. In the following, we assume T to be always
normalised. For convenience, we use a complement function fc : CNT 7→ CNT as: for
each A ∈ CNT , fc(A) = B such that (A,B) ∈ CT .

To utilise the complementary relations in CT , we propose additional completion
rules (Table 7) to EL++.

R9 realises axiom Au~A v ⊥. R10 asserts the reverse subsumption between con-
cepts to supplement the absence of negation, i.e. A v B →~A v~B. R11 builds up
the relations between conjuncts of a conjunction, e.g. A uB v ⊥ implies A v~B.

Now we can infer Koala v Herbivore (Example 11) as follows:

– α2→nC2 v nC4→R10C4 v C2→nC3 v C2



R9 If A,B ∈ S(X), A = fc(B) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R10 If A ∈ S(B) and fc(B) /∈ S(fc(A))
then S(fc(A)) := S(fc(A)) ∪ {fc(B)}

R11
If A1 u · · · uAi u · · · uAn v ⊥, A1, . . . , Ai−1,
Ai+1, . . . , An ∈ S(X) and fc(Ai) /∈ S(X)
then S(X) := S(X) ∪ {fc(Ai)}

Table 7. Complement completion rules

– C3 v V egeFood→R10nV egeFood v nC3

– nV egeFood v nC3, nC3 v C2→nV egeFood v C2→nC5 v nC1→R10C1 v
C5→Koala v Herbivore

where the inferences with→R10 are enabled by R10.

3.5 Cardinality-enriched EL++
CQ Approximation

In Def.17 we presented an extension of the naive approximation which approximates
non-EL+ concept expressions, particularly concepts constructed by ¬, t and ∀, by the
definition of their complements. With the completion rules in Tab.7, more entablements
can be computed.

It is a natural question to ask, is that possible to approximate even more non-EL++

construct, e.g. cardinality, into EL++? In this subsection, we further extend the EL++
C

transformation to yield more complete reasoning results for ontology containing cardi-
nalities.

Approximating Cardinality In EL++
C approximation, a concept constructed by ≥ or

≤ can only be represented as a fresh name. In this way, subsumption X v ⊥ can not
be entailed in T4 in the following Example 12.

Example 12. T4 = {X v≥ 4r.A,X v≤ 2s.B,A v B, r v s}.
X v ⊥ should be entailed.

This subsumption requires to maintain the relations between the filler concepts (e.g.
A and B), the role (r) and the cardinality values (e.g 4 and 2). We maintain such re-
lations in a (cardinality table) (QT ) whose elements are tuples (A, r, n), where A is a
basic concept denoting a filler name, r is the atomic role denoting the role name and n
is the cardinality value.

Definition 18. (Cardinality-enriched EL++
CQ Transformation) Given a TBox T , a name

assignment fn, let Afn,EL++
C

(T ) = (T ′, CT ′), its cardinality-enriched EL++
CQ trans-

formation Afn,EL++
CQ

(T ) is a tuple (T,CT,QT ) constructed as follows:

1. T is initialised as T ′.
2. CT = CT ′.



3. QT is initialised as ∅.
4. for each term C that is the form ≥ nR.D in T ,

(a) if n = 0, T = T ∪ {> v fn(C)}
(b) if n = 1, T = T ∪ {fn(C) ≡ ∃fn(R).fn(D)}
(c) otherwise, T = T∪{fn(C) ≡ fn(D)fn(R),n}, andQT = QT∪{(fn(C), fn(R), n)}.

5. for each pair of names A and r, if there exist (A, r, i1), (A, r, i2), . . . , (A, r, in) ∈
QT with i1 < i2 < · · · < in, T = T∪{Ar,in v Ar,in−1 , . . . , Ar,i2 v Ar,i1 , Ar,i1 v
∃r.A}

In step 4, fn(D)fn(R),n is a fresh name. For example, nV egeFoodeat,3 for ≥
3eat.¬V egeFood. Obviously, this is unique for a given tuple of D, R and n. Similarly,
≤ nR.D will be approximated via the approximation of its complement≥ (n+1)R.D.
In step 5, for each pair of name assignmentA, r in T , a subsumption chain is added into
T because ≥ inr.A v · · · v≥ i2r.A v≥ i1r.A v ∃r.A.

We call this procedure an EL++
CQ approximation. The following proposition shows

the structure of the results:

Proposition 5. (EL++
CQ Approximation)

For a TBox T , a name assignment fn, let Afn,EL++
CQ

(T ) = (T,CT,QT ), we have T

an EL++ TBox.

This indicates that, by Def.18 a TBox can be syntactically transformed into a tuple
of an EL++ TBox, a complement table and a cardinality table.

Now, in Example 12, T4 can be approximated into T4 ⊇ {X,v Y1, Y1 ≡ Ar,4, X v
Y2, nY2 ≡ Bs,3, A v B, r v s} with fn(≥ 4r.A) = Y1, fn(≤ 2s.B) = Y2 and
fn(≥ 3s.B) = nY2, CT4 ⊇ {(Y1, nY1), (Y2, nY2)}, QT4 ⊇ {(A, r, 4), (B, s, 3)}.

Lemma 3. For any TBox T , let (T,CT,QT ) its EL++
CQ transformation, if T contains

nT terms, then |CNT | ≤ 2 × nT , |T | ≤ 3 × nT + |T |, |CT | = nT and |QT | ≤ nT ,
where CNT is the number of basic concepts in T , |T |(|T |) the number of axioms in
T (T ), |CT | the number of pairs in CT and |QT | the number of tuples in QT .

Completion rules We further extend Tab.7 with Table 8.
R12, in which r v∗ s if r = s or r v s ∈ T , realises inference A v B,R v S, i ≥

j →≥ iR.A v≥ jS.B. R13 is the extension of R4 and R14-16 are extensions of R8.
Now we can entail X v ⊥ in Example 12 as follows:

1. A v B, r v s→R12A
r,4 v Bs,3,

2. Ar,4 v Bs,3, X v Y1, Y1 ≡ Ar,4, nY2 ≡ Bs,3→X v nY2
3. X v nY2, X v Y2, (Y2, nY2) ∈ CT→R9X v ⊥

3.6 Reasoning Properties

In this subsection, we analyze the reasoning complexity of our approximation and rea-
soning approach.



R12
If B ∈ S(A), (A, r, i), (B, s, j) ∈ QT , r v∗ s,
i ≥ j and Bj 6∈ S(Ai)
then S(Ar,i) := S(Ar,i) ∪ {Bs,j}

R13
If Ar,i ∈ S(X), A′ ∈ S(A), ∃r.A′ v B ∈ T
and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R14
If Ar1,i ∈ S(X), (A,B) ∈ R(r2), r1 ◦ r2 v r3 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

R15
If (X,A) ∈ R(r1), Br2,i ∈ S(A), r1 ◦ r2 v r3 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

R16
If Ar1,i ∈ S(X), Br2,j ∈ S(A), r1 ◦ r2 v r3 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

Table 8. Cardinality completion rule

Theorem 5. (Complexity) For any EL++
CQ transformation (T,CT,QT ) (T normalised),

TBox reasoning by completion rules R1-R16 will terminate in polynomial time w.r.t.
|CNT |+|RNT |.

Similarly, reasoning on the EL++ and EL++
C approximations are also tractable.

Note that, from lemma 1, 2 and 3, the approximation is always linear. To sum up, the
approximation-reasoning approach is tractable.

With the approximation and corresponding rules, we can compute concept sub-
sumption in an SROIQ TBox. The quality of the approximate reasoning is described
by the following theorem:

Theorem 6. (Concept Subsumption Checking) Given a TBox T , its vocabulary VT
and Afn,EL++

CQ
= (T,CT,QT ), for any two concepts C and D constructed from VT ,

if Afn,EL++
CQ

({C v >, D v >}) = (T ′, CT ′, QT ′), then T |= C v D if fn(D) ∈
S(fn(C)) can be computed by rules R1-R16 on (T ∪ T ′, CT ∪ CT ′, QT ∪QT ′).

The theorem indicates that our EL++
CQ approximate reasoning approach is soundness-

preserving. This conclusion holds similarly on EL++ and EL++
C approximate reason-

ing.
Particularly, when C,D are terms in T , T |= C v D if fn(D) ∈ S(fn(C)) can

be derived from (T,CT,QT ).
As in classical reasoning, unsatisfiability checking of a concept C can be reduced

to entailment checking of C v ⊥; ontology inconsistency checking can be reduced to
entailment checking of > v ⊥ or {a} v ⊥. By applying ABox internaliation, ABox
reasoning can be reduced to TBox reasoning, e.g. a : A ifA ∈ S({a}) can be computed.
For more optimised approach on ABox reasoning with syntactic approximation, we
refer readers to [68].

More extension patterns can be exploit to improve the completeness of the approx-
imate reasoning while keep it tractable. Our framework is flexible and extendible.



Our extra completion rules process each axiom and term in T individually. This
helps keeping the reasoning tractable but some information can be lost:

Example 13. T5 = {A u ¬B v C,A uB v C,D v ∃r.>,∃r.C v E,∃r.¬A v E}

Obviously, we have T5 |= A v C and thus D v E.
We approximate T5 into ({X1 ≡ A u nB,X1 v C,X2 ≡ A u B,X2 v C,X3 ≡

∃r.nA,X3 v E, . . . }, {(B,nB), . . . }). Our approach will reach B u A v C and
nBuA v C. BecauseB and nB are not subsumers ofA thus we can’t inferC ∈ S(A).
Even if we can compute it, in order to further inferD v F . A new axiom ∃r.(Ct¬A) ≡
∃r.C t ∃r.¬A has to be added into T and approximated for incremental reasoning.

Although we do not guarantee completeness, we will see in next section it has high
recall for many test ontologies.

3.7 Evaluation

We implemented 3 versions of our approach, namely the EL++, EL++
C , EL++

CQ approx-
imation and reasoning systems, in the TrOWL tractable reasoning infrastructure 34. To
evaluate their performance in practice, we compared with mainstream reasoners Pellet
2.0.0, FaCT++ 1.3.0.1 and HermiT 1.1. All experiments were conducted in an envi-
ronment of Windows XP SP3 with 2.66 GHz CPU and 1G RAM allocated to JVM
1.6.0.07.

Following [60], we examined the most difficult ontologies in the HermiT bench-
mark [64]. To focus on TBox reasoning, we removed the ABox axioms with care35

from these ontologies. Most of the remaining TBoxes can be classified easily by all
the reasoners and completely by our EL++

C system. We evaluate the hard ones, results
shown in Table 9 and 10. We mainly conducted the evaluations on EL++

C system. To
show the effects of complement-enriched approximate reasoning, we present also the
EL++ recall. For those TBoxes that the EL++

C provides incomplete classification, we
further classified them with the EL++

CQ system.

Ontology O |O| FaCT++ HermiT Pellet

Biological Process 32289 3.656 5.343 10.063
Cellular Component 47348 5.872 8.077 16.966
GO 32289 18.563 6.047 16.39
Cyc 11727 25.531 16.853 142.889
FMA Constitutional 123564 e/o e/o e/o
Tambis Full 606 0.375 1.063 1.343
Wine 454 0.578 0.875 1.359
DLP 1216 0.219 61.948 98.024

Table 9. Results of main stream reasoners

34 http://trowl.eu
35 ABox axioms involving individuals appearing in the TBox were internalised, e.g. a : C into
{a} v C, a 6= b into {a} u {b} v ⊥, etc.. The others are removed.



Ontology
EL++ EL++

C EL++
CQ

recall time recall time recall

Biological Process 93.1% 1.11 100% - -
Cellular Component 91.9% 1.359 100% - -
GO 93.1% 4.203 100% - -
Cyc 1.2% 1.672 100% - -
FMA Constitutional N/A 10.062 N/A 50.89 N/A
Tambis Full 7.2% 0.11 99.3% 0.203 100%
Wine 95.8% 0.078 96.8% 0.156 99.4%
DLP 100% 0.125 100% - -

Table 10. Results of our systems

Each reasoner was given 10 min to classify each ontology. We queried for sub-
sumption relations between named concepts (including owl:Thing and owl:Nothing)
and counted the numbers. Recall of our systems is computed against others to measure
the completeness. Thus the time shown in our evaluation includes classification time,
subsumption retrieval and counting time. Time unit is second.

Results illustrated in Table 10 show that with extension of the approximation, higher
and higher recall can be achieved. EL++ is naive and quite incomplete on some on-
tologies. EL++

C approximation can significantly improve the recall on some ontologies
(such as Cyc and Tambis Full). With further extension to EL++

C approximation, all
the recalls are over 99% (except FMA). Comparison with results illustrated in Table
9 shows that the efficiency of our systems is in general better than all other reason-
ers. Even the slowest EL++

CQ system is faster than all main stream reasoners. Also, our
systems are the only reasoners that can return result on the FMA ontology.

We were also interested in the scalability of our approach. Based on Table 9 we
chose 3 easiest ontologies and enlarged them by duplicating all the concept names ( but
keep the role names). Duplications were distinguished by a subscript. Consequently, all
the concept axioms were duplicated. We classified these ontologies using our EL++

C
system, which has a nice balance between efficiency and completeness (Ref. Table 10).
It performed quite stable when the quantity of data increased (Table 11). Due to the
interactions between duplications through role axioms, our system even gained some
recall on Wine.

Due to the lack of OWL2-DL benchmarks, we turned to ontologies generated from
realistic use cases. In [88] an approach of using DL to model relation-based access
control (relBAC) has been presented. In this paper, a rather expressive DLALCQIBO
has been employed to encode various access control schemata. For evaluation purpose,
we generated 100 TBoxes containing the following patterns:

1. “User in U are allowed to access (with P) at most n objects in O”: U v≤ nP.O
2. “Users in U have access to at least m objects in O with P”: U v≥ nP.O
3. “User u is of user type U”: {u} v U

where U is a type of users, P a permission type,O a object type while u a individual
user. Each of these 100 ontologies contains 20 user types, 20 object types, 10 permission



Size FaCT++ HermiT Pellet EL++
C Recall

Tambis Full
5× 9.125 37.922 24.25 0.719 99.3%

10× 40.577 292.481 205.192 1.985 99.3%
20× e/o t/o t/o 5.671 N/A
30× e/o t/o t/o 11.624 N/A

Wine
5× 13.784 56.853 86.662 0.641 97.7%

10× 33.01 t/o t/o 2.188 97.9%
20× 243.496 t/o t/o 10.077 98.0%
30× t/o t/o t/o 27.529 N/A

DLP
5× t/o e/o e/o 3.39 N/A

10× t/o e/o e/o 20.827 N/A
20× t/o e/o e/o 142.305 N/A
30× t/o e/o e/o 450.6 N/A

Table 11. Comparison on duplicated TBox

types, 750 individuals and 20 access control model axioms (axioms of type 1 and 2).
Hierarchies among users types (object types) are randomly generated. The numbers in
cardinality restrictions are randomly selected. The combinations of user individual, user
type class, permission type class and object type class are also random. Obviously, these
TBoxes are in DL ALHOQ.

Different from previous evaluations, the TBoxes generated here can be inconsistent.
For example, when a particular user belongs to two types U1 and U2 with U1 v≤
mP.O1 and U2 v≥ nP.O2 where m < n and O2 v O1, inconsistency occurs. Thus,
in this evaluation, we are particularly interested in whether the inconsistency can be
detected instead of the number of subsumptions.

We classified these TBoxes using FaCT++, EL++
C and EL++

CQ systems. Each rea-
soner was given 10 minutes. FaCT++ finished 98 of them, failing the other 2. EL++

C
classified all the TBoxes but failed to find any inconsistency, because it does not sup-
port cardinality at all. EL++

CQ classified all the TBoxes efficiently and reported all the
inconsistencies correctly. The average and maximal time of FaCT++ and EL++

CQ and
the precisions of the 98 ontologies are illustrated in Table 12. Time unit is second. No-
tice that in FaCT++, reasoning is immediately terminated when any inconsistency is
detected, which means the reasoning time of inconsistent TBox is shorter. While our
EL++
CQ continues to find all the inconsistency. Therefore we separate the results of con-

sistent and inconsistent TBoxes.
The results show that, EL++

CQ system can classify all the ontologies very efficiently
and the presicion is 100%. Also, the average and maximal time is quite stable no matter
the ontology is consistent or not. While FaCT++ has difficulty in dealing with consis-
tent TBox containning many cardinality restrictions (Max. time is about 10 seconds
and failed on two other TBoxes). For those inconsistent ones, even though FaCT++
terminates earlier, EL++

CQ system can still outperform it.



Consistency
FaCT++ EL++

CQ
Ave. Max. Ave. Max. presicion

Consistent 1.226 9,984 0.021 0.047 100%
Inconsistent 0.248 2.297 0.022 0.047 100%

Table 12. Comparison on relBAC TBox

3.8 Discussions

Approximate reasoning has been an important topic for ontology (KR) and AI research.
On the one hand, expressive Description Logics (such as those underpin the standard
Semantic Web ontology languages) have high worst case computational complexity.
Hence, approximate reasoning is an attractive way to provide scalable and efficient rea-
soning services [65]. On the other hand, it has been argued that [25] while logic has
always aimed at modelling idealised forms of reasoning under idealised circumstances,
this is not what is required under the practical circumstances in knowledge-based sys-
tems. Instead, we also need to consider (i) reasoning under time-pressure, (ii) reasoning
with other limited resources besides time and (iii) reasoning that is not perfect but in-
stead good enough for given tasks under given circumstances.

In this section, we address a long-lasting open problem; i.e, effective and efficient
approximate TBox reasoning. With their negative results, Groot et al. concluded that
traditional approximation method by Cadoli and Schaerf [70] is not suited for ontology
reasoning, and that new approximate strategy are needed. In this paper, we propose to
combine the ideas of language weakening and approximate deduction to provide sound-
ness preserving TBox reasoning for expressive Description Logics. We apply our idea
to approximate OWL2-DL ontologies to EL++ ones, preliminary evaluation results
showed that our approach performs effectively and efficiently on real world ontologies.

In the approximate deduction step, instead of simplifying a model constructing al-
gorithm (such as tableau algorithm), we enrich the existing EL++ reasoning algorithm
with some deterministic completion rules (for complement and cardinality). EL++ re-
tain tractability by imposing strict syntactic restriction. However these restrictions are
not always necessary. For example, if we rewrite each axiom C v D of an EL++

ontology into ¬D v ¬C, the language appears to be ALC, but the complexity does
not essentially change. Our approximation can naturally cover these situations. As our
evaluation shows, it helps increase the recall.

This piece of work is also related to Horn SHIQ, which has an even more com-
plicated set of syntactic restrictions, which can not be satisfied by our Koala example
(more precisely, axioms α4). In [46], structure transformation is applied in a similar
manner as our approximation to facilitate reasoning. However structure transformation
still preserves the syntactic structure of the axioms, while our approximation actually
changed the structures and hence ontology such as the Koala example can be classified
with a more efficient algorithm.
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A OWL 2 RL/RDF rules

Herein, we list the rule tables categorising supported OWL 2 RL/RDF rules [24] ac-
cording to terminological and assertional arity of atoms in the body. Note that herein we
(ab)use Turtle syntax [7] and highlight authoritative variable positions (TAVars(R)—
see § 2.5) in bold.



A.1 “A-Linear” OWL 2 RL/RDF Rules

Body(R) = ∅
ID Head Notes
prp-ap ?p a owl:AnnotationProperty For each built-in annotation property
cls-thing owl:Thing a owl:Class . -
cls-nothing owl:Nothing a owl:Class . -
dt-type1 ?dt a rdfs:Datatype . For each built-in datatype
dt-type2a ?l a ?dt . For all ?l in the value-space of datatype ?dt
dt-eqa ?l1 owl:sameAs ?l2 . For all ?l1 and ?l2 with the same data value
dt-diffa ?l1 owl:differentFrom ?l2 . For all ?l1 and ?l2 with different data values

Table 13. OWL 2 RL/RDF rules with empty body (axiomatic triples)
a These rules mandate (naı̈vely) infinite materialised inferences, and so we exclude them.



TBody(R) 6= ∅,ABody(R) = ∅

ID Body Headterminological
cls-oo ?c owl:oneOf (?x1...?xn) . ?x1...?xn a ?c .

scm-cls ?c a owl:Class .
?c rdfs:subClassOf ?c , owl:Thing ;

owl:equivalentClass ?c .
owl:Nothing rdfs:subClassOf ?c .

scm-sco ?c1 rdfs:subClassOf ?c2 . ?c2 rdfs:subClassOf ?c3 . ?c1 rdfs:subClassOf ?c3 .

scm-eqc1 ?c1 owl:equivalentClass ?c2 . ?c1 rdfs:subClassOf ?c2 .
?c2 rdfs:subClassOf ?c1 .

scm-eqc2 ?c1 rdfs:subClassOf ?c2 . ?c2 rdfs:subClassOf ?c1 . ?c1 owl:equivalentClass ?c2 .

scm-op ?p a owl:ObjectProperty . ?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-dp ?p a owl:DatatypeProperty . ?p rdfs:subPropertyOf ?p .
?p owl:equivalentProperty ?p .

scm-spo ?p1 rdfs:subPropertyOf ?p2 . ?p2 rdfs:subPropertyOf ?p3 . ?p1 rdfs:subPropertyOf ?p3 .

scm-eqp1 ?p1 owl:equivalentProperty ?p2 . ?p1 rdfs:subPropertyOf ?p2 .
?p2 rdfs:subPropertyOf ?p1 .

scm-eqp2 ?p1 rdfs:subPropertyOf ?p2 . ?p2 rdfs:subPropertyOf ?p1 . ?p1 owl:equivalentProperty ?p2 .
scm-dom1 ?p rdfs:domain ?c1 . ?c1 rdfs:subClassOf ?c2 . ?p rdfs:domain ?c2 .
scm-dom2 ?p2 rdfs:domain ?c . ?p1 rdfs:subPropertyOf ?p2 . ?p1 rdfs:domain ?c .
scm-rng1 ?p rdfs:range ?c1 . ?c1 rdfs:subClassOf ?c2 . ?p rdfs:range ?c2 .
scm-rng2 ?p2 rdfs:range ?c . ?p1 rdfs:subPropertyOf ?p2 . ?p1 rdfs:range ?c .

scm-hv
?c1 owl:hasValue ?i ; owl:onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 owl:hasValue ?i ; owl:onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-svf1
?c1 owl:someValuesFrom ?y1 ; owl:onProperty ?p .

?c1 rdfs:subClassOf ?c2 .?c2 owl:someValuesFrom ?y2 ; owl:onProperty ?p .
?y1 rdfs:subClassOf ?y2 .

scm-svf2
?c1 owl:someValuesFrom ?y ; owl:onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 owl:someValuesFrom ?y ; owl:onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-avf1
?c1 owl:allValuesFrom ?y1 ; owl:onProperty ?p .

?c1 rdfs:subClassOf ?c2 .?c2 owl:allValuesFrom ?y2 ; owl:onProperty ?p .
?y1 rdfs:subClassOf ?y2 .

scm-avf2
?c1 owl:allValuesFrom ?y ; owl:onProperty ?p1 .

?c1 rdfs:subClassOf ?c2 .?c2 owl:allValuesFrom ?y ; owl:onProperty ?p2 .
?p1 rdfs:subPropertyOf ?p2 .

scm-int ?c owl:intersectionOf (?c1...?cn) . ?c rdfs:subClassOf ?c1...?cn .
scm-uni ?c owl:unionOf (?c1...?cn) . ?c1...?cn rdfs:subClassOf ?c .

Table 14. OWL 2 RL/RDF rules containing only T-atoms in the body

ABody(R) 6= ∅,TBody(R) = ∅

ID Body Headassertional
eq-refa ?s ?p ?o . ?s owl::sameAs ?s . ?p owl::sameAs ?p . ?o owl::sameAs ?o .
eq-sym ?x owl::sameAs ?y . ?y owl::sameAs ?x .

Table 15. OWL 2 RL/RDF rules with no T-atoms, but one A-atom in the body
a We typically omit this rule which adds unnecessary bulk to the materialised inferences, and

could be more easily supported by backward-chaining.



TBody(R) 6= ∅ and |ABody(R)| = 1

ID Body Headterminological assertional
prp-dom ?p rdfs:domain ?c . ?x ?p ?y . ?x a ?c .
prp-rng ?p rdfs:range ?c . ?x ?p ?y . ?y a ?c .
prp-symp ?p a owl:SymmetricProperty . ?x ?p ?y . ?y ?p ?x .
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp1 ?p1 owl:equivalentProperty ?p2 . ?x ?p1 ?y . ?x ?p2 ?y .
prp-eqp2 ?p1 owl:equivalentProperty ?p2 . ?x ?p2 ?y . ?x ?p1 ?y .
prp-inv1 ?p1 owl:inverseOf ?p2 . ?x ?p1 ?y . ?y ?p2 ?x .
prp-inv2 ?p1 owl:inverseOf ?p2 . ?x ?p2 ?y . ?y ?p1 ?x .
cls-int2 ?c owl:intersectionOf (?c1 ... ?cn) . ?x a ?c . ?x a ?c1, ..., ?cn .
cls-uni ?c owl:unionOf (?c1...?ci...?cn) . ?x a ?ci ?x a ?c .
cls-svf2 ?x owl:someValuesFrom owl:Thing ; owl:onProperty ?p . ?u ?p ?v . ?u a ?x .
cls-hv1 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u a ?x . ?u ?p ?y .
cls-hv2 ?x owl:hasValue ?y ; owl:onProperty ?p . ?u ?p ?y . ?u a ?x
cax-sco ?c1 rdfs:subClassOf ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc1 ?c1 owl:equivalentClass ?c2 . ?x a ?c1 . ?x a ?c2 .
cax-eqc2 ?c1 owl:equivalentClass ?c2 . ?x a ?c2 . ?x a ?c1 .

Table 16. OWL 2 RL/RDF rules containing some T-atoms and precisely one A-atom in
the body



A.2 Unsupported OWL 2 RL/RDF Rules

|ABody(R)| > 1,TBody(R) = ∅

ID Body Headassertional
eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .
eq-rep-s ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .
eq-rep-p ?p owl:sameAs ?p′ . ?s ?p ?o . ?s ?p′ ?o .
eq-rep-o ?o owl:sameAs ?o′ . ?s ?p ?o . ?s ?p ?o′ .

Table 17. OWL 2 RL/RDF rules containing no T-atoms, but multiple A-atoms in the
body—all relate to supporting the positive semantics of owl:sameAs, and all give
quadratic materialisation

TBody(R) 6= ∅ and |ABody(R)| > 1

ID Body Headterminological assertional

linear materialisation w.r.t. assertional data
cls-int1 ?c owl:intersectionOf (?c1 ... ?cn) . ?y a ?c1 , ... , ?cn . ?y a ?c .
cls-svf1 ?x owl:someValuesFrom ?y ; owl:onProperty ?p . ?u ?p ?v . ?v a ?y . ?u a ?x .
cls-avf ?x owl:allValuesFrom ?y ; owl:onProperty ?p . ?u ?p ?v ; a ?x . ?v a ?y .

quadratic materialisation w.r.t. assertional data
prp-fp ?p a owl:FunctionalProperty . ?x ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .

prp-ifp ?p a owl:InverseFunctionalProperty . ?x1 ?p ?y . ?x1 owl:sameAs ?x2 .?x2 ?p ?y .

prp-key ?c owl:hasKey (?p1 ... ?pn) ?x ?p1 ?z1 ; ... ; ?pn ?zn , a ?c . ?x owl:sameAs ?y .?y ?p1 ?z1 ; ... ; ?pn ?zn , a ?c .
cls-maxc2 ?x owl:maxCardinality 1 ; owl:onProperty ?p . ?u a ?x ; ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2 .

cls-maxqc3 ?x owl:maxQualifiedCardinality 1 . ?u a ?x ; ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2?x owl:onProperty ?p ; owl:onClass ?c . ?y1 a ?c . ?y2 a ?c .

cls-maxqc4 ?x owl:maxQualifiedCardinality 1 . ?u a ?x ; ?p ?y1 , ?y2 . ?y1 owl:sameAs ?y2owl:onProperty ?p ; owl:onClass owl:Thing .
prp-trp ?p a owl:TransitiveProperty . ?x ?p ?y . ?y ?p ?z . ?x ?p ?z

prp-spo2 ?p owl:propertyChainAxiom (?p1 ... ?pn) .
?u1 ?p1 ?u2 .

?u1 ?p ?un+1 .?u2 ?p2 ?u3 .
... ?un ?pn ?un+1 .

Table 18. OWL 2 RL/RDF rules containing some T-atoms and multiple A-atoms in the
body



Head(R) = ⊥

ID Body
terminological assertional

eq-diff1 - ?x owl:sameAs ?y .
?x owl:differentFrom ?y .

eq-diff2 -
?x a owl:AllDifferent ;
owl:members (?z1...?zn) .
?zi owl:sameAs ?zj . (i 6=j)

eq-diff3 -
?x a owl:AllDifferent ;
owl:distinctMembers (?z1...?zn) .
?zi owl:sameAs ?zj . (i 6=j)

prp-irp ?p a owl:IrreflexiveProperty . ?x ?p ?x .
prp-asyp ?p a owl:AsymmetricProperty ?x ?p ?y . ?y ?p ?x .
prp-pdw ?p1 owl:propertyDisjointWith ?p2 . ?x ?p1 ?y ; ?p2 ?y .
prp-adp ?x a owl:AllDisjointProperties ; owl:members (?p1...?pn) . ?u ?pi ?y ; ?pj ?y . (i 6=j)

prp-npa1 -

?x owl:sourceIndividual ?i1 .
?x owl:assertionProperty ?p .
?x owl:targetIndividual ?i2 .
?i1 ?p ?i2 .

prp-npa2 -

?x owl:sourceIndividual ?i .
?x owl:assertionProperty ?p .
?x owl:targetValue ?lt .
?i ?p ?lt .

cls-nothing2 - ?x a owl:Nothing .
cls-com ?c1 owl:complementOf ?c2 . ?x a ?c1 , ?c2 .
cls-maxc1 ?x owl:maxCardinality 0 ; owl:onProperty ?p . ?u a ?x ; ?p ?y .

cls-maxqc1 ?x owl:maxQualifiedCardinality 0 ; ?u a ?x ; ?p ?y . ?y a ?c .owl:onProperty ?p ; owl:onClass ?c .

cls-maxqc2 ?x owl:maxQualifiedCardinality 0 ; ?u a ?x ; ?p ?y .owl:onProperty ?p ; owl:onClass owl:Thing .
cax-dw ?c1 owl:disjointWith ?c2 . ?x a ?c1 , ?c2 .
cax-adc ?x a owl:AllDisjointClasses ; owl:members (?c1...?cn) . ?z a ?ci , ?cj . (i 6=j)
dt-not-type - ?lt a ?dt . (s.t. ?lt is an ill-typed literal)

Table 19. OWL 2 RL/RDF “constraint” rules



ID partially covered by recursive rule(s)
scm-cls incomplete for owl:Thing membership inferencesa

scm-sco cax-sco
scm-eqc1 cax-eqc1, cax-eqc2
scm-eqc2 cax-sco
scm-op no unique assertional inferences
scm-dp no unique assertional inferences
scm-spo prp-spo1
scm-eqp1 prp-eqp1, prp-eqp2
scm-eqp2 prp-spo1
scm-dom1 prp-dom, cax-sco
scm-dom2 prp-dom, prp-spo1
scm-rng1 prp-rng, cax-sco
scm-rng2 prp-rng, prp-spo1
scm-hv prp-rng, prp-spo1
scm-svf1 incomplete: cls-svf1, cax-sco
scm-svf2 incomplete: cls-svf1, prp-spo1
scm-avf1 incomplete: cls-avf, cax-sco
scm-avf2 incomplete: cls-avf, prp-spo1
scm-int cls-int2
scm-uni cls-uni

Table 20. Enumeration of the coverage of inferences in case of the omission of rules in
Table 14 wrt. inferencing over assertional knowledge by recursive application of rules
in Table 16: underlined rules are not supported, and thus we would encounter incom-
pleteness wrt. assertional inference (would not affect a full OWL 2 RL/RDF reasoner
which includes the underlined rules).

a In our scenario, are not concerned—we filter out such statements and rules such as cls-svf2
and cls-maxqc2 encode direct support for owl:Thing.



B CURIE Prefixes Used

Herein, we enumerate the CURIE prefixes [?] used throughout this tutorial to abbreviate
URIs.

Prefix URI
aifb: http://www.aifb.kit.edu/id/
b2r2008: http://bio2rdf.org/bio2rdf-2008.owl#
contact: http://www.w3.org/2000/10/swap/pim/contact#
dc: http://purl.org/dc/elements/1.1/
dct: http://purl.org/dc/terms/
doap: http://usefulinc.com/ns/doap#
ex*: arbitrary example namespace
foaf: http://xmlns.com/foaf/0.1/
frbr: http://purl.org/vocab/frbr/core#
geonames: http://www.geonames.org/ontology#
mo: http://purl.org/ontology/mo/
opiumfield: http://rdf.opiumfield.com/lastfm/spec#
owl: http://www.w3.org/2002/07/owl#
po: http://purl.org/ontology/po/
plink: http://buzzword.org.uk/rdf/personal-link-types#
pres: http://www.w3.org/2004/08/Presentations.owl#
rail: http://ontologi.es/rail/vocab#
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
skos: http://www.w3.org/2004/02/skos/core#
wgs84: http://www.w3.org/2003/01/geo/wgs84_pos#
wn: http://xmlns.com/wordnet/1.6/

Table 21. Used prefixes


