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Abstract Ontologies are expected to play an important role in many application domains,

as well as in software engineering in general. One problem with using ontologies within soft-

ware engineering is that while UML, a widely used standard for specifying and constructing

the models for a software-intensive system, has a four-layer metamodelling architecture, the

standard Web Ontology Language (OWL) does not support reasoning over layered meta-

models. OWL 2 provides simple metamodelling by using a punning approach, however, the

interpretation function is different based on the context, which leads to non-intuitive results.

The OWL FA Language has a well defined metamodelling architecture. However, there is

no study and tool for support reasoning over OWL FA. In this paper, we discuss some rea-

soning tasks in OWL FA. We also introduce the OWL FA Tool kit, a simple tool kit for

manipulating and reasoning with OWL FA.
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1 Introduction

Metamodelling appeals in many applications areas (such as UML [11], Model Driven

Architecture [2], XML [13] and E-Commerce). It is not only the underpinning of

modelling languages such as UML, but also central to OMG’s MDA-based computing.

The W3C Web Ontology Language (OWL) [10] in combination with reasoning is

already used in various other research areas like in model-driven software engineering

in order to exploit the expressiveness of OWL and the usage of inference. However,

the lack of a formal OWL language or OWL extension which supports metamodelling

is an obstacle for the usage of OWL in other complex application areas.

The Resource Description Framework (RDF) and OWL Full support metamod-

elling by allowing users to use the built-in vocabulary without restrictions, which

introduces an undecidability problem. OWL [10] provides formal semantics focused
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on conceptual modelling and adaptability of inference using DL reasoners and reason-

ing algorithms, but OWL does not support layered reasoning. OWL 2 provides simple

metamodelling with semantics which correspond to the contextual semantics defined

in [6], however, it has been shown in [9] that these can lead to non-intuitive results.

For example, the following axioms state that Eagle is an Endangered species, and

that Harry is an Eagle:

ClassAssertion(Endangered Eagle) (1.1)

ClassAssertion(Eagle Harry) (1.2)

The axioms 1.1, 1.2 could be interpreted by DL reasoner as follows:

ClassAssertion(Cls− Endangered Ind− Eagle) (1.3)

ClassAssertion(Cls− Eagle Ind− Harry) (1.4)

The names of concepts and individuals do not interact with each other even

they are sharing the same name, e.g. Eagle is represented as individual by the name

Ind− Eagle and as class by the name Cls− Eagle. This kind of metamodelling is often

referred to as punning. Let us consider the following axioms:

SameIndividuals(Aquila Eagle) (1.5)

ClassAssertion(not(Aquila) Harry) (1.6)

The axioms 1.5, 1.6 could be safely added to the ontology in contextual semantics,

but under layered semantics this ontology is inconsistent because 1.5 indicates the

meta-individual equality since the axiom Eagle ≈ Aquila indicates the equivalence of

the two concepts Eagle and Aquila. However, axiom 1.6 describes that Harry is not in

Aquila which leads to the contradiction in combination with axiom 1.4.

In this paper, we present modelling and reasoning algorithms for OWL FA knowl-

edge bases. For the reasoning service, an OWL FA ontology is transformed to a set

of OWL DL ontologies, then existing DL reasoners are applied to the transformed

knowledge base. The syntax and semantics of OWL FA is described in Section 2.

Modelling in OWL FA is demonstrated in Section 3. In Section 4 reasoning in OWL

FA is described. This contains a reduction to OWL DL knowledge bases and reason-

ing algorithms in order to propagate conditions between different modelling layers.

Features of OWL FA Tool Kit are detailed in Section 5. The early evaluation are

presented in Section 6. Then, related work and direction of OWL FA are discussed in

Section 7 and Section 8 respectively.
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2 OWL FA syntax and semantics

OWL FA [9] enables metamodeling. It is an extension of OWL DL, which refers to the

description logic SHOIN (D). Ontologies in OWL FA are represented in a layered

architecture. This architecture is mainly based on the architecture of RDFS(FA) [8].

OWL FA specifies a stratum number in class constructors and axioms to indicate

the strata they belong to. Let i ≥ 0 be an integer. OWL FA consists of an alphabet

of distinct class names VCi
(for stratum i), datatype names VD, abstract property

names VAPi (for stratum i), datatype property names VDP and individual (object)

names (I); together with a set of constructors (with subscriptions) to construct class

and property descriptions (also called OWL FA-classes and OWL FA-properties, re-

spectively).

The semantics of OWL FA are a model theoretic semantics, which is defined in

terms of interpretations. Given an OWL FA alphabet V, a set of built-in datatype

names B ⊆ VD and an integer k ≥ 1, an OWL FA interpretation is a pair J =

(∆J , ·J ), where ∆J is the domain (a non-empty set) and ·J is the interpretation

function, which satisfy the the following conditions below (where 0 ≤ i ≤ k):

1. ∆J =
⋃

0≤i≤k−1 ∆A
J
i ∪∆D, where ∆A

J
i is the domain for stratum i and ∆D is

the datatype domain;

2. ∆A
J
i+1 = 2∆A

J
i ∪ 2∆A

J
i ×∆A

J
i and ∆D ∩∆A

J
i = ∅;

3. ∀a ∈ VI : aJ ∈ ∆A
J
0 and ∀C ∈ VCi+1

: CJ ⊆ ∆A
J
i ;

4. ∀R ∈ VAPi+1 : RJ ⊆ ∆A
J
i ×∆A

J
i and ∀T ∈ VDP : TJ ⊆ ∆A

J
0 ×∆D;

5.
⋃
∀d∈B V (d) ⊆ ∆D, where V (d) is the value space of d;

6. ∀d ∈ VD, if d ∈ B, then1

(a) dJ = V (d), where V (d) is the value space of d,

(b) if v ∈ L(d), then (“v”ˆˆd)J = L2V (d)(v), where L(d) is lexical space of d and

L2V (d) is the lexical-to-value mapping of d,

(c) if v 6∈ L(d), then (“v”ˆˆd)J

is undefined;

otherwise, dJ ⊆ ∆D and “v”ˆˆd ∈ ∆D.

In the rest of the paper, we assume that i is an integer such that 1 ≤ i ≤ k. The

interpretation function can be extended to give semantics to OWL FA-properties and

OWL FA-classes. Let RN ∈ VAPi be an abstract property name in stratum i and R

an abstract property in stratum i. Valid OWL FA abstract properties are defined by

the abstract syntax: R ::= RN | R−, where for some x, y ∈ ∆A
J
i−1, 〈x, y〉 ∈ RJ iff

〈y, x〉 ∈ R−J . Valid OWL FA datatype properties are datatype property names.

Let CN ∈ VCi
be an atomic class name in stratum i, R an OWL FA-property in

stratum i, o ∈ I an individual, T ∈ VDP a datatype property name, and C,D OWL

FA-classes in stratum i. Valid OWL FA-classes are defined by the abstract syntax:

C ::= >i | ⊥ | CN | ¬iC | C ui D | C ti D | {o} | ∃iR.C

∀iR.C |6i nR |>i nR

(if i = 1) ∃1T.d | ∀1T.d |61 nT |>1 nT

1 To simplify the presentation, we do not distinguish datatype names and datatype URIrefs here.
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Table 1. OWL FA classes

Constructor DL Syntax Semantics

top >i ∆A
J
i−1

bottom ⊥ ∅

concept name CN CNJ ⊆ ∆A
J
i−1

general negation ¬iC ∆A
J
i−1 \ C

J

conjunction C ui D CJ ∩DJ

disjunction C ti D CJ ∪DJ

nominals {o} {o}J = {oJ }

exists restriction ∃iR.C {x ∈ ∆A
J
i−1 | ∃y.〈x, y〉 ∈ RJ ∧ y ∈ CJ }

value restriction ∀iR.C {x ∈ ∆A
J
i−1 | ∀y.〈x, y〉 ∈ RJ → y ∈ CJ }

atleast restriction >i mR {x ∈ ∆A
J
i−1 | ]{y | 〈x, y〉 ∈ RJ } ≥ m}

atmost restriction 6i mR {x ∈ ∆A
J
i−1 | ]{y | 〈x, y〉 ∈ RJ } ≤ m}

datatype exists restriction ∃1T.d {x ∈ ∆A
J
0 | ∃t.〈x, t〉 ∈ TJ ∧ t ∈ dJ }

datatype value restriction ∀1T.d {x ∈ ∆A
J
0 | ∀t.〈x, t〉 ∈ TJ → t ∈ dJ }

datatype atleast restriction >1 mT {x ∈ ∆A
J
0 | ]{t | 〈x, t〉 ∈ TJ } ≥ m}

datatype atmost restriction 61 mT {x ∈ ∆A
J
0 | ]{t | 〈x, t〉 ∈ TJ } ≤ m}

The semantics of OWL FA-classes are presented in Table 1 (page 4).

C is satisfiable iff there exist an interpretation J s.t. CJ 6= ∅; C subsumes D iff

for every interpretation J we have CJ ⊆ DJ .

An OWL FA ontology Σ consists of Σ1, . . . , Σk. Each Σi consists of a TBox Ti,

an RBox Ri and an ABox Ai. An OWL FA TBox Ti is a finite set of class inclusion

axioms of the form C vi D, where C,D are OWL FA-classes in stratum i. An inter-

pretation J satisfies C vi D if CJ ⊆ DJ . Let R,S be OWL FA abstract properties in

stratum i. An OWL FA RBox Ri is a finite set of property axioms; namely, property

inclusion axioms (R vi S), functional property axioms (Funci(R)) and transitive prop-

erty axioms (Transi(R)). An interpretation J satisfies R vi S if RJ ⊆ SJ ; J satisfies

Funci(R) if, for all x ∈ ∆A
J
i−1, ]{y ∈ ∆A

J
i−1 | 〈x, y〉 ∈ RJ } ≤ 1 (] denotes cardinality);

J satisfies Transi(R) if, for all x, y, z ∈ ∆A
J
i−1, {〈x, y〉, 〈y, z〉} ⊆ RJ → 〈x, z〉 ∈ RJ .

The semantics for datatype property inclusion axioms and functional axioms can be

defined in the same way as those in OWL DL. Like in OWL DL, there is no transitive

datatype property axioms.

Let a, b ∈ I be individuals, C1 a class in stratum 1, R1 an abstract property in

stratum 1, l a literal, T ∈ VD a datatype property, X,Y classes or abstract properties

in stratum i, E a class in stratum i + 1 and S an abstract property in stratum i+1. An

OWL FA ABox A1 is a finite set of individual axioms of the following forms: a :1 C1,

called class assertions, 〈a, b〉 :1 R1, called abstract property assertions, 〈a, l〉 :1 T ,
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called datatype property assertions, a = b, called individual equality axioms and ,

a 6= b, called individual inequality axioms. An interpretation J satisfies a :1 C1 if

aJ ∈ CJ1 ; it satisfies 〈a, b〉 :1 R1 if 〈aJ , bJ 〉 ∈ RJ1 ; it satisfies 〈a, l〉 :1 T if 〈aJ , lJ 〉 ∈
TJ ; it satisfies a = b if aJ = bJ ; it satisfies a 6= b if aJ 6= bJ . An OWL FA

ABox Ai is a finite set of axioms of the following forms: X : E, called meta-class

assertions, 〈X,Y 〉 : R, called meta-property assertions, or X =i−1 Y , called meta

individual equality axioms. An interpretation J satisfies X : E if XJ ∈ EJ ; it

satisfies 〈X,Y 〉 : R if 〈XJ , Y J 〉 ∈ RJ ; it satisfies X =i−1 Y if XJ = Y J .

An interpretation J satisfies an ontology Σ if it satisfies all the axioms in Σ. Σ

is satisfiable (unsatisfiable) iff there exists (does not exist) such an interpretation J
that satisfies Σ. Let C,D be OWL FA-classes in stratum i, C is satisfiable w.r.t. Σ iff

there exist an interpretation J of Σ s.t. CJ 6= ∅i; C subsumes D w.r.t. Σ iff for every

interpretation J of Σ we have CJ ⊆ DJ .

3 Modelling of Metamodelling Enabled Ontologies

In this section, we present the way to express metamodelling enabled ontologies in

OWL 2. The layer information is encapsulated in custom annotation property called

”Layer”. This is different from [5] because we realise that creating a new syntax for

OWL FA is unnecessary since we could store layer information as annotation prop-

erties. Moreover, this ontology conforms still to the OWL 2 syntax like the punning

style which is another way to capture a simple modelling in OWL 2. Although, the

layer numbers can/should be encapsulated by tools, there are two rules of thumb to

help users to get the number right. Firstly, the subscript numbers are only used to

indicate a sub-ontology (e.g. O2 ), a constructor (e.g. ∃2), or axiom symbols (e.g.

v2, :2) in a sub-ontology. Secondly, subscript numbers of the constructors and axiom

symbols indicate the sub-ontology that the class descriptions constructed by these

constructors and axioms belong to.

The following example shows how to model an Endangered Species ontology with

the DL syntax and then convert it into OWL 2 functional syntax. The main reason

for using functional syntax is that it is obvious to see which layer they belong to.

Example 3.1. Endangered Species ontology expressed in DL syntax as follow:

Eagle :2 Endangered (3.7)

Aquila :2 Endangered (3.8)

Aquila ≈2 Eagle (3.9)

Eagle v1 Bird (3.10)

Aquila v1 Bird (3.11)

Harry :1 Eagle (3.12)

Example 3.2. Endangered Species ontology expressed in OWL 2 syntax as follow:

ClassAssertion(Annotation(Layer”2”)Endangered Eagle) (3.13)

ClassAssertion(Annotation(Layer”2”)Endangered Aquila) (3.14)

SameIndividuals(Annotation(Layer”2”)Eagle Aquila) (3.15)
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SubClassOf(Annotation(Layer”1”)Eagle Bird) (3.16)

SubClassOf(Annotation(Layer”1”)Aquila Bird) (3.17)

ClassAssertion(Annotation(Layer”1”)Eagle Harry) (3.18)

4 Reasoning in OWL FA

Now we briefly discuss some reasoning tasks in OWL FA. According to the layered

architecture, the knowledge base Σ in OWL FA is divided into a sequence of knowledge

bases Σ = Σ1, . . .Σk, whereas k is the number of layers. Since individuals in layer i+1

can be classes and properties in layer i, this also affects the axioms of the layer below.

Hence, individual axioms in the knowledge base Σi+1 can be considered as class axioms

in the knowledge base Σi.

In an OWL FA knowledge base Σ, Σ2, . . . , Σk are SHIQ knowledge bases, i.e.

nominals are not allowed. A nominal in a higher layer can lead to unsatisfiability of

the knowledge bases. An interesting feature of Σ is that there could be interactions

between Σi and Σi+1.

4.1 Preprocessing

In this section, we discuss how to reduce the reasoning problem in OWL FA into a

reasoning problem in OWL DL.

Definition 4.1. Let Σ = 〈Σ1, . . . ,Σk〉 be an OWL FA knowledge base, where each

of Σ1, . . . ,Σk is consistent. Σ∗ =〈Σ∗1, . . . ,Σ∗k〉, called the explicit knowledge base, is

constructed by making all the implicit atomic class axioms, atomic property axioms,

individual equality axioms explicit. �

As we have a finite set of vocabulary, we have the following Lemma.

Lemma 4.1. Given an OWL FA knowledge base Σ =〈Σ1, . . . ,Σk〉. The explicit

knowledge base Σ∗ (OWL DL knowledge base) can be calculated from Σ in finite

steps.

Proof. When k = 1, we can calculate the explicit knowledge base Σ∗1 in finite steps

because the sets of names of classes (in layer 1), roles (in layer 1) and individuals

are finite. When k > 1, let us assume that we can calculate the explicit knowledge

bases Σ′1, ...,Σ
′
i (where 1 ≤ i < k) from Σ1, . . . ,Σi in finite steps. We add all the

class and property equality axioms in Σ ′
i to Σi+1. If the updated Σi+1 is consistent.

Then,we can make the implicit individual equality axioms (if any) explicit and add

new class and property equality axioms into Σ′i. Thus, we can calculate Σ ′′1 , ..., Σ ′′i in

finite steps. As the individual names in Σi+1 are finite, we can calculate the explicit

knowledge bases Σ∗1, . . . ,Σ
∗
i+1 in finite steps.

Note that if a class description is not defined in Σ i (i.e., if it is not equivalent to

any atomic class), it is not represented by any meta-individual in Σ i+1. This suggests

the connections between Σ i and Σ i+1 are atomic classes and properties in Σ i, which

are meta-individuals in Σ i+1.

We now present the algorithm Reduce, that will reduce an OWL FA knowledge

base Σ into a set of OWL DL knowledge bases 〈Σ∗1, . . . ,Σ∗k〉. This algorithm is based

on Definition 4.1 and Lemma 4.1. The algorithm takes an OWL FA KB Σ as input
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and returns a set of OWL DL KB 〈Σ1, . . . ,Σk〉. The Algorithm Reduce is shown in

Algorithm 1.

Algorithm 1 Reduce

Input: OWL FA KB Σ

Output: satisfiable and a set of OWL DL KB〈Σ1, . . . ,Σk〉 .

1: boolean satisfiable = true;

2: Collect axioms from the layer number and store in L0, ..., Ln

3: Create knowledge base Σi = (L0, L1), ...,Σk = (Ln−1, Ln)

4: repeat

5: cei = ∅, pei = ∅ and oei = ∅
6: Check consistency of Σi with DL reasoner

7: if Σi is consistent then

8: for each Σ∗i (1 ≤ i ≤ k) do

9: Identify the new concept equality in Σ∗i and store it in cei
10: Identify the new property equality in Σ∗i and store it in pei
11: Identify the new individual equality in Σ∗i and store it in oei
12: for each cei, pei and cei do

13: if i = 1 then

14: Add cei and pei as individual equality into Σ∗i+1

15: else if i = k then

16: Add oei as property or concept equality into Σ∗i−1

17: else

18: Add cei and pei as individual equality into Σ∗i+1

19: Add oei as property or concept equality into Σ∗i−1

20: end if

21: end for

22: end for

23: else

24: satisfiable = false;

25: end if

26: until (cei = ∅ & pei = ∅ & oei = ∅) || satisfiable = false;

27: return 〈Σ1, . . . ,Σk〉.

The following theorem shows the termination of the algorithm Reduce, applied

to an OWL FA KB Σ.

Theorem 4.1. Given an OWL FA knowledge base Σ =〈Σ1, . . . ,Σk〉, then Reduce(Σ)

terminates.

Proof. Termination of algorithm Reduce is straightforward from Lemma 4.1, which

we can construct 〈Σ∗1, . . . ,Σ∗k〉 from Σ in finite step and a sets of class, property and

individual equality axioms are finite. Thus, algorithm Reduce always terminates.

Here is the result from applying the Algorithm Reduce to the OWL FA KB Σ:

Σ2 = {Endangered : Eagle,Endangered : Aquila,Eagle = Aquila}
Σ1 = {Eagle : Harry,Eagle v Bird,Aquila v Bird,Aquila ≡ Eagle}



8 International Journal of Software and Informatics, Vol.x, No.x, January 2010

4.2 Consistency Checking

In this section, we present the algorithm Consistent, that will check the consistency

of an OWL FA knowledge base O. We can reduce an OWL FA knowledge base to a

collection of OWL DL knowledge bases, therefore existing DL reasoner capabilities can

be used. Consistency checking for OWL FA is done in two steps: First, we check the

syntax of OWL FA. For example, Σ = {C v2 D,C v3 E} is non-well formed because

in OWL FA we do not allow OWL class construct between layer except an instance-of

relationship. Secondly, we check the consistency of each OWL DL-knowledge base

that is computed from the OWL FA knowledge base with an existing DL reasoner.

The Algorithm Consistent is shown in Algorithm 2.

Algorithm 2 Consistent

Input: OWL FA Knowledge Base Σ = 〈Σ1, . . . ,Σk〉
Output: true if Σ is consistent, false otherwise

1: Ont = ∅
2: Check OWL FA syntax

3: Ont = Reduce(Σ);

4: for each Σi in Ont do

5: check-dl-consistent(Σi)

6: if Σi is not consistent then

7: Return false

8: end if

9: end for

10: return true.

We invite the reader to note that check-dl-consistent is a function call to a DL

Reasoner.

Theorem 4.2. Given an OWL FA knowledge base Σ =〈Σ1, . . . ,Σk〉. Σ is consistent

iff each Σ∗i (1 ≤ i ≤ k) is consistent. �

Theorem 4.2 shows we can reduce the OWL FA-knowledge base consistency prob-

lem to the OWL DL-knowledge base consistency problem.

Proof. The consistency check of an OWL FA KB with Consistent(Σ) is straightfor-

ward from Lemma 4.1. We can construct 〈Σ∗1, . . . ,Σ∗k〉 from Σ in finite steps then

we check the consistency for each Σ∗i with a DL reasoner. Therefore, the OWL FA

knowledge base Σ is consistent if and only if each Σ∗i (1 ≤ i ≤ k) is consistent.

Let us consider the following axiom by inserting it into OWL FA KB Σ (cf.

example 3.2):

ClassAssertion(Annotation(Layer”1”)Not(Aquila) Harry) (4.19)

It is obvious to see that this axiom will make Σ∗1 inconsistent, which leads

to an inconsistent of OWL FA KB Σ because the meta-individual equality axiom

Eagle ≈2 Aquila indicates the equivalence of the two concepts Eagle and Aquila , and

HarryJ cannot be both in and not in EagleJ .
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4.3 Instance Retrieval

Instance retrieval in OWL FA is trivial because after the reduction process, we get

a set of OWL 2 DL ontology then we could perform instance retrieval against those

ontologies. However, without specifying a target ontology, it is not efficient since, we

have to go through all ontologies in a set. Therefore, we need a smart algorithm for

instance retrieval for OWL FA, in order to select the right ontology that contains

a target concept. Firstly, we need to search for a target concept in each ontology

of the set. This step does not require any DL reasoner. Then, we could perform

instance retrieval against a selected ontology with a DL reasoner. A formal definition

of instance retrieval for OWL FA is given in Definition 4.2.

Definition 4.2. Given an ABox Ai and a query Q, i.e., a concept expression, find

all individuals a such that a is an instance of Q, i.e., {a | ∀a ∈ Ai, a : Q}. �

We present the instance retrieval for OWL FA in Algorithm 3. The algorithm

instanceOf will take an OWL FA ontology O and a concept C as input. The algorithm

returns a set containing the instances of concept C.

Algorithm 3 instanceOf

Input: OWL FA Knowledge Base Σ = 〈Σ1, . . . ,Σk〉 and a concept C

Output: A set contains instance of concept C

1: ind = ∅
2: Ont = ∅
3: Ont = Reduce(Σ);

4: for each Σi in Ont do

5: if Σi contains C then

6: ind = get-dl-instance-of(Σi, C)

7: end if

8: end for

9: return ind.

4.4 Justification on OWL FA

A justification for an entailment in an OWL FA ontology can be extended from

justification for an entailment in an OWL DL ontology because we can reduce the

reasoning problem in OWL FA to a reasoning problem in OWL DL. However, in the

reduction process, a new axiom can be added to an OWL DL ontology. Therefore, if

a justification for an entailment axiom in Oi contains those new axioms which have

been added during the reduction process, we need to store an information for that

axiom from another ontology in the lookup table. From an upper ontology, if the new

axiom has been added as class or property equality axioms, we can map those axioms

from class or property equality axioms to individual equality axioms in the Oi+1.

Hence, we can retrieve the further justification from the upper ontology if needed.

From a lower ontology, if a justification contains object equality axioms, we can map

those object equality axioms to class or property equality axioms in the Oi−1 then

we can retrieve the further justification from the lower ontology if needed.
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Definition 4.3. For an OWL FA ontology Σ = 〈Σ1, . . . ,Σk〉 and an entailment ηi
where i is a layer number, a set of axioms Ji is a justification for ηi in Σ i. Ji may

contain further justifications from Oi+1 and/or Oi−1 if the ontology Σ has added class

or property equality axioms and/or added object equality axioms, respectively. The

further justification can be retrieved from the information stored in the lookup table.

�

In order to keep trace of the new axioms that have been added in the reduction

process, we need extend the algorithm Reduce in Section4.1. The algorithm takes an

OWL FA KB Σ as input and returns a set of OWL DL KB 〈Σ1, . . . ,Σk〉 and a lookup

table between new axioms and its co-respond axiom. The lookup table is indexed

by the layer, i.e. the axioms in the table refer to the layer which contains additional

axioms after the reduction. These additional axioms affects also the justifications

for this layer. Hence, we will later exploit the information from the lookup table

about added axioms to compute the justification. We now present the algorithm

Justification, that will retrieve a justification for an entailment in an OWL FA

ontology. The algorithm takes an OWL FA KB Σ and an entailment ηi as input and

returns a set of justification axioms J . The algorithm Justification is shown in

Fig. 4.

Algorithm 4 The algorithm for computing a single justification for FA

Algorithm Justification(Σ)

Input: OWL FA KB Σ and an entailment ηi
Output: a set of justification axioms J .

begin

Σ∗ = Reduce(Σ);

set Ji = compute-dl-justification(Σ∗i , ηi)

if Ji contains axioms in MPi then

if axiom in MPi is class or property equality then

Ji+1 = compute-dl-justification(Σ∗i+1, axiom)

end if

if axiom in MPi is object equality then

Ji−1 = compute-dl-justification(Σ∗i−1, axiom)

end if

end if

end

We invite the reader to note that compute-dl-justification is a function call to

a DL Reasoner. The mapping table MPi indicates added axioms to the ontology by

the reduction. In this case, the adjacent ontology Σ∗i+1 or Σ∗i−1 is also relevant for the

justifications of the ontology Σ∗i .

Due to space limitations, we cannot describe all reasoning tasks for OWL FA in

this paper, however, since we can reduce OWL FA into a set of OWL DL ontologies

then all existing DL reasoner’s capabilities can be used.
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Fig. 1. OWL FA Tool Kit

5 OWL FA Tool Kit

In this section, we reintroduce the OWL FA Tool Kit, a simple graphic user interface

for modeller to create an OWL FA ontology and perform reasoning over it. The OWL

FA Tool Kit contains features as follows:

• Editor - for checking the OWL FA ontology before performing the reasoning.

• Ontology Consistency Checker- for checking whether a given metamodelling en-

abled ontology is consistent.

• Concept Satisfiability Checker - for verifying whether a concept A is a non-empty

set in a given OWL FA ontology O.

• Query Answering - for accessing information form a given metamodelling enabled

ontologies by using SPARQL queries.

• Export a collection of OWL DL to files - for separating the domain knowledge

from its meta knowledge.

6 Evaluation

In this section, we compare the metamodelling in OWL FA with OWL 2 as OWL 2

is the only OWL language that can support metamodelling and it has tools support.

6.1 Use case 1: Consistency checking

OWL 2 provides simple metamodelling with semantics which correspond to the con-

textual semantics defined in [6], however, it has been shown in [9] that these can lead

to non-intuitive results.
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Let us consider an ontology from Example 3.2 in Section 3 and the axioms 4.19.

This ontology is consistent when we perform consistency checking with any existing

DL reasoner. The existing DL reasoner does not take layer information which are

described as annotation property into account and it interpret this ontology with

contextual semantics.

This ontology is inconsistent based on layered architecture in OWL FA as we

described in Section 4. OWL FA Tool Kit takes layer information into account and

maintain a relationship between element that sharing the same URIs.

6.2 Use case 2: Instance retrieval

In OWL 2, if we do not provide the explicit instantiation between class and individ-

ual, it is difficult for any existing DL reasoner to discover those information because

in contextual semantics, classes and individuals are interpreted independently. Let

consider an ontology from Example 3.2 and remove axioms 3.14 and 3.15 from

the ontology. Then, we would like to retrieve all objects that belong to Endangered.

Without adding an axiom to indicate that Aquila is an Endangered then, Aquila is

not included in the answer set. Although, concept Aquila is equivalent to concept

Eagle but the interpretation of concept Eagle and object Eagle are independent from

each other. Therefore, the existing DL reasoner could not found the relation between

Aquila and Endangered.

For OWL FA and our tool kit, it returns more complete answer sets because

in the reduction process, we propagate all class and property equalities to be object

equalities in the higher layer and propagate all object equalities to be class or property

equalities in the lower layer.

7 Related Work

OWL FA was introduced in [9] as a metamodelling extension of OWL. Motik [6]

addressed metamodelling in OWL with two different semantics. The contextual se-

mantics (or π-semantics) uses punning, i.e. names are replaced by distinct names for

concepts, individuals and roles. This is like the different representation of an object

in the OWL DL ontologies Σi in OWL FA. OWL2 [7] provides simple metamodelling

features which is based on the contextual approach. The other semantics is the HiLog

semantics (or ν-semantics). The HiLog semantics is stronger than the π-semantics.

The concepts and individual interpretations are not independent.

De Giacoma et al. [4] proposed the HiDL− Lite language, which adds one layer

on top of the DL-LiteR language. This supports meta-classes and meta-properties

and presents the query answering algorithm by reducing HiDL− Lite to DL-LiteR
with the intention of using an existing DL-Lite reasoner. In OWL FA the semantics

of meta-level are same as domain knowledge unlike HiDL-Lite that semantics of the

meta-level need to re-define.

Description Logic reasoning is applied to UML models in [1, 12, 3]. The models

are transformed into DL representations. Reasoning is used to check consistency of

models and between models. However, metamodels are not considered.
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8 Discussion

In this section, we discuss the future direction of OWL FA. Although OWL FA has

a well defined metamodelling architecture, OWL does not support cross layer con-

straints. Let’s take the well known Endangered species as an example. One would

like to define a constraint on a meta-concept Endangered that all instances of these

meta-concept have only 3000 individuals. Therefore, if a concept Eagle is an in-

stance of the meta-concept Endangered, the constraint should be applied to the con-

cept Eagle as well. We have an idea how to express this kind of constraint by us-

ing a TopObjectProperty in OWL 2. We can then express this Endangered require-

ment as > v≤ 3000
⋃
.Endangered then propagate this constraint to all instances of

Endangered. This is beyond OWL FA so we would like to investigate on enriching

OWL FA toward OWL 2 FA. Another issue is that, in the cross layer constraints

or restrictions for metamodelling in ontologies that we described in sections 2-5, we

show that OWL FA is able to capture multiple layers better than OWL 2. However,

the constraints or restrictions in OWL FA are relations between two layers. Let’s

consider an ObjectProperty assertion in layer M2, Endangerd liveIn Continent, which

is expressed by the ObjectProperty liveIn. This constraint can only be used to val-

idate the model between the layers M2 and M1. We plan to investigate that it is

possible to propagate the constraints across multiple layers. We are thinking about

to use a meta prefix (meta−) like meta liveIn that would still be an object property

in the M2 layer and there the object property assertions in layer M1 remain un-

changed like liveIn(Eagle, Europe). However, we could also propagate this property as-

sertion from model M1 semantically to model M0. For instance the property assertion

meta liveIn(Eagle, Europe) in M1 becomes the subclass axiom Eagle v ∃ lineIn.Europe

in the model M0. This would be very interesting because we could specify all the

constraints only in higher layers, then propagate them down to the lower layers au-

tomatically.

9 Conclusion

In this paper, we reintroduce OWL FA language and demonstrate how to model the

metamodelling enabled ontology, followed by a description of reasoning in OWL FA

for different reasoning tasks. And the reduction from an OWL FA knowledge base into

OWL DL knowledge bases algorithms are describes. These algorithms use standard

DL reasoning as a black-box service. Based on the given examples, a metamodelling

enables ontology is described in OWL 2 DL.

We have shown that we can make use of the existing DL reasoners to reason over

OWL FA knowledge base. As we discussed in section 4, we can calculate the explicit

OWL DL knowledge base Σ∗i from OWL FA knowledge base Σ∗.

We have implemented the OWL FA Tool Kit for modeller to manipulating and

reasoning over OWL FA standard and plan to incorporate these into the TrOWL2

reasoning infrastructure.

In the future, we would like to enrich OWL FA language toward the direction we

described in discussion section in order to increase expressive power of the language

2 http://www.trowl.eu
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such as propagate constraints between layers. Moreover, we would like to apply the

fixed-layer architecture to OWL 2 DL which has more expressive power.

References

[1] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML Class Dia-
grams. Artificial Intelligence, 168(1-2):70–118, 2005.

[2] Alan Brown. An introduction to Model Driven Architecture. IBM Technical
Report. URL http://www-128.ibm.com/developerworks/rational/library/

3100.html, 2004.
[3] A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning on UML

Class Diagrams in Description Logics. In In Proc. of IJCAR Workshop on Precise
Modelling and Deduction for Object-oriented Software Development (PMD, 2001.

[4] Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Towards higher-
order DL-Lite (preliminary report). In Proceedings of the International Workshop
on Description Logic (DL-2008), Dresden, Germany, May 13-16, 2008.
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