
Towards A Meta-reasoning Framework for Reasoning about
Vagueness in OWL Ontologies

Nophadol Jekjantuk

Department of Computing Science
University of Aberdeen

Aberdeen, United Kingdom
Email: n.jekjantuk@abdn.ac.uk

Jeff Z. Pan

Department of Computing Science
University of Aberdeen

Aberdeen, United Kingdom
Email: jeff.z.pan@abdn.ac.uk

Panos Alexopoulos

Expert System Iberia
Madrid, Spain

Email: palexopoulos@expertsystem.com

Abstract—When developing ontologies, knowledge engineers
and domain experts often use predicates that are vague,
i.e., predicates that lack clear applicability conditions and
boundaries such as High, Expert or Bad. In previous works, we
have shown how such predicates within ontologies can hamper
the latter’s shareability and meaning explicitness and we have
proposed Vagueness Ontology (VO), an OWL metaontology for
representing vagueness-aware ontologies, i.e., ontologies whose
(vague) elements are annotated by explicit descriptions of the
nature and characteristics of their vagueness. A limitation
of VO is that it does not model the way vagueness and its
characteristics propagate when defining more complex OWL
axioms (such as conjunctive classes), neither does it enforce
any kind of vagueness-related consistency. For that, in this
paper, we expand VO by means of formal inference rules
and constraints that model the way vagueness descriptions of
complex ontology elements can be automatically derived. More
importantly, we enable the efficient execution of these rules by
means of a novel meta-reasoning framework.

Keywords-Vague Concept; Vagueness Ontology; Metamodel-
ing Reasoning; Ontological Metamodeling;

I. INTRODUCTION

Vagueness is a common human language phenomenon,

typically manifested by terms and concepts like High, Ex-

pert, Bad, Near etc., and related to our inability to precisely

determine the extensions of such concepts in certain domains

and contexts. That is because vague concepts have typically

blurred boundaries which do not allow for a sharp distinction

between the entities that fall within their extension and

those that do not [11] [17]. For example, some people are

borderline tall: not clearly “tall” and not clearly “not tall”.

When building ontologies, engineers and domain experts

often define ontology entities (classes, relations, etc.) that

contain vague predicates. The problem with this practice is

that the existence of such predicates, as we have illustrated

in previous work [2], can influence in a negative way the

comprehension of ontologies by other parties and limit their

value as a reusable source of knowledge. The reason is the

subjective interpretation of such definitions that may cause

disagreements among the people who develop, maintain or

use an ontology.

In the same work, we have put forward the notion

of vagueness-aware ontologies as a way to reduce the

number and intensity of such disagreements. Informally, a

vagueness-aware ontology is defined as “an ontology whose
vague entities are accompanied by comprehensive metainfor-
mation that describes the nature and characteristics of their
vagueness”. A simple example of such metainformation is

whether an ontology entity (e.g., a class) is vague or not; this

is important as many ontology users may not immediately

realize this. A more sophisticated example is the particular

type of the entity’s vagueness or the applicability context

of its definition. In all cases, the rationale is that having

such metainformation, explicitly represented and published

along with (vague) ontologies, can improve the latter’s com-

prehensibility and shareability, by narrowing the possible

interpretations that its vague entities may assume by human

and software agents.

To enable the formal representation of vagueness-aware

ontologies we have developed the Vagueness Ontology
(VO)1 [1], a metaontology that defines the necessary con-

cepts, relations, and attributes for creating explicit descrip-

tions of vague ontology entities. VO is meant to be used

by both producers and consumers of ontologies; the former

will utilize it to annotate the vague part of their produced

ontologies with relevant vagueness metainformation while

the latter will query this metainformation and use it to make

a better use of the vague ontologies.

A limitation of the Vagueness Ontology is that it does not

model the way vagueness and its characteristics propagate

when defining more complex OWL axioms neither does it

enforce any kind of vague-related consistency. For example,

if we define an OWL class as the conjunction of a set of

vague and non-vague classes, then the reasoner should infer

that this class is also vague. Similarly, if we define a vague

object property to be transitive, the reasoner should indicate

a problem as vague properties cannot be transitive [19]. To

facilitate such capabilities, in this paper, we a) extend the

Vagueness Ontology by means of formal constraints and

1http://www.essepuntato.it/2013/10/vagueness

2016 IEEE Tenth International Conference on Semantic Computing

978-1-5090-0662-5/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSC.2016.47

222

inference rules that model the way vagueness annotations

of complex ontology elements can be automatically derived

from simpler elements and b) implement and evaluate a

novel meta-reasoning framework that enables the efficient

execution of these rules within OWL. In practice, these rules

allow the automatic derivation of vagueness descriptions for

indirectly defined ontology elements and they enforce a kind

of vagueness-related consistency within the ontology.

The structure of the rest of the paper is as follows. The

next section describes the Vagueness Ontology and intro-

duces some meta-reasoning rules that apply to it. Section III,

in turn, describes our approach for facilitating the execution

of these rules on VO-annotated ontologies in an efficient way

while section IV describes an evaluation of this approach.

Section V presents related work and finally, section VI

concludes.

II. DEFINING META-REASONING RULES IN THE

VAGUENESS ONTOLOGY

A. The Vagueness Ontology

The Vagueness Ontology enables the annotation of an

ontological entity (class, relation or datatype) with a de-

scription of the nature and characteristic of its vagueness. A

class is vague if, in the given domain, it admits borderline

cases, namely if there are (or could be) individuals for which

it is indeterminate whether they instantiate the class (e.g.,

“TallPerson”, “ExperiencedResearcher”, etc.). Similarly, an

object property (relation) is vague if there are (or could be)

pairs of individuals for which it is indeterminate whether

hey stand in the relation (e.g., “hasGenre”, “hasIdeology”,

etc.). The same applies for datatype properties and pairs of

individuals and literal values. Finally, a vague datatype con-

sists of a set of vague terms (e.g., “RestaurantPriceRange”
with the terms “cheap”, “moderate” and “expensive”).

A vagueness description explicitly states whether the en-

tity is vague or not. For example, the class “StrategicClient”
defined as “A client that has a high value for the company”
is vague while “AmericanCompany” as “A company that
has legal status in the Unites States” is not. Moreover, it can

often be the case that a seemingly vague entity can have a

non-vague definition (e.g. “TallPerson” when defined as “A
person whose height is at least 180cm”). Then this entity is

not vague in the given ontology and that is something that

needs to be explicitly stated.

Also, vagueness can be quantitative or qualitative [11].

A predicate has quantitative vagueness if the existence of

borderline cases stems from the lack of precise boundaries

for the predicate along one or more dimensions (e.g. “bald”

lacks sharp boundaries along the dimension of hair), and

qualitative if there is a variety of conditions pertaining

to the predicate, but it is not possible to make any crisp

identification of those combinations which are sufficient for

application (e.g., “religion”, “strategic”, etc.).

Knowing the type of vagueness is important as entities

with an intended (but not explicitly stated) quantitative

vagueness can be considered by others as having qualitative

one and vice versa. Also, when the entity has quantitative

vagueness it is important to state explicitly its intended

dimensions (e.g. the amount of R&D budget for the term

“strategic”. VO makes explicit the type of the entity’s

vagueness and the dimensions of the term’s quantitative

vagueness. Moreover, VO explicitly represents the creator
of a vagueness annotation of a certain entity as well as the

applicability context for which the entity is defined.

Context-dependent can be i) the description of vagueness

of an entity (i.e. the same entity can be vague in one context

and non-vague in another) and ii) the dimensions related to

a description of vagueness having quantitative type (i.e. the

same entity can be vague in dimension A in one context and

in dimension B in another).

As an example assume that Silvio Peroni thinks that the

class TallPerson is vague since there is no way to define

a crisp height threshold that may separate tall from non-

tall people. Using the Vagueness Ontology, this information

could represented as follows:

:TallPerson a owl:Class.

:silvio-peroni a :prov:Agent.

:silvio-vag-anno-for-tall-person a vag:
VaguenessAnnotation;

oa:hasBody :silvio-vag-desc-for-tall-
person;

oa:hasTarget :TallPerson;
prov:wasAttributedTo :silvio-peroni.

:silvio-vag-desc-for-tall-person a vag:
DescriptionOfVagueness;

vag:hasJustification :silvio-jus-for-vag-
of-tall-person.

:silvio-jus-for-vag-of-tall-person a vag:
Justification;

vag:hasNaturalLanguageText "Tall Person
is vague because it’s not possible to
define the height threshold between
tall and non-tall.".

Such representations allow us to ask questions related to

the vagueness of a given ontology in the form of SPARQL

queries. For example, to retrieve all vague entities of a VO-

annotated ontology, the following query could be used:

SELECT DISTINCT ?entity WHERE {
?ann a vag:VaguenessAnnotation ;

oa:hasTarget ?entity ;
oa:hasBody ?desc .

?desc a vag:DescriptionOfVagueness }

B. Rules and Constraints about Vagueness Descriptions

The annotation of vague ontology elements with vague-

ness descriptions is typically done in a manual fashion by

the ontology engineer. When these elements participate in

the definition of more complex elements, such as conjunctive

223

classes, then their descriptions can be used to automatically

infer vagueness descriptions for these complex elements.

Moreover, it may be the case that an element’s vagueness

description that an engineer or domain expert creates is

inconsistent with the other characteristics of the element;

in such a case this inconsistent should be detected. The

identification of vagueness-related inference rules and con-

straints with respect to the Vagueness Ontology is a work

in progress; so far we have identified the following:

• VR 1: The subclass of a quantitatively vague class

is also vague unless this subclass provides concrete

thresholds for the vagueness dimensions of the class.

The reason for this is that the vagueness dimensions of

the class are inherited by the subclass, meaning that

the latter can become non-vague only if it provides

specific values for these dimensions. For example the

class PersonOver180cm is a subclass of the vague class

TallPerson but itself is not vague because it makes

concrete the height threshold.

• VR 2: The subclass of a qualitatively vague class is

also vague unless this subclass consists of instances

that satisfy a subset of the class’s vague applicability

conditions. Again the rationale here is that the subclass

inherits the lack of concrete applicability criteria of the

parent class and can only be non-vague if it explicitly

provides these criteria. For example, assuming that

a criterion for a company to be a competitor for a

Spanish company is to have offices in Spain, the class

CompanyWithOfficesInSpain is a subclass of the vague

class Competitor without itself being vague.

• VR 3: The conjunction of a set of classes is vague

if at least one of these classes is vague. For example,

if TallGreekPerson ≡ TallPerson � GreekPerson and

the classes TallPerson and GreekPerson have been

identified as vague and non-vague respectively, then

TallGreekPerson is also vague.

• VR 4: The conjunction of a set of classes is quantita-

tively vague if all these classes are quantitatively vague.

The reason for this is that if one of the constituent vague

classes has qualitative vagueness, then the criterion for

quantitative vagueness (i.e., being vague only in par-

ticular dimensions) does not apply for the conjunctive

class.

• VR 5: The conjunction of a set of classes is qualitatively

vague if at least one of these classes is qualitatively

vague. Again the reason for this is that the qualitative

vagueness criterion dominates the quantitative one.

• VR 6: The conjunction of a set of quantitatively vague

classes is vague in the super set of all the constituent

classes’ dimensions. For example, if TallFatPerson ≡
TallPerson�FatPerson and the classes TallPerson and

FatPerson are quantitatively vague in the dimensions

of Height and Weight respectively, then TallFatPerson

is quantitatively vague in the both of these dimensions.

• VR 7: A vague property cannot be transitive. The

reason for this is that vagueness destroys transitivity.

For example, if x is approximately equal to y and y
approximately equal to z, then it does not necessarily

follow that x is approximately equal to z [19].

• VR 8: The inverse of a vague property has the same

vagueness characteristics as the original property.

In the next section, we describe how we facilitate the

execution of the above rules in an efficient way by means

of a reasoning algorithm that builds on top of an existing

DL reasoner. Please note that the first two rules are not

currently possible to implement because of the expressivity

of the OWL 2 DL; therefore, we implement here only rules

VR 3 to VR 8.

III. EXECUTING META-REASONING RULES IN THE

VAGUENESS ONTOLOGY

A. OWL 2 (Recap)

An OWL 2 DL vocabulary VO = (Vcls, Vop, Vdp, Vind,

Vdt, Vlt, Vfa) is a 7-tuple over a datatype map D where

Vcls is the set of IRIs denoting class names, Vop is the set

of IRIs denoting object properties, Vdp is the set of IRIs

denoting datatype properties, Vind is the set of IRIs denoting

individuals, Vdt is the set of IRIs denoting all datatypes of

D, the datatype rdfs:Literal, and possibly other datatypes, is

the set of IRIs denoting datatype names, Vlt is the set of

well-formed RDF literals and Vfa is the set of pairs (F , lt)
for each containing facet F , and literal lt.

The abstract syntax for an OWL 2 class definition is:

C ← � | ⊥ | CN | ¬C | C �D | C �D | {o} |
∃R.C | ∀R.C | ∃R.Self | ≤ nR.C | ≥ nR.C

where C ∈ Vcls, a ∈ Vind, R, T ∈ Vop and it are simple

roles, and n is a non-negative integer.

The semantics of OWL 2 ontologies is given by means

of interpretations. An interpretations I consists of a set ΔI

called domain together with a function ·I mapping individ-

ual names to elements of ΔI , class names to subsets of ΔI ,

and role names to subsets of ΔI × ΔI . The interpretation

function is extended to complex class expressions in the

usual way as explained in detail in [10].

B. OWL FA

OWL FA [15] enables metamodeling. It is an exten-

sion of OWL DL, which refers to the description logic

SHOIN (D). Ontologies in OWL FA are represented in

a layered architecture.

OWL FA specifies a stratum number in class constructors

and axioms to indicate the strata they belong to. Let i ≥ 0 be

an integer. OWL FA consists of an alphabet of distinct class

names VCi
(for stratum i), datatype names VD, abstract

property names VAPi (for stratum i), datatype property

224

names VDP and individual (object) names (I); together with

a set of constructors (with subscriptions) to construct class

and property descriptions (also called OWL FA-classes and

OWL FA-properties, respectively).

Let CN ∈ VCi
be an atomic class name in layer i (i ≥ 0),

R an OWL FA-property in layer i, o ∈ I an individual,

T ∈ VDP a datatype property name, and C,D OWL FA-

classes in layer i. Valid OWL FA-classes are defined by the

abstract syntax:

C ← � | ⊥ | CN | ¬iC | C �i D | C 	i D | {o} |
∃iR.C | ∀iR.C | ≤i nR | ≥i nR | (if i = 1)
∃1T.d | ∀1T.d | ≤1 nT | ≥1 nT

The semantics of OWL FA is a model theoretic semantics,

which is defined in terms of interpretations. In other words,

the semantics of two layers which can be considered as

TBox and ABox are same as in OWL DL. The idea of

OWL FA is that the interpretation depends on the layer

but is still an OWL DL interpretation. Given an OWL FA

alphabet V, a set of built-in datatype names B ⊆ VD and

an integer k ≥ 1, an OWL FA interpretation is a tuple of

the form pair J = (ΔJ , ·J), where ΔJ is the domain (a

non-empty set) and ·J is the interpretation. In the rest of the

paper, we assume that i is an integer such that 1 ≤ i ≤ k.

The interpretation function can be extend ObjectProperty

assertionsed to give semantics to OWL FA-properties and

OWL FA-classes. Let RN ∈ VAPi be an abstract property

name in layer i and R be an abstract property in layer i.
Valid OWL FA abstract properties are defined by the abstract

syntax: R ::= RN | R−, where for some x, y ∈ ΔA
J
i−1,

〈x, y〉 ∈ RI iff 〈y, x〉 ∈ R−J . Valid OWL FA datatype

properties are datatype property names. The interpretation

function is explained in detail in [15].

C. Classed-based Metamodeling Approach

Classed-based Metamodeling [9] is ontology-inherent

metamodeling for classes in OWL based on an axiomatiza-

tion of class reification. We can obtain the a metamodeling-

enabled version Ometa from a given ontology O with func-

tion bound(·),SepDom(·),Typing (·) and MatSubClass(·).
Let O be a domain ontology with vocabulary

V(OC ,OR,OI) The vocabulary of the metamodeling-

enabled version is

Ometa
C := OC ∪ {Inst,Class}

Ometa
R := OR ∪ {type, subClassof,RInst}

Ometa
I := OI ∪ {oC | C ∈ OC}

where all newly introduced names are fresh where they

are not part of VO.

The function bound(·) returns its input after rewriting it

as follows: first, every occurrence of X having one of the

forms �, ¬C, ∀R.C, � nR.C, ∃U.Self is substituted by

Inst � X , where we can express complex classes C. Next,

the universal role is localized by substituting every ∀U.C by

∀U.(Inst 	 C) and every U occurring on the left hand side

of a role chain axiom by RInst ◦ U ◦ RInst where RInst is

axiomatized via ∃RInst.Self ≡ Inst. The functions SepDom,

Typing, and MatSubClass return a set of axioms as specified

in [9]. The metamodeling-enabled version Ometa of O is

bound(O)∪SepDom(O)∪Typing(O)∪MatSubClass(O).

D. Extended Fixed-Layer Architecture Reasoning

As we discussed in section II-B, vagueness rules 3 - 6 are

only apply to the axiom of form A ≡ �Bn where n ≥ 1. This

form of axiom can be transformed into A � B1, . . . ,A � Bn.

Thus, the subsumption relation will be useful to help us to

identify the hidden vague entity.

According to the layered architecture, the knowledge base

O in OWL FA is divided into a sequence of knowledge bases

O = O1, . . .Ok, whereas k is the number of layers. We have

extended Fixed-Layer Architecture semantics with role name

subClassOf and subPropertyOf. Subclass relationships be-

tween a class C and a class D in the given ontology Oi are

materialized as role instances: the individual that represents

the class C, say OC , and the individual that represents D, say

OD, are interconnected by the newly introduced metarole

subClassOf in Oi+1 . Similar to SubProperty relationships

between a property P and a property Q are materialized as

role instances of metarole subPropertyOf.

Definition 1. Let Oi be an ontology in a set of ontologies
of OWL FA and i > 1. Oi consist of vocabulary
V(OC ,OR,OI). The vocabulary of the extension version of
Oi is

OR := OR ∪ {subClassOf, subPropertyOf}

where subClassOf and subPropertyOf newly introduced
role names and they are not part of VO.

An interpretation J satisfies subClassOfJ = {<
δC , δD >| CI ⊆ DI} and subPropertyOfJ = {< δR, δS >|
RI ⊆ SI}.
Theorem 1. Let Oi be an OWL ontology on layer i where
i >1. Then, the extend of Oi contains class/role subsumption
constrains from Oi−1 as role instances according to their
semantics rules.

Proof: (sketch). The theorem is proven by an obvious

interpretation to satisfies meta role subClassOf(δC , δD) iff

CI ⊆ DI and subPropertyOf(δR, δS) iff RI ⊆ SI .

Reasoning problems of the extended FA semantics can be

reduced to DL reasoning problems by propagating equality

and subsumption constraints between Oi and Oi+1. How-

ever, reasoning tasks could be expensive because we have

to propagate up- and downward until there is no new axiom

generated. Since, we possess only a domain ontology and

the vagueness metaontology, we can use the class-based

approach to encode a domain ontology into the Vagueness

225

Ontology. Thus, the reasoning would be simpler because it

does not require the propagation between layers. In the next

section, we are going to discuss how to extend a class-based

approach to integrate a domain ontology with the Vagueness

Ontology base on the extended FA semantics.

E. Integrated Domain Ontology

In this section, we show how to extend a class-based

approach [9] to integrate a domain ontology with the

Vagueness Ontology. The Class is a newly introduced class

which contains class individuals that represent classes from

domain ontology. The Role contains property individuals

that represent properties from a domain ontology excluding

transitive role and RoleTran contains property individuals

that represent all transitive roles.

Definition 2. Let O be a domain ontology with vocabulary
V(OC ,OR,OI) The vocabulary of a metamodeling-enabled
version Ometa is

Ometa
C = OC ∪ {Class,Role,RoleTran, Inst}

Ometa
R = OR ∪ {subClassof, subPropertyOf,RInst}

Ometa
I = OI ∪ {oC | C ∈ OC , oR | R ∈ OR}

where all newly introduced names are fresh where they
are not part of VO.

We use function bound(·) and SepDom(·) which defined

in [9] to compress the domain ontology in order to integrate

it with the Vagueness Ontology. We have extended the

function SepDom(·) with following rules:

• Class � ¬Role

• RoleTran � Role

• ∃subPropertyOf.� � Role

• � � ∀subPropertyOf.Role
• Role(oR) for all R ∈ OR excluding transitive role

• RoleTran(oR) for all transitive role ∈ OR

We have dropped the functions Typing(·) and

MatSubClass(·) and we substitute these functions

with the propagation rules as following:

• C � D and oC , oD ∈ Class then add subClassOf(oC ,

oD) to Σ.

• C ≡ D and oC , oD ∈ Class then add oC = oD to Σ.

• R � S and oR, oS ∈ Role then add subPropertyOf(oR,

oS) to Σ.

• R ≡ S and oR, oS ∈ Role then add oR = oS to Σ.

• oC = oD and oC , oD ∈ Class then add C ≡ D to Σ.

• subClassOf(oC , oD) and oC , oD ∈ Class then add C �
D to Σ.

• oR = oS and oR, oS ∈ Role then add R ≡ S to Σ.

• subPropertyOf(oR, oS) and oR, oS ∈ Role then add

R � S to Σ.

Theorem 2. Let O be an OWL ontology and Ometa be its
metamodeling-enabled version as specified in Definition 2.
Then the following properties hold:
• For any OWL axiom a containing only names from OC ,

OR, and OI we have O |= a iff Ometa |= bound(a).
• For any two named classes C,D ∈ OC , we have that
O |= C � D iff Ometa |= subClassOf(oC , oD) .

• For any two named classes C,D ∈ OC , we have that
O |= C ≡ D iff Ometa |= oC = oD.

• For any two named properties R,S ∈ OR, we have
that O |= R � S iff Ometa |= subPropertyOf(oR, oS).

• For any two named properties R,S ∈ OR, we have
that O |= R ≡ S iff Ometa |= oR = oS .

Proof: (sketch). For the first claim, given a model I of

O, we construct a model meta(I) = J of Ometa as follows:

• ΔJ = ΔI ∪{oC | C ∈ OC}∪{oR | R ∈ OR}, InstJ =
ΔI

• ςJ = ςI for all ς ∈ OC ∪ OR ∪ OI

• ClassJ = {oC | C ∈ OC}, RoleJ = {oR | R ∈ OR and

R is not transitive}
• RoleTranJ = {oRoleTran | R is transitive}
• subClassOfJ = {< δC , δD >| CI ⊆ DI}
• subPropertyOfJ = {< δR, δS >| RI ⊆ SI}

we can construct J satisfies for all axioms from

SepDom(O) and propagation rules. For every class C con-

taining only names from Voc(O), that bound(C)J = CI

(claim †).
For the second claim, we have that from O |= C � D

follows Ometa |= bound(C) � bound(D). Therefore,

Ometa |= C � D. Considering a model J of Ometa

and the propagation rules. we obtain subClassOf(δC , δD)
iff CI ⊆ DI the argument holds in both ways. For the rest

of the claim, it can be proofed with similar manner.

We now present the algorithm Compute, that will prop-

agate equality and subsumption constrains between Ometa

and OV O. The algorithm takes Ometa and OV O as input

and returns the explicit knowledge base. The Algorithm

Compute is shown in Algorithm 1.

F. Vagueness Ontology Extension

We define OWL based constraints as OWL class defi-

nitions instead of a SPARQL query that presented in [1].

VagueEntity is an OWL class definition contains individuals

that represent classes/properties that has been identified as

vague entity. NonVageEntity, VagueClass, VagueRole, Non-

VagueClass, NonVagueRole, VaguenessQualitative, Vague-

nessQuantitative, VaguenessDimension, VaguenessDimen-

sionInContext are class definition that hold individuals

which classify into non vague entity, vague class, vague

property, non vague class, non vague property, qualitative

vagueness, quantitative vagueness, vagueness dimension and

vagueness dimension in context respectively.

226

Algorithm 1 Compute

Input: {Ometa,OV O}
Output: ΣMetOn

1: procedure COMPUTE

2: Create ΣMetOn from OV O and Ometa

3: repeat
4: C � D and oC , oD ∈ Class then add

subClassOf(oC , oD) to ΣMetOn

5: C ≡ D and oC , coD ∈ Class then add oC = oD
to ΣMetOn

6: R � S and oR, oS ∈ Role then add

subPropertyOf(oR, oS) to ΣMetOn

7: R ≡ S and oR, oS ∈ Role then add oR = oS to

ΣMetOn

8: oC = oD and oC , oD ∈ Class then add C ≡ D
to ΣMetOn

9: subClassOf(oC , oD) and oC , oD ∈ Class then

add C � D to ΣMetOn

10: oR = oS and oR, oS ∈ Role then add R ≡ S to

ΣMetOn

11: subPropertyOf(oR, oS) and oR, oS ∈ Role then

add R � S to ΣMetOn

12: until there is no new axiom generated

13: return ΣMetOn

• VagueEntity is a class that contains all vague entities.

SELECT DISTINCT ?entity WHERE {
?ann a vag:VaguenessAnnotation ;

oa:hasTarget ?entity ;
oa:hasBody ?desc .

?desc a vag:DescriptionOfVagueness }

VagueEntity ≡ ∃hasTarget−.(VaguenessAnnotation�
(∃hasBody.DescriptionOfVagueness))

• NonVagueEntity is a class that contains all non vague

entities.

NonVagueEntity ≡ ∃hasTarget−.(VaguenessAnno−
tation � (∃.hasBody.DescriptionOfNonVagueness))

• VagueClass and VagueRole: vague entities of a certain

type.

VagueClass ≡ (VagueEntity � Class) 	
(∃subClassOf.VagueClass)

VagueRole ≡ (VagueEntity � Role) 	
(∃subPropertyOf.VagueRole)

• NonVagueClass and NonVagueRole: non vague entities

of a certain type.

NonVagueClass ≡ NonVagueEntity � Class
NonVagueRole ≡ NonVagueEntity � Role

• VaguenessQualitative and VaguenessQuantitative:

vague entities according to their vagueness type.

VaguenessQualitative ≡ VagueEntity �
∃hasVaguenessType.{qualitative− vagueness}

VaguenessQuantitative ≡ VagueEntity �
∃hhasVaguenessType.{quantitative− vagueness}

• VaguenessDimension: Entities and their vagueness di-

mensions

VaguenessDimension ≡ VagueEntity �
(∃hasJustification.Justification) �
(∃hasDimension.Dimension)

• VaguenessDimensionInContext: Entities and their

context-specific vagueness dimensions.

VaguenessDimensionInContext ≡ VagueEntity �
(∃hasJustification.Justification) �
(∃hasDimensionInContext.DimensionInContext)

Then, we have modified the above class descriptions in

order to satisfy with Vagueness Rules that presented in

section II-B.

• VR 3: The conjunction of a set of classes is vague if

at least one of these classes is vague. The subclass of

a vague class is also vague, unless this subclass is not

vague entity.

VagueClass ≡ (VagueEntity � Class) 	
(∃subClassOf.(VagueClass � ¬NonVagueEntity))

• VR 4: The conjunction of a set of classes is quan-

titatively vague if all vague classes are quantitatively

vague.

VaguenessQuantitative ≡ VagueEntity �
∃hasVaguenessType.{quantitative− vagueness} 	
∀subClassOf.VaguenessQuantitative

• VR 5: The conjunction of a set of classes is qualitatively

vague if at least one vague class is qualitatively vague.

VaguenessQualitative ≡ VagueEntity �
∃hasVaguenessType.{qualitative− vagueness} 	
∃subClassOf.VaguenessQualitative

• VR 6: The quantitatively vague conjunction of classes

is quantitatively vague in the super set of all the vague

classes’ dimensions.

VaguenessDimension ≡ VagueEntity �
(∃hasJustification.Justification) �
(∃hasDimension.Dimension) 	
(∀subClassOf.VaguenessQuantitative)

• VR 7: A vague property cannot be transitive.

VagueRole � ¬RoleTran
Although we could encode most of the vagueness con-

straints as OWL constraints, we still could not represent VR

8 as an OWL constraint due to the limitation of OWL 2 DL.

G. Syntactic Checking

In many situations, one might want to define a class

description with a conjunction of complex class descriptions.

For example, YoungPerson ≡ Person � ∃hasAge.Young
where Young ≡ ∃Age.[Int ≥ 15 � Int ≤ 30].

We could represent the complex class description with an

atomic class, but we still cannot identify whether the newly

introduced class is vague or not.

Vagueness Syntactic Checking will apply to a class de-

scription that equivalent to a complex class description and a

227

vague property that has its inverse (VR 8). This procedure is

very straight forward because after the Compute procedure,

we already have all vague entities. In addition, this operation

will add all instances of VaguenessQuantitative. However,

the syntactic checking process may introduce new vague

entities which require to recalculating the knowledge base

until there is no new axiom generated.

IV. EVALUATION

In this section, we present the early experimental result

of our approach. Firstly, we test the metamodeling approach

without syntactic checking with the test data. Secondly, we

test the metamodeling approach with syntactic checking with

the test data. Please note that we use HermiT Reasoner 2 as

an external reasoner in our evaluation.
We have generated the test data to test our framework by

utilizing the following pattern:

1) A1
.
= B1 �B2 �B3 if B2 is vague, then A1 is vague

(VR 3).

2) A2
.
= B11 � B12 � B13 if B11 is qualitative vague,

then A2 is also qualitative vague (VR 5).

3) A3
.
= B21 � B22 � B23 if B21, B22 and B23 are

quantitative vague, then A3 should be quantitative

vague (VR 4).

4) A4
.
= B31 � B32, B31 ≡ ∃R2.B32, B33 ≡ ∃R2.B34,

B32 ≡ B34, A5
.
= B33 � B34, If B33 is vague then,

A4, A5 and B31 also vague.

5) R1 ≡ inverse(S1). S1 is vague then, R1 is vague (VR

8).

6) Transitive(S1) if S1 is vague, then the knowledge base

become inconsistent (VR 7).

The last pattern only added into the test data to test vague-

ness rule 7 (VR 7) otherwise, the reasoner will stop before

we can get all results.

A. Metamodeling Approach

Entity Expected Result
VagueEntity 22 20
VagueClass 14 14
VagueProperty 2 1
VaguenessQualitative 2 2
VaguenesQuantitative 4 3

Table I
NUMBER OF VAGUE ENTITIES FOR METAMODELING APPROACH

As we discuss in the previous section, without Syn-

tactic checking enabled, we have missed two vague en-

tities. One reason is that the OWL-based constraints for

VaguenessQuantitative does not derive a new instance of

the definition class because of the Open World Assumption.

And another reason is we cannot represent VR 8 with DL

constraint.

2http://hermit-reasoner.com/

B. Metamodeling Approach with Syntactic checking

Entity Expected Result
VagueEntity 22 22
VagueClass 14 14
VagueProperty 2 2
VaguenessQualitative 2 2
VaguenessQuantitative 4 4

Table II
NUMBER OF VAGUE ENTITIES FOR METAMODELING APPROACH AND

SYNTACTIC CHECKING

The results presented in the table II shows that the Meta-

modeling Approach with Syntactic checking could deliver

more the complete result w.r.t the vagueness constraints.

V. RELATED WORK

A. Higher-order DLs for Metamodeling Reasoning

One of the most popular approaches which is closely

related to DLs is HiLog [6]. HiLog is logic with a higher-

order syntax, which allows predicates to appear as arguments

in atomic formula. Moreover, a satisfiable first-order formula

without equality is also satisfiable under the HiLog seman-

tics. The notion of reification of concepts [3] is proposed as

a means to express meta-level classes, but the author does

not address neither the issue of meta-roles, nor the issue of

query answering.

Motik [14] and De Giacomo et al. [8] proposed higher-

order extensions of DL under HiLog-style semantics. De

Giacomo et al. have studied a stronger variant of the

semantics where intensions are assigned also to complex

entities.

Reasoning with metamodeling is also presented in [15],

where the language OWL FA is proposed, which introduces

a stratum number in class constructors and axioms to in-

dicate the strata they belong to, and suitable constraints

impose that TBox axioms are stated on classes of the same

stratum, while ABox axioms can only involve elements of

two consecutive strata.

Glimm and colleagues [9] proposed an approach to meta-

model higher-order entities directly in SROIQ. However, this

is not concerned complex construction and properties of a

higher-order DL.

B. Vagueness Reasoning

Vagueness in ontologies has been typically treated in the

Semantic Web community by means of fuzzy logic and

probabilistic techniques[13], [12], [4], [5], [18], [16], [7].

These approaches facilitate the definition of truth degrees for

vague ontology elements and the reasoning they enable has

to do with the way these degrees propagate across different

elements. The vagueness Ontology, on the other hand, fo-

cuses on clarifying the intended meaning and interpretation

of the vague entities such as the concept membership criteria

228

of a given vague concept. For example, a fuzzy ontology

may contain the statement “John is an expert at ontologies
to a degree of 0.8” but the information on how the notion

of expertise should be interpreted in the given domain or

context is contained in the vagueness description of the

property “isExpertAt”.

In the same sense, the kind of reasoning that we describe

in this paper is not about inferring truth degrees, but rather

vagueness descriptions; this makes our approach comple-

mentary to fuzzy ontology related works and it may be used

to enhance the comprehensibility of fuzzy degrees. A fusion

of the two levels, namely the degree-level and the vagueness

description level, is an interesting future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have extended the Vagueness Ontology

by means of formal constraints and a reasoning framework

that model the way vagueness descriptions of complex

ontology elements can be derived from simpler ones. We

have detailed a combined approach between OWL FA and

the class-based approach by syntactically rewriting a domain

ontology and integrate it with the Vagueness Ontology

while preserving all semantics connections according to the

extended FA semantics. Then, we detailed the reasoning

approach to tackling the Vagueness Ontology’s reasoning

limitations. The early experimental results show that we

could automatically derive the implicit vague entities from

the explicit ones.

In the future, we would like to investigate about the

completeness of the result set if we use an approximation

based DL reasoner instead of sound and complete DL

reasoner. Furthermore, we would like to investigate on how

to use the tradition DL reasoner with the syntactic checking

approach because our metamodeling approach may be too

expensive in the large scale deployment.

ACKNOWLEDGMENT

This work has been partially supported by the K-Drive

project (FP7-286348).

REFERENCES

[1] Panos Alexopoulos, Silvio Peroni, Boris Villazón-Terrazas,
Jeff Z. Pan, and José Manuél Gómez-Pérez. A metaontology
for annotating ontology entities with vagueness descriptions.
In Proc. of URSW 2011-2013, Revised Selected Papers, pages
100–121, 2014.

[2] Panos Alexopoulos, Boris Villazón-Terrazas, and Jeff Z. Pan.
Towards vagueness-aware semantic data. In Proc. of URSW
2013, volume 1073, pages 40–45. CEUR-WS.org, 2013.

[3] Liviu Badea. Reifying concepts in description logics. In Proc.
of IJCAI 1997, pages 142–149. Morgan Kaufmann, 1997.

[4] Fernando Bobillo and Umberto Straccia. fuzzydl: An expres-
sive fuzzy description logic reasoner. In FUZZ-IEEE, pages
923–930. IEEE, 2008.

[5] Fernando Bobillo and Umberto Straccia. Fuzzy Ontology
Representation using OWL 2. International Journal of
Approximate Reasoning, 52(7):1073–1094, October 2011.

[6] Weidong Chen, Michael Kifer, and David Scott Warren.
Hilog: A foundation for higher-order logic programming. J.
Log. Program., 15(3):187–230, 1993.

[7] Jhonatan Garcia, Jeff Z. Pan, Achille Fokoue, Katia Sycara,
Yuqing Tang, and Federico Cerutti. Handling uncertainty: An
extension of DL-Lite with Subjective Logic. In Proc. of DL
2015, 2015.

[8] Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. On higher-order description logics. In Proc. of DL
2009, volume 477. CEUR-WS.org, 2009.

[9] Birte Glimm, Sebastian Rudolph, and Johanna Völker. Inte-
grated metamodeling and diagnosis in owl 2. In Proceedings
of the 9th International Semantic Web Conference, volume
6496 of LNCS, pages 257–272. Springer, November 2010.

[10] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider, and Sebastian Rudolph, editors. OWL 2 Web
Ontology Language: Primer. W3C Recommendation, 27 Oc-
tober 2009. Available at http://www.w3.org/TR/owl2-primer/.

[11] Dominic. Hyde. Vagueness, logic and ontology / Dominic
Hyde. Ashgate Aldershot, England ; Burlington, VT, 2008.

[12] Daphne Koller, Alon Levy, and Avi Pfeffer. P-classic: A
tractable probabilistic description logic. In Proceedings of
AAAI-97, pages 390–397, 1997.

[13] Thomas Lukasiewicz and Umberto Straccia. Managing un-
certainty and vagueness in description logics for the semantic
web. Web Semant., 6(4):291–308, November 2008.

[14] Boris Motik. On the Properties of Metamodeling in OWL.
Journal of Logic and Computation, 17(4):617–637, 2007.

[15] Jeff Z. Pan, Ian Horrocks, and Guus Schreiber. OWL FA: A
Metamodeling Extension of OWL DL. In Proc. of OWL-ED
2005, 2005.

[16] Jeff Z. Pan, Edward Thomas, Yuan Ren, and Stuart Taylor.
Tractable Fuzzy and Crisp Reasoning in Ontology Applica-
tions. In IEEE Computational Intelligence Magazine, 2012.

[17] S. Shapiro. Vagueness in Context. Oxford University Press,
2006.

[18] Giorgos Stoilos, Giorgos Stamou, Jeff Z. Pan, Vassilis Tzou-
varas, and Ian Horrocks. Reasoning with Very Expressive
Fuzzy Description Logics. Journal of Artificial Intelligence
Research, 30:273–320, 2007.

[19] Kees. Van Deemter. Not Exactly: In Praise of Vagueness.
Oxford University Press, 2010.

229

