
Verifying and Validating Multi-Layered Models
with OWL FA Toolkit

Nophadol Jekjantuk1, Jeff Z. Pan1, and Gerd Gröner2

1 University of Aberdeen, United Kingdom
2 University of Koblenz-Landau, Germany

Abstract. This paper details the use of OWL FA Toolkit for verify-
ing and validating multi-layered (meta-) modelling using ontologies de-
scribed in OWL FA. We will show how OWL FA and its reasoner (OWL
FA Toolkit) could benefit software modellers on leveraging the software
development life cycle through a practical use case.

1 Introduction

Metamodelling, i.e. modelling across multiple modelling layers, dealing with con-
cepts and meta-concepts, is a key issue in model management and especially in
model-driven software development (MDSD). Metamodels appear in application
areas such as UML [14], Model Driven Architecture [4] and E-Commerce.

Ontologies and the Web Ontology Language (OWL) are well established for
model descriptions and model management tasks. However, the standard OWL
Web Ontology Language does not support modelling and reasoning over a lay-
ered metamodelling architecture. OWL 2 provides simple metamodelling which
corresponds to the contextual semantics defined in [9]. However, this modelling
technique is mainly based on punning. It has been shown in [12] that this can
lead to non-intuitive results, since the interpretation function is different based
on the context.

Indeed, for many applications, a validation without a metamodel is not ad-
equate. There are various works which consider validation of UML models with
OCL constraints like in [3, 5, 7, 13, 8]. However, none of these approaches ac-
count for a validation across multiple layers, i.e. validate models with respect to
their metamodels. Although they validate models with model constraints and
instances of the models, they do not account for metamodels in their validation.
We intent to show how OWL FA Toolkit could be used to help close the gap.

2 Motivating Example

This section gives an example to demonstrate the need for metamodelling en-
abled ontologies. Models are depicted in UML notations. Metamodels are more
than a syntactic language description of a modelling language; a metamodel is a
description of the concepts of a modelling language specifying the structure and
the kind of information that can be handled [10].



Models and metamodels are commonly used in model-driven software en-
gineering (MDSE). In order to improve software development processes, new
technologies which provide reasoning support like consistency checking of mod-
els and metamodels are beneficial. In MDSE, each model layer can contain both
class and object definitions. However, this leads to undecidability problems in
model validation w.r.t the complexity of the model. In ontology engineering, on-
tologies for metamodelling like OWL FA separates class and object into different
layers in order to maintain the decidability of the language.

Fig. 1. Layered Architecture for a Physical Device Model

In Fig. 1, a layered modelling architecture is demonstrated for physical device
modelling (an application of configuration management). The figure depicts three
layers M0, M1 and M2. M3 is a Meta-metamodel layer which is not included in the
example. The arrows between the layers demonstrate instance relationships, the
arrows within a layer are concept relations (like object properties and subclass
hierarchies). Moreover, the modeller requires that the concepts Chassis and Shelf
in M3 have to be disjoint from each other.

A crucial task in model-driven engineering is the validation of models and
metamodels [3, 5, 7, 13, 8]. A valid model refers to its metamodel and satisfies all
the restrictions and constraints. However, the validation of multiple layers may
lead to inconsistency even if the consistency is satisfied between all adjacent
layers, i.e. model and instance layer. For instance, in the previous described
scenario, if one would like to add Avaya is an instance of Shelf in M2 and Avaya,
considered as a concept in M1, is equivalent to the concept Cisco in M1. Combined



with the constraints on the model layer M2 which requires the disjointness of
class Shelf and Chassis leads to a contradiction and therefore to an inconsistent
ontology. Without capturing multiple layers, this inconsistency is not detected
since Avaya is either considered as a concept on layer M1 or as an instance.
However, modelling with more than two layers has to account for concepts on
layer Mi that are at the same time instances of concepts of the layer Mi+1.

3 Technical Background

OWL FA [12] enables metamodelling. It is an extension of OWL DL, which refers
to the description logic SHOIN (D). Ontologies in OWL FA are represented in
a layered architecture. This architecture is mainly based on the architecture of
RDFS(FA) [11]. OWL FA specifies a layer number in class constructors and ax-
ioms to indicate the layer they belong to. For example, SubClassOf(Annotation
(Layer "2"^^xsd:int) Chassis SlotContainer) belongs to layer 2. Since OWL
FA is based on OWL DL all language features from OWL DL are also available
in OWL FA in contrast of RDFS(FA) like transitive TransitiveProperty and
inverse owl:inverseOf property restrictions.

The syntax is adopted from OWL DL. The semantics of two layers which
can be considered as TBox and ABox are same as in OWL DL. The idea of
OWL FA is that the interpretation depends on the layer but is still an OWL
DL interpretation. Therefore in each layer, or from one layer to the next layer
standard OWL DL reasoning capabilities can be used. For more details about
the reasoning in OWL FA refer to [6].

4 OWL FA Toolkit

In this section, we introduce the OWL FA Toolkit, a simple graphic user interface
for modeller to create an OWL FA ontology and perform reasoning over it. The
OWL FA toolkit contains features as following:

– Editor - for checking the OWL FA ontology before perform the reasoning.
In this version it supports only functional syntax.

– Ontology Consistency - for checking whether a given an multi-layered models
that described in OWL FA is valid. This will enable modeller to validate a
model with metamodel.

– Concept Satisfiability - for verifying whether a concept A is a non-empty set
in a given OWL FA ontology O. A modeller can verify a particular concept
that might leads to contradiction of the models.

– Query Answering - for accessing information form a given an multi-layered
models O by using SPARQL query.

– Reasoning with OWL DL ontology - for reasoning in OWL DL ontology. A
modeller can easily create ontology and meta-ontology separately.

Figure 2 shows screen capture of OWL FA toolkit loaded OWL FA ontology
for validating multi-layered model. More details about the OWL FA toolkit are
described in [6].



Fig. 2. OWL FA Toolkit

5 Related Work

In [15] spanning objects are used in order to have different interpretations for
objects that are instances and classes simultaneously. Compared to OWL FA
one spanning object refers to one ontology Oi.

A UML diagram with OCL constraints is transformed to a constraint sat-
isfaction problem. In [13] UML/OCL models are modelled with the constraint
language Z in order to validate class diagrams. The language Alloy is used in [1]
as a representation of UML/OCL models. The Alloy Analyser verifies the model
properties. Constraint logic programming (CLP) is applied in [8] to validate UML
models and model constraints. Also the metamodels are translated to CLP and
validated based on defined metamodel specifications. However, properties of a
layer are not considered in the next layer.

Berardi et al. [3] apply DL Reasoning to UML class diagrams. The expres-
siveness of UML diagrams and constraints are restricted to the expressiveness
of the DL ALC−. Basic conceptual modelling including model constraints is
demonstrated for UML diagrams in OWL The consistency check of a UML class
diagram is then reduced to concept satisfiability in ALC−. However, the ver-
ification is only performed on the conceptual level, without accounting for a
metamodelling architecture.

First-order logic (FOL) is used in [7] for consistency checks of UML class
diagrams. The main contribution are different algorithms to perform the consis-
tency check and the analysis of inconsistency triggers. The transformation from
UML class diagrams with OCL constraints to FOL is also described in [2] in
order to enable consistency check.



6 Conclusion

This paper focuses on showing how to use OWL FA toolkit for verifying and
validating multi-layered models. We also compare our tool with OWL 2 mod-
elling and reasoning, since OWL 2 is the only OWL language that supports
metamodelling and has tool support. For demonstration purposes, we use some
case studies from the MOST project (http://www.most-project.eu), in particu-
lar, the physical device modelling (an application of configuration management).
We will show how OWL FA and its reasoner (OWL FA Toolkit) could benefit
software modellers on leveraging the software development life cycle.

References

1. K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A challenging
model transformation. Lecture Notes in Computer Science, 4735:436, 2007.

2. B. Beckert, U. Keller, P.H. Schmitt, et al. Translating the Object Constraint
Language into first-order predicate logic. In Proceedings, VERIFY, Workshop at
Federated Logic Conferences (FLoC), Copenhagen, Denmark. Citeseer, 2002.

3. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, 2005.

4. Alan Brown. An introduction to Model Driven Architecture. IBM
Technical Report. URL http://www-128.ibm.com/developerworks/rational/

library/3100.html, 2004.
5. J. Cabot, R. Clariso, and D. Riera. Verification of UML/OCL Class Diagrams

using Constraint Programming. In Software Testing Verification and Validation
Workshop, pages 73–80, 2008.

6. Nophadol Jekjantuk, Gerd Gröner, and Jeff Z. Pan. Reasoning in Metamodel-
ing Enabled Ontologies. In Proceeding of the International workshop on OWL:
Experience and Directions (OWL-ED2009), 2009.

7. K. Kaneiwa and K. Satoh. Consistency checking algorithms for restricted UML
class diagrams. Lecture Notes in Computer Science, 3861:219, 2006.

8. H. Malgouyres and G. Motet. A UML Model Consistency Verification Approach
based on Meta-Modeling Formalization. In SAC ’06: Proceedings of the 2006 ACM
symposium on Applied computing, pages 1804–1809, New York, NY, USA, 2006.
ACM.

9. Boris Motik. On the properties of metamodeling in owl. J. Log. Comput.,
17(4):617–637, 2007.

10. I. Ober and A. Prinz. What do we need metamodels for?
11. Jeff Z. Pan and Ian Horrocks. RDFS(FA) and RDF MT: Two Semantics for RDFS.

In Proc. of the 2nd International Semantic Web Conference (ISWC2003), 2003.
12. Jeff Z. Pan, Ian Horrocks, and Guus Schreiber. OWL FA: A Metamodeling Exten-

sion of OWL DL. In Proceeding of the International workshop on OWL: Experience
and Directions (OWL-ED2005), 2005.

13. D. Roe, K. Broda, A. Russo, and Department of Computing. Mapping UML mod-
els incorporating OCL constraints into Object-Z. In Imperial College of Science,
Technology and Medicine, Department of Computing, 2003.

14. UML. Unified Modeling Language. http://www.uml.org/.
15. Christopher A. Welty and David A. Ferrucci. What’s in an instance? Technical

report, RPI Computer Science, 1994.


