
Diagnosis of Software Models with Multiple Levels of Abstraction
Using Ontological Metamodeling

Nophadol Jekjantuk∗, Jeff Z. Pan∗, and Yuzhong Qu†
∗Department of Computing Science, University of Aberdeen, United Kingdom

†State Key Lab. for Novel Software Technology, Nanjing University

Abstract—Ontology reasoning and reasoning-based search
expansion are powerful tools for semantic applications. In
this paper, we investigate how to apply ontology reasoning,
with different ontology metamodeling approaches, to diagnose
software models, in particular on models with multiple levels
of abstraction.

Keywords-Metamodeling; Reasoning; Ontological Metamod-
eling; Diagnosis; Software Engineering

I. INTRODUCTION

Ontology reasoning and reasoning based semantic search
are useful tools for not only semantic applications, but also
for software engineering. An ontology consists of a set of
important vocabulary (including concepts, properties and
individuals) for certain domain, as well as their definitions
and background constraints. Ontology reasoning is useful to
complete implicit connections among the vocabulary, which
are useful for knowledge based systems as well as semantic
search, e.g. for search expansion.

In this paper, we investigate how to apply ontology rea-
soning, with different ontology metamodeling approaches, to
diagnose software models with multiple levels of abstraction.
Metamodeling has received increased attention over the
years. There are two kinds of metamodeling: linguistic meta-
modeling and ontological metamodeling. While linguistic
metamodeling is used to define or extend the modelling
language [1], ontological metamodeling is used to model
a complex domain model where the distinction between
classes and individuals is not clear-cut. We use ontological
metamodeling in our investigation.

A. Why do we need ontological metamodeling?

In what follows, we first give a simple motivating example
before discussing some real world examples.

Let’s take a knowledge base about animals as an example:
“Ted is an Eagle” and “Eagles are an EndangeredSpecies”.
Therefore, this ontology should be modelled by stating the
individual Eagle to be an instance of the class Endangered-
Species. Hence, the symbol Eagle is used to refer to both a
class as well as to an individual. This style of modelling is
often called metamodeling.

In other situations, the distinction between properties
and individuals is not clear-cut either. For example, we
may want to represent a property as an individual of a

class, which can found in the Collaborative Environment
(Wiki) “The property is located in is a member of the class
Deprecated Properties”.

Indeed, ontological metamodeling is useful in not only
specific application areas, such as medical science (e.g.,
SNOMED-CT and FMA ontology) [17] , but also software
engineering in general, such as Model Driven Architec-
ture [4].

B. Metamodeling Support in the OWL Standard

However, the lack of support in the standard Web Ontol-
ogy Language OWL discourages users from making use of
metamodeling, and forces users to use subsumption relations
instead of instanceOf relations, which can lead to unintended
inferences. In the above example about Eagle. either of the
two statements can be represented in OWL DL by asserting
the individual Ted to be an instance of the class Eagle.
The two statements cannot be modelled in an OWL DL
ontology, because OWL DL does not allow a single symbol
to refer both to a class and an individual. One may model the
class Eagle as a sub class of the class EndangeredSpecies.
However, an eagle is a species and not a set of all living
eagles. Thus this could lead to reasoners making unintended
or incorrect inferences (e.g., Ted is an endangered species).

The current OWL standard supports metamodeling in two
flavours. Metamodeling in OWL Full allows treating classes
as individuals. However, reasoning in OWL Full is not
decidable. OWL 2 [14] supports a very basic, but decidable
approach to metamodeling called punning or contextual
semantics [13]: one symbol can be used to refer both to
a class as well as to an individual; the decision whether
a symbol is interpreted as class, property, or individual is
context-dependent.

In this paper, we investigate and compare three exisiting
ontological metamodeling approaches, namely Contextual
semantics [13], OWL FA [15] and classed-based metamodel-
ing [7]. The paper is organised as follows. Section II outlines
a metamodeling application and requirements in network
device configuration management which demonstrates de-
pendencies between multiple modelling layers. The detail of
syntax and semantics of OWL 2, Class-based Metamodeling,
and OWL FA are given in Section III. Section IV introduces
three small test cases in order to make comparison between

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.77

569

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.77

572

2011 35th IEEE Annual Computer Software and Applications Conference

0730-3157/11 $26.00 © 2011 IEEE

DOI 10.1109/COMPSAC.2011.77

239

the three approaches. Section V provides an evaluation and
discussion of the proposed test cases, while a comparison
with related work is presented in Section VI. Finally, we
conclude in Section VII.

II. MOTIVATING EXAMPLE AND REQUIREMENTS

This section outlines a metamodeling application and
requirements in network device configuration management,
which demonstrates dependencies between multiple mod-
elling layers.

Example 1 A physical device domain specific language
(PDDSL) is a domain specific language (DSL) for physical
devices, which is used in business IT system modelling.

Element

Shelf Chassis

SlotContainer Configuration Slot Card1 1..* 1 1..* 1 1..*

slots cards
configurations

Cisco CiscoConfiguration CiscoSlot CiscoCard

Supervisor SPA_InterfaceCisco7600ConfigCisco7600CiscoCSR-1

hasConf hasSlot hasCard

1 1 11..* 1..* 1..*
Avaya

M2

M1

M0

cisco7603 cisco7603
conf

ciscoCSR-1
4-slot

cisco7603
_slot_1

cisco7603
_slot_2

cisco7603
_slot_3

supervisors
_2_1

spa1

PDDSL Metamodel

PDDSL Model

PDDSL
Instance

Figure 1. Layered Architecture for a Physical Device Model

In Figure 1, a layered modelling architecture is demon-
strated for physical device modelling (an application of
configuration management). The figure depicts three layers
M0, M1 and M2. M3 is a Meta-metamodeling layer which is
not included in the example. The arrows between the layers
demonstrate instance relationships, the arrows within a layer
are concept relations (i.e., object properties and subclass
hierarchies).

A crucial task in model-driven engineering is the vali-
dation of models and metamodels. A valid model refers to
its metamodel and satisfies all restrictions and constraints.
However, the validation of multiple layers may lead to
inconsistency, even if the consistency is satisfied between
all adjacent layers.

For the requirements, we first define basic modelling
requirements for using OWL in a layered modelling archi-
tecture, in combination with reasoning to validate models
and metamodels. Secondly, we describe the functional user
requirements form a PDDSL modeller and meta-modeller
point of view.

A. Modelling Requirements

In order to improve the software development processes,
new technologies which provide reasoning support, like con-
sistency checking of models and metamodels, are beneficial.
In order to use the modelling capabilities of OWL and
the potential of DL reasoning in a layered architecture, the
OWL-based modelling language has to satisfy two require-
ments. Firstly, the language has to support dealing with
concepts and meta-concepts. Secondly, a tractable reasoning
complexity and tool support is necessary for the OWL-based
modelling language.

B. Functional Requirement

The PDDSL user models physical devices and their con-
figurations in layer M1 and the data and objects of these
models are represented in layer M0. In usual OWL (-DL)
conceptual two-layer models, this modelling layer would be
the TBox. In this case, the user benefits from modelling
and reasoning support for the models and the instances on
the layer below. However, it is not possible to combine
modelling and reasoning support covering more than two
layers.

For modelling of physical network devices in PDDSL,
the user (PDDSL modeller) requires the following modelling
support.
• Planning of Networks: The modelling frameworks en-

able restrictions and suggestions of components that
can be used in the current model configuration.

• Consistency checking of devices and configura-
tions: The consistency of the devices and configura-
tions which are modelled in layer M1 are checked
and validated with respect to the corresponding
metamodels(M2).

• Data quality analysis: The user checks whether a con-
figuration on M0 is instance of a modelled configuration
on M1.

• Explanations and Justifications for the PDDSL mod-
eller, in order to provide meaningful advice to the
modeller of inconsistencies and contradictions in the
model and to detect causes of such errors.

The realisation of these service requirements depends on
the modelling possibilities and on the reasoning services that
are available for the model. To realise a single requirement,
a two-layered model is often appropriate. However, if more
of these requirements have to be realised simultaneously,
two layers are not enough.

III. ONTOLOGY AND METAMODELING

A. OWL 2

An OWL 2 DL vocabularyVO = (Vcls,Vop, Vdp,Vind, Vdt,
Vlt, Vfa) is a 7-tuple over a datatype map D where Vcls
is the set of IRIs denoting class names, Vop is the set
of IRIs denoting object properties, Vdp is the set of IRIs

570573240

denoting datatype properties,Vindis the set of IRIs denoting
individuals,Vdt is the set of IRIs denoting all datatypes of
D, the datatype rdfs:Literal, and possibly other datatypes, is
the set of IRIs denoting datatype names, Vlt is the set of
well-formed RDF literals and Vfa is the set of pairs (F , lt)
for each containing facet F , and literal lt.

The abstract syntax for an OWL 2 class definition is:

C ← > | ⊥ | CN | ¬C | C uD | C tD | {o} | ∃R.C |
∀R.C | ∃R : Self | ≤ nR.C | ≥ nR.C |

where C ∈ Vcls, a ∈ Vind, R, T ∈ Vop and it are simple
roles, and n is a non-negative integer.

The semantics of OWL 2 ontologies are given by means
of interpretations. An interpretation I consists of a set ∆I

called the domain, together with a function ·I mapping
individual names to elements of ∆I , class names to subsets
of ∆I , and role names to subsets of ∆I × ∆I . The inter-
pretation function is extended to complex class expressions
in the usual way as explained in detail in [14].

An interpretation I satisfies an axiom ϕ if we find that
I |= ϕ:
• I |= S v R if SI ⊆ RI ,
• I |= S1 ◦ . . . ◦ Sn v R if SI1 ◦ . . . ◦ SIn v RI ,
• I |= Dis(R,S) if RI and SI are disjoint,
• I |= C v D if CI ⊆ CI .
An interpretation I satisfies C(a) if aI ∈ CI and R(a, b)

if (aI , bI) ∈ RI . An interpretation I satisfies an ontology O
if it satisfies all axioms of O. An ontology O is satisfiable if
it has a model. An ontology O entails an axiom ϕ, if every
model of O is a model of ϕ.

B. Classed-based Approach

The classed-based approach [7], is ontology-inherent
metamodeling for classes in OWL based on an axiomatisa-
tion of class reification. We can obtain the a metamodeling-
enabled version Ometa from a given ontology O with func-
tion bound(·),SepDom(·),Typing (·) and MatSubClass(·).

Let O be a domain ontology with vocabulary VOC ,OR,OI

The vocabulary of the metamodeling-enabled version is
Ometa

C := OC ∪ {Inst,Class}
Ometa

R := OR ∪ {type, subClassof,RInst}
Ometa

I := OI ∪ {oC | C ∈ OC}

where all newly introduced names are fresh where they
are not part of VO.

The function bound(·) returns its input after rewriting it
as follows: first, every occurrence of X having one of the
forms >, ¬C, ∀R.C, 6 nR.C, ∃U.Self is substituted by
Inst u X , where we can express complex classes C. Next,
the universal role is localized by substituting every ∀U.C by
∀U.(Inst t C) and every U occurring on the left hand side
of a role chain axiom by RInst ◦ U ◦ RInst where RInst is
axiomatized via ∃RInst.Self ≡ Inst. The functions SepDom,

Typing, and MatSubClass return a set of axioms as specified
in [7]. The metamodeling-enabled version Ometa of O is
bound(O)∪SepDom(O)∪ Typing(O)∪MatSubClass(O).

C. Extended Class-based Approach

Although the class-based approach is complete w.r.t
OntoClean methodology, where meta ontologies can make
use of subsumption constraints from the domain ontology,
it cannot be reused in the Software Model case. For a better
understanding, let’s consider a simple example. Let class C
be equivalent to D in O and we generate the meta version
from O then add the three meta statements. o C is an
instance of Meta-class E and o D is an instance of Meta-
class F. Then, we make E and F disjoint from each other.
Please note that class C and individual o C refer to the same
symbol (punning style).

Given an ontology O that has only one axiom C ≡ D
then we could generate Ometa as follows:

bound(O) C ≡ D
SepDom(O) c Class ≡ ¬c Inst c Class(o C) c Class(o D)

> v ∀r subClassOf.c Class > v ∀r type.c Class
∃r subClassOf.> v c Class ∃r type.> v c Inst

Typing(O) C ≡ ∃r type.{o C} D ≡ ∃r type.{o D}
MatSubClass(O) c Class u ∀r type−.∃r type.{o C} ≡

c Class u ∃r subClassOf.{o C}
c Class u ∀r type−.∃r type.{o D} ≡
c Class u ∃r subClassOf.{o D}

Table I
Ometa OF O

Then we add following axioms to Ometa: E(o C),F(o D)
and E ≡ ¬F. However, Ometa does not entail that C = D.
Thus, the ontology is still consistent.

If we add following two axioms: E v ∀subClassOf.¬F,
F v ∀subClassOf.¬E, the ontology becomes inconsistent.

Therefore, we have extended the class-based approach by
following definition:

Definition 1 For every occurrence of C and D in the form of
CuD v ⊥ in the meta layer, we add C v ∀subClassOf.¬D
and D v ∀subClassOf.¬C. Thus, we can make use of
subsumption constraints in the meta layer that can be
entailed from instance layer.

Then, the class-based approach is able to detect the con-
tradiction present in the ontology. The results are presented
in column 5 of table II.

D. OWL FA

OWL FA [15] enables metamodeling. It is an exten-
sion of OWL DL, which refers to the description logic
SHOIN (D). Ontologies in OWL FA are represented in
a layered architecture.

OWL FA specifies a layer number in class constructors
and axioms, to indicate the strata they belong to. Let i ≥ 0

571574241

be an integer. OWL FA consists of an alphabet of distinct
class names VCi

(for layer i), datatype names VD, abstract
property names VAPi (for layer i), datatype property names
VDP and individual (object) names (I); together with a set
of constructors (with subscriptions) to construct class and
property descriptions (also called OWL FA-classes and OWL
FA-properties, respectively).

Let CN ∈ VCi
be an atomic class name in layer i (i ≥ 0),

R an OWL FA-property in layer i, o ∈ I an individual,
T ∈ VDP a datatype property name, and C,D OWL FA-
classes in layer i. Valid OWL FA-classes are defined by the
abstract syntax:

C ← >i | ⊥ | CN | ¬iC | C ui D | C ti D | {o} |
∃iR.C | | ∀iR.C |6i nR |>i nR |
(if i = 1) ∃1T.d | ∀1T.d |61 nT |>1 nT

The semantics of OWL FA are model theoretic semantics,
which are defined in terms of interpretations. In other words,
The semantics of two layers which can be considered as
TBox and ABox are same as in OWL DL. The idea of OWL
FA is that the interpretation depends on the layer but is still
an OWL DL interpretation. The interpretation function is
explained in detail in [15].

IV. SOFTWARE MODEL TEST CASES

In this section, we detail the software model test cases that
we have shown in Figure 1 from Section II. In the following
example ontology, we focus on the relationship between
classes and their meta-classes. Moreover, this ontology is
consistent.

SlotContainer v Element

Shelf v SlotContainer

Chassis v SlotContainer

Chassis v ¬Shelf (1)
CiscoCSR− 1 : Shelf

Cisco7600 : Chassis

. . .

CiscoCSR− 1 v Cisco

Cisco7600 v Cisco

CiscoCSR− 1− Slot : CiscoCSR− 1

Cisco7603 : Cisco7600

. . .

Figure 2. Example of complex software model that require multiple layered

A. Test Case 1

In this test case, we add the following axiom to the
ontology in Figure 2.

CiscoCSR− 1 v Cisco7600 (2)

We expect that the ontology will become inconsistent be-
cause axiom (1) states that Chassis and Shelf are disjoint
from each other but axiom (2) states that CiscoCSR− 1 and
Cisco7600 share some elements which contradict with axiom
(1).

B. Test case 2
In this test case, we add the following axiom to the

ontology 2.

CiscoCSR− 1 ≡ Cisco7600 (3)

We expect that the ontology will become inconsistent due
to the same reason as Test case IV-A, because CiscoCSR− 1
and Cisco7600 should not share any elements.

C. Test case 3

In this test case, we remove axiom (1) from the ontology
and add the following axioms into it.

CiscoCSR− 1 = Cisco7600 (4)
CiscoCSR− 1 ≡ ¬Cisco7600 (5)

We expect that the ontology will become inconsistent
because axiom 4 states that meta-individual CiscoCSR− 1 is
same as meta-individual Cisco7600 in the meta layer, while
Class CiscoCSR− 1 is disjoint with class Cisco7600 in the
instance layer.

V. EVALUATION AND DISCUSSION

We used a fragment of the software model ontology
(c.f. Figure 1) to test each approach. This leaves us with
3 settings as described in Section IV: we first perform
consistency checking for OWL 2 metamodeling, OWL FA,
the class-based approach and the extension of the class-based
approach. Then, we chose OWL FA and the extension of
the class-based approach to find modelling mistakes and
their explanations. The main reason is that there are only
two approaches that are able to detect the contradiction
from our test cases. In this evaluation we use black box
explanation framework1 together with the Hermit reasoner2

The consistency checking results are shown in Table II, and
the comparison between OWL FA and the extension of class-
based approach is shown in III.

Case Expected OWL 2 OWL FA Class-based Class-based2
1 No Yes Yes2 Yes No
2 No Yes No Yes No
3 No Yes No Yes No

Table II
CONSISTENCY CHECKING RESULT

1http://owl.cs.manchester.ac.uk/explanation/
2http://hermit-reasoner.com

572575242

From Table II, OWL 2 metamodeling failed to detected
the contradiction from all cases because we used one symbol
to refer both to a class as well as to an individual. However,
under contextual semantics, classes and individuals are inter-
preted independently, even if they refer to the same symbol.

OWL FA failed to discovered the contradiction in the first
test case, because under fixed layered semantics, the sub-
sumption relations in the lower layers make meta- individual
different but do not make them the same as each other.

The class-based approach also failed to detect the
contradiction in all test cases. Although, we can en-
tail that r subClassOf(o CiscoCSR− 1 , o Cisco7600) and
r subClassOf(o Cisco7600 , o CiscoCSR− 1), do not make
o CiscoCSR− 1 = o Cisco7600.

The extension of the class-based approach is able to
find the contradiction in all cases, because we added the
necessary constraints into the meta layer in order to make
use of the subsumption constraints from the instance layer.

Case OWL FA Class-based 2
1 02 1
2 1 4
3 23 4

Table III
NUMBER OF JUSTIFICATION

As shown in Table III, OWL FA could discover fewer
justifications than the extension of class-based approach
because the extension of class-based approach compresses
all three metamodeling layers into two layers. Additionally,
it preserves all connections between layers and constraints
as described in Section IV. This preservation increased the
complexity of the model by adding extra axioms. Thus,
the model and justifications in OWL FA are more straight
forward than the class-based approach. We invite the reader
to be note that we do not evaluate the performance in this
section.

c Class u ∀r type−.∃r type.{o CiscoCSR− 1} ≡
c Class u ∃r subClassOf.{o CiscoCSR− 1}
CiscoCSR− 1 ≡ ∃r type.{CiscoCSR− 1}

Cisco7600 ≡ ∃r type.{Cisco7600}
Shelf(o CiscoCSR− 1)

Chassis(o Cisco7600)

c Class(o Cisco7600)

CiscoCSR− 1 ≡ Cisco7600

Chasis v ∀subClassOf.¬Shelf

Figure 3. Justification from Test Case 2 with the class-based approach

2The ontology is consistent based on OWL FA Semantics.
3One justification from O2 and another one from O1

Figure 3 and 4 show the justifications from Test Case 2.
It is obvious to see that justifications in OWL FA are rather
simpler than the class-based approach.

Chassis v ¬Shelf
o CiscoCSR− 1 = o Cisco7600

Shelf(o CiscoCSR− 1)

Chassis(o Cisco7600)

Figure 4. Justification from O1 in Test Case 2 with OWL FA

In the class-based approach, generating Ometa form given
O is cheaper than the reduction process in OWL FA,
because OWL FA uses existing DL reasoners to reduce an
OWL FA ontology into a set of OWL DL ontologies. This
technique is more expensive than the first approach, which
syntactically rewrites type relationships as type roles and
class subsumptions by the subClassOf role, which is then
axiomatically synchronised with the actual valid subclass
relation in the considered model.

For reasoning, in the classed-based approach, an ontology
is still a valid OWL 2 (SROIQ) ontology, which existing
DL reasoners can directly reason over; in contrast with
OWL FA. OWL-FA needs to reduce reasoning to OWL
DL reasoning, which is more expensive than reasoning over
single ontology. For more details on reasoning in OWL FA
please refer to [8].

VI. RELATED WORK

In [19] spanning objects are used in order to have different
interpretations for objects that are instances and classes
simultaneously.

There are various works which consider validation and
consistency checking of UML models with OCL constraints
like in [3], [5], [9], [16], [12]. However, none of these
approaches account for a validation across multiple layers,
i.e. validate models with respect to their metamodels. These
approaches validate models with model constraints and
instances of the models, but they do not account for meta-
models in their validation. However, for many applications,
a two-layer validation without a metamodel is not adequate.

There are different categorisations of consistency and
consistency checking as specified in [18]. The focus in
this paper is to provide the ability for OWL to validate
specification and instance consistency of models covering
multiple modelling layers. This is a generic approach and
can be applied in metamodeling and multi-dimensional
metamodeling like mega-modelling [6] for linguistic and
ontological metamodeling (cf. [10], [1]).

First-order logic (FOL) is used in [9] for consistency
checking of UML class diagrams. The main contributions
are various algorithms to perform the consistency check and

573576243

the analysis of inconsistency triggers. The transformation
from UML class diagrams with OCL constraints to FOL
is also described in [2] in order to enable consistency
checking.

VII. CONCLUSION AND OUTLOOK

In this paper, we have applied three different ontology
metamodeling approaches to addressing requirements form
Software Engineering that demand modelling of a complex
domain model at multiple levels of abstraction. We show the
pros and cons of the three existing approaches. To address
the limitations of the existing approaches, we extend the
class based approach to provide more configurable support
for ontological metamodeling. Our experiments show that
OWL FA and the extended class-based approach could
benefit software modellers on leveraging the software de-
velopment life cycle based on their requirements.

In the future, we would like to investigate how to combine
the benefit from OWL FA and the extended class-based
approaches. For instance, by syntactically reducing an OWL
FA ontology to OWL DL ontology while preserving all
connections between layers and generalise the approach to
be used in other domains.

ACKNOWLEDGEMENTS

This work has been partially supported by the EU Marrying
Ontologies and Software Technologies (MOST) project and by
the State Key Laboratory for Novel Software Technology, Nanjing
University. We would also like to thank Birte Glimm for her helpful
comments.

REFERENCES

[1] C. Atkinson and T. Kühne. Model-Driven Development:
A Metamodeling Foundation. IEEE Software, 20(5):36–41,
2003.

[2] B. Beckert, U. Keller, P.H. Schmitt, et al. Translating the
Object Constraint Language into first-order predicate logic.
In Proceedings, VERIFY, Workshop at Federated Logic Con-
ferences (FLoC), Copenhagen, Denmark. Citeseer, 2002.

[3] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on
UML class diagrams. Artificial Intelligence, 168(1-2):70–118,
2005.

[4] A. Brown. An introduction to Model Driven Architecture.
IBM Technical Report. URL http://www-128.ibm.com/
developerworks/rational/library/3100.html, 2004.

[5] J. Cabot, R. Clariso, and D. Riera. Verification of UML/OCL
Class Diagrams using Constraint Programming. In Software
Testing Verification and Validation Workshop, pages 73–80,
2008.

[6] J. Favre. Foundations of Meta-Pyramids: Languages vs.
Metamodels - Episode II: Story of Thotus the Baboon. In
Dagstuhl Seminar 0401 on Language Engineering for Model-
Driven Software Development, 2004.

[7] B. Glimm, S. Rudolph, and J. Vlker. Integrated metamodeling
and diagnosis in owl 2. In Proceedings of the 9th Inter-
national Semantic Web Conference, volume 6496 of LNCS,
pages 257–272. Springer, November 2010.

[8] N. Jekjantuk, G. Gröner, and Jeff. Z. Pan. Modelling and
reasoning in metamodelling enabled ontologies. In Knowl-
edge Science, Engineering and Management (KSEM) 2010,
Belfast, 2010.

[9] K. Kaneiwa and K. Satoh. Consistency checking algorithms
for restricted UML class diagrams. Lecture Notes in Com-
puter Science, 3861:219, 2006.

[10] T. Kühne. Matters of (Meta-) Modeling. Software and
Systems Modeling, 5(4):369–385, 2006.

[11] M. Lind and Ulf Seigerroth. Multi-layered process modeling
for business and it alignment. Hawaii International Confer-
ence on System Sciences, 0:1–10, 2010.

[12] H. Malgouyres and G. Motet. A UML Model Consistency
Verification Approach based on Meta-Modeling Formaliza-
tion. In SAC ’06: Proceedings of the 2006 ACM symposium on
Applied computing, pages 1804–1809, New York, NY, USA,
2006. ACM.

[13] B. Motik. On the Properties of Metamodeling in OWL.
Journal of Logic and Computation, 17(4):617–637, 2007.

[14] W3C OWL Working Group. OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation, 27 October
2009. Available at http://www.w3.org/TR/owl2-overview/.

[15] J. Z. Pan, I. Horrocks, and G. Schreiber. OWL FA: A
Metamodeling Extension of OWL DL. In Proceeding of the
International workshop on OWL: Experience and Directions
(OWL-ED2005), 2005.

[16] D. Roe, K. Broda, A. Russo, and Department of Computing.
Mapping UML models incorporating OCL constraints into
Object-Z. In Imperial College of Science, Technology and
Medicine, Department of Computing, 2003.

[17] S. Schulz, B. Suntisrivaraporn, and Franz Baader. SNOMED
CT’s problem list: Ontologists’ and logicians’ therapy sug-
gestions. In Proceedings of The Medinfo 2007 Congress,
Studies in Health Technology and Informatics (SHTI-series).
IOS Press, 2007.

[18] R. Van Der Straeten. Inconsistency Management in Model-
Driven Engineering. PhD thesis, Vrije Universiteit Brussel,
2005.

[19] C. A. Welty and David A. Ferrucci. What’s in an instance?
Technical report, RPI Computer Science, 1994.

574577244

