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Abstract
Deductive reasoning and inductive learning are the most com-
mon approaches for deriving knowledge. In real world ap-
plications when data is dynamic and incomplete, especially
those exposed by sensors, reasoning is limited by dynamics of
data while learning is biased by data incompleteness. There-
fore discovering consistent knowledge from incomplete and
dynamic data is a challenging open problem. In our approach
the semantics of data is captured through ontologies to em-
power learning (mining) with (Description Logics) reason-
ing. Consistent knowledge discovery is achieved by apply-
ing generic, significative, representative association seman-
tic rules. The experiments have shown scalable, accurate and
consistent knowledge discovery with data from Dublin.

Introduction and Related Work
Knowledge discovery, as an area focusing upon method-
ologies for extracting knowledge through deduction (a pri-
ori) or from data (a posteriori), has been largely studied
in Database and Artificial Intelligence. Deductive reasoning
e.g., logic reasoning (Reiter 1980) gains logically knowl-
edge from pre-established (certain) knowledge statements,
while inductive inference such as data mining (Agrawal,
Imielinski, and Swami 1993) or learning (Fanizzi, d’Amato,
and Esposito 2010; Völker and Niepert 2011) discovers (un-
certain) knowledge by generalizing from initial information.

Data is dynamic, incomplete, especially when exposed
through sensors (Labrinidis and Jagadish 2012). Tracking
phenomena with multiple sensor readings is a challenging
problem. From traffic diagnosis (Lécué 2012), systems mon-
itoring (Song et al. 2014) to disease transmission prediction
(Sadilek, Kautz, and Silenzio 2012), all are examples of sce-
narios where consistent knowledge needs to be derived from
dynamic, incomplete data. Reasoning is strongly restricted
by dynamics, variance, noisiness of data, enforcing knowl-
edge to be regularly revisited (Anicic et al. 2011). Recent
works in stream reasoning (Valle et al. 2009) handle the dy-
namics of semantic querying but are very limited in reason-
ing, and fail in recovering knowledge from data. Although
(Lécué and Pan 2013) exposed benefits in combining rea-
soning and learning, the shortcomings are lack of scalabil-
ity, over-specification of rules, non-integration to reasoning
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systems. On the other hand inductive learning is limited by
the large fluctuation of rules abstraction and its (high) the-
oretical complexity. Learning is also heavily biased by data
incompleteness and inconsistency, making knowledge sub-
ject to incorrectness (Dietterich and Michalski 1981). They
follow classic (raw) data mining techniques i.e., identifica-
tion of patterns using distance metrics (Ramaswamy, Ras-
togi, and Shim 2000) between syntactic values. (Srikant and
Agrawal 1995) capture such patterns through frequent item-
set mining (Agrawal et al. 1996). Their approach discovers
recurring sequences of syntactic items and implication rules
among those items e.g., rules “buying milk implies buying
bread with a confidence of 70%” are learnt in market basket
analysis. (Dehaspe and Raedt 1997) constrain all rules to be
represented following inductive logic programming (ILP),
which significantly improve scalability. Although metrics
have been used to measure the quality of the derived rules,
previous approaches fail in deriving scalable, accurate, and
consistent knowledge. In this respect (Galárraga et al. 2013)
tackles the scalability issue when performing rule mining on
semantic data but does not in the context of evolving data.

We address “discovery of consistent knowledge from dy-
namic semantic data”. Given continuous knowledge, how
do we capture a minimal albeit representative set of time-
evolving trends to discover accurate, consistent knowledge?
The semantics of data is captured through OWL (Web On-
tology Language) ontologies, which are underpinned by De-
scription Logics (DL) (Baader and Nutt 2003). Key contri-
butions include: (1) We design the first algorithm to learn
DL rules, which are strictly more expressive than DL ax-
ioms and Datalog rules. (2) By exploiting the expressiveness
of DL rules, we introduce the notions of significative, repre-
sentative association DL rules, enabling precise identifica-
tion of fundamental rules. The benefits of combining learn-
ing and reasoning, validated in experiments, are: (i) logical
representation of learnt rules, (ii) classification, and abstrac-
tion of rules, (iii) tight integration of rules in reasoning; (iv)
scalability, (v) accuracy of consistent knowledge discovery.

Next section reviews the adopted logic and rule represen-
tation together with dynamic ontology (knowledge). Then
we present inductive learning in dynamic ontologies. The
next section presents how representative rules drive consis-
tent knowledge discovery. Finally, we report experiments
with real data from Dublin City and draw some conclusions.



Background
Evolving and static background knowledge are represented
using an ontology. We focus on DL to define ontologies
since it offers good reasoning support for most of its ex-
pressive families and compatibility to W3C standard OWL
2. We illustrate our work with DL EL++ (Baader, Brandt,
and Lutz 2005). The selection of this DL fragment, which
is the logic behind the basis of many more expressive DL,
has been guided by (i) the semantics expressed by data in
our application cf. Experimental Results, lessons learned,
(ii) its polynomial time reasoning (satisfiability, subsump-
tion) when combined with EL++ rules. We review (i) DL
basics of EL++, (ii) EL++ atomsets and rules, (iii) evolv-
ing ontologies and the underlying reasoning.

Description Logics EL++

A signature Σ, noted (NC ,NR,NI) consists of 3 disjoint
sets of (i) atomic concepts NC , (ii) atomic roles NR, and
(iii) individuals NI . Given a signature, the top concept >,
the bottom concept⊥, an atomic conceptA, an individual a,
an atomic role expression r, EL++ concept expressions C
and D in C can be composed with the following constructs:

> | ⊥ | A | C uD | ∃r.C | {a}
The DL ontology O .

= 〈T ,A〉 is composed of a TBox T ,
and an ABoxA. A TBox is a set of concept and role axioms.
EL++ supports General Concept Inclusion axioms (GCIs
e.g. C v D), Role Inclusion axioms (RIs e.g., r v s ). An
ABox is a set of concept assertion axioms e.g., C(a), role
assertion axioms e.g., R(a, b), individual in/equality axioms
e.g., a 6= b, a = b. In this paper, we assume acyclic TBoxes
which entail finitely instance statements.
Example 1. (TBox and ABox Concept Assertion Axioms)
Figure 1 presents (i) a TBox T where DisruptedRoad (4)
denotes the concept of “roads which are adjacent to an event
causing high disruption”, (ii) concept assertions (16-18) de-
noting the individual r0 having ri,1≤i≤3 as adjunct roads.

SocialEvent u ∃type.Music v Event u ∃disruption.Steady (1)
SocialEvent v Event (2)
Incident u ∃impact.Serious v Event u ∃disruption.High (3)
Road u ∃adj.(∃occur.(∃disruption.High)) v DisruptedRoad (4)
BusRoad u ∃travel.Long v Road u ∃with.CongestedBus (5)
Road u ∃with.Bus v BusRoad (6) Road(r0) (7)
Steady v High (8) Stop v Long v Abnormal (9)
Bus(b1) (10) Bus(b2) (11) Bus(b3) (12)
Road(r1) (13) Road(r2) (14) Road(r3) (15)
adj(r0, r1) (16) adj(r0, r2) (17) adj(r0, r3) (18)

Figure 1: O .
= 〈T ,A〉. Sample of TBox T and ABox A.

Table 1 sketches some completion rules (Baader, Brandt,
and Lutz 2005) that are used to classify EL++ TBox T and
entail subsumption. Reasoning with such rules is PTime-
Complete (Baader, Brandt, and Lutz 2008).

EL++ Atom, Atomsets, Binding and Rule
We consider EL++ with (i) concept expressions C, role
names NR, individual names NI , and (ii) a countable set
of first-order variables V .

Atomset: Given terms x1, x2 ∈ V ∪ NI , a concept (role)
atom is a formulaC(x1) (R(x1, x2)) withC ∈ C (R ∈ NR).
We use finite sets (atomsets) B of (concepts, roles) atoms for
representing conjunction ∀~x.∧B where ~x .

= x1, · · · , xn ∈
V are variables of atoms B ∈ B which could be shared.

R1 If X v A, A v B then X v B
R2 If X v A1, · · ·An, A1 u · · · uAn v B then X v B
R3 If X v A, A v ∃r.B then X v ∃r.B
R4 If X v ∃r.A, A v A′, ∃r.A′ v B then X v B
R5 If X v ∃r.A, A v ⊥ then X v ⊥
R6 If X v ∃r.A, r v s then X v ∃s.A
R7 If X v ∃r1.A, A v ∃r2.B, r1 ◦ r2 v r3 then X v ∃r3.B

Table 1: EL++ TBox Completion Rules (no datatypes).

Atomset Binding: Atomsets can be seen as conjunctive
queries (Glimm et al. 2007) without non-distinguished vari-
ables. The arity of an atomset is the number of variables in
an atomset. We write T ,A |= B[~a] to denote that ~a ∈ NI
is an answer to query B. In other words the variables ~x of
atomset B are bound (mapped) by ~a. In the rest of the pa-
per we used the terms answer and binding interchangeably.
bind(B, T ∪ A) is the set of all bindings to B w.r.t. T , A.
Example 2. (Atomset & Binding w.r.t. O in Figure 1)
Given atomset B .

= {adj(x, r1)}, bind(B,O) is {(r0)}.
Atomset Containment: Let T be a TBox, B,C atomsets
with the same arity. Then B is contained in C w.r.t. T , writ-
ten B ⊆T C, if for all consistent ABoxesAw.r.t. T , we have
bind(B, T ∪ A) ⊆ bind(C, T ∪ A).
Example 3. (Atomset Containment w.r.t. O in Figure 1)
Let B, C be atomsets {(19)} and {(20)}; A′ be
{Event(e1), Event(e2), SocialEvent(e1)}. B ⊆T C for
A’ since all bindings (answers) of B are also bindings of C.

SocialEvent(x) (19) Event(x) (20)

EL++ Rules: EL++ rules (Krötzsch, Rudolph, and Hitzler
2008) extends EL++ expressivity while maintaining poly-
nomial time complexity of many typical inference problems.
Given atomsets B, H, and all variables ~x ∈ V of atomset
B ∪ H, an EL++ rule is a formula B � H, such that B is
cycle free and does not contain atom of the form R(x, x).
Example 4. (EL++ Rule)
Below rule denotes “if x3 is adjacent to a x2 where a highly
disruptive event x1 occurs then buses are congested in x3”.
{(23)} is atomset {(Road u ∃with.CongestedBus)(x3)}.
(Event u ∃disruption.High)(x1) ∧ (21)
occur(x2, x1) ∧ adj(x3, x2) (22)

� (Road u ∃with.CongestedBus)(x3) (23)

Dynamics of Knowledge as Evolving Ontologies
We represent dynamics of knowledge by an evolution of on-
tologies in Definition 1 (Huang and Stuckenschmidt 2005).
Definition 1. (DL L Evolving Ontology)
A DL L evolving ontology Pnm from point of time m to
point of time n is a sequence of (sets of) Abox axioms
(Pnm(m),Pnm(m+ 1), · · · ,Pnm(n)) w.r.t a static TBox T in
a DL L where m,n ∈ N and m < n.



Pnm(i) is a snapshot of an evolving ontology Pnm at time
i, referring to ABox axioms with respect to a TBox in L. We
will consider evolving ontologies Pn0 for the sake of clarity.
Example 5. (DL EL++ Evolving Ontology)
Figure 2 illustrates EL++ evolving ontologies P9

0 , Q9
0, R9

0,
related to events, travel time, buses, through snapshots at
time i ∈ {5, 6, 7}. Their dynamic knowledge is captured by
evolving ABox axioms e.g., (27) captures e2 as “a social
music event occurring in r2” at time 6 of P9

0 .
By applying rules in Table 1 on static knowledge T , evolv-
ing ontology Pn0 , snapshot-specific axioms are inferred.

P9
0 (5) : (Event u ∃disruption.High)(e1), occur(r1, e1) (24)
Q9

0(5) : (Road u ∃travel.Long)(r1) (25)
R9

0(5) : with(r1, b1) (26)
P9
0 (6) : (SocialEvent u ∃type.Music)(e2), occur(r2, e2) (27)
Q9

0(6) : (Road u ∃travel.Abnormal)(r2) (28)
R9

0(6) : with(r2, b2) (29)
P9
0 (7) : (Incident u ∃impact.Serious)(e3), occur(r3, e3) (30)
Q9

0(7) : (Road u ∃travel.Stop)(r3) (31)
R9

0(7) : with(r3, b3) (32)

Figure 2: Evolving Ontologies P9
0 (i),Q9

0(i),R9
0(i)i∈{5,6,7}.

Example 6. (Reasoning in Evolving Ontology)
(33), (34), as dynamic knowledge are entailed from axioms
of O in Figure 1 and evolving ontologies P9

0 , Q9
0, R9

0 in
Figure 2 (cf. references to axioms A in |=(A)), by applying
completion rules in Table 1 (cf. references to rulesR in |=R).
E.g., r0 and r3 are respectively entailed to be roads with: (i)
disruptions, (ii) some congested buses, both at time 7.

O,P9
0 (7) |=(3-4),(7),(18),(30)

R1,R2,R3,R7
DisruptedRoad(r0) (33)

O,Q9
0 ∪R9

0(7) |=(5-6),(9),(12),(31-32)
R1,R2,R3,R4

∃with.CongestedBus(r3) (34)

ABox axioms (31) in Q9
0, (32) in R9

0 are both required to
fire GCIs (5-6) and entail (34). We say that (34) emphasizes
an “association” (� in Figure 3) ofQ9

0,R9
0 through (5-6) in

T . Thus dynamic knowledge can be entailed by axioms from
single (33) but also “associated” (34) evolving ontologies.

Inductive Reasoning in Evolving Ontologies
Axioms which enable knowledge association e.g., (5-6) are
rarely modeled a priori in a background knowledge T be-
cause of the uncertainty of evolving ontologies. An associa-
tion of P9

0 (events) withQ9
0 (travel time) orR9

0 (buses infor-
mation) cannot be derived a priori but only a posteriori by
analyzing data. Indeed (5-6) are specific to cities subject to
changes. Capturing such “rules” (e.g., dashed � in Figure
3) in T would certainly extend the reasoning impact since
they capture evolving knowledge. They could be used for
inducing missing knowledge in Q9

0 or R9
0. How to discover

knowledge association across evolving ontologies P and R
orQ at time 7 with respect to T ? We tackle this problem by
mining knowledge associations as EL++ rules.

Association EL++ Rules
We revisit the concept of association rules (Agrawal,
Imielinski, and Swami 1993) in the context of evolving on-
tologies through an EL++ rule-based representation.

Definition 2. (Association EL++ Rule)
Let 〈T ,A〉 be EL++ axioms, Pn0 , Qn0 be EL++ evolving
ontologies, B, H be atomsets where the set of variables
in H, or var(H), is a subset of the variables in B. An
association EL++ rule in Pn0 × Qn0 is a DL EL++ rule
B� H (identified by atomset B ∪H) such that ∃i ∈ [0, n]:
bind(B, T ∪A∪Pn0 (i))|var(H) = bind(H, T ∪A∪Qn0 (i)).

Sn
ap

sh
ot

Snapshot

No association logi-
P9
0

P9
0(7)

No association logically |= derivable

Q9
0 R9

0

R9
0(7)Q9

0(7) derivable

Association logically

cally |= derivable

|=(5,6),(9),(12),(31−32)
R1,R2,R3,R4

Figure 3: How to Discover an Association (�) of Evolving
Ontologies Q,R at time 7 with respect to T ?

Definition 2 identifies an association as an EL++ rule be-
tween atomsets B, H if they have the same bindings for
their variables across two evolving ontologies at a time i.
Contrary to (Lécué and Pan 2013), representing association
as an arbitrary combination of ABox axioms, we consider
EL++ rule as a broader framework. Indeed it supports (i) as-
sociations which can be modeled by EL++ rules, (ii) more
generic rules since variables are accepted in atoms of EL++

rules, instead of only allowing constants in the other case,
(iii) native combination of EL++ rule and axioms. In addi-
tion rules could be evaluated with respect to their bindings.
Example 7. (Association EL++ Rule)
The rule (21-23) in Example 4 illustrates an association
EL++ rule from P9

0 to Q9
0 ∪ R9

0. The atomset of this rule
is bound at time 5 by {(e1, r0, r1)} and 7 by {(e3, r0, r3)}.

We measure the interestingness of association rules by
adapting the concepts of support (Definition 3) and confi-
dence (Definition 5) introduced in the database community.
Definition 3. (Atomset Support)
Given axioms O .

= 〈T ,A〉, an evolving ontology Pn0 , atom-
set B, the support of B, noted σ(B), in [0, 1] is defined by:

σ(B)
.
=
|{i ∈ [0, n] | ∃~a ∈ NI : O,Pn0 (i) |= B[~a]}|

n+ 1
(35)

where the expression |S| refers to the cardinality of S.
The support of atomset B is the proportion of snapshots

where B has at least one binding ~a in A ∪ Pn0 with respect
to T . Since B may have multiple bindings in A∪Pn0 at any
time i ∈ [0, n], we capture their number in Definition 4.
Definition 4. (Atomset Weight)
Given EL++ axioms O .

= 〈T ,A〉, evolving ontology Pn0
and atomset B, the weight of B, noted ω(B), is defined by:

ω(B)
.
=

n∑
i=0

|{~a ∈ NI | O,Pn0 (i) |= B[~a]}| (36)

Example 8.(Atomsets Support and Weight)
Let P7

5 , Q7
5, R7

5 be P9
0 , Q9

0, R9
0 restricted to [5, 7] where

ABox statements related to e4 extends P7
5 at time 7 cf. Table

2. This table illustrates the support σ, weight ω of atomsets
e.g., {(23)} is bound inQ7

5∪R7
5 at time 5 by {(r1)} and 7 by

{(r3)}, but not at time 6, thus σ({(23)}) is 2/3. The number
of bindings of {(23)}, noted ω({(23)}), is 2 in Q7

5 ∪R7
5.



Definition 5. (Confidence of an Association EL++ Rule)
Let B� H be an association EL++ rule in Pn0 ×Qn0 . The
confidence γ of B� H in (0, 1]2 is:

γ(B� H)
.
=

(
σ(B ∪H)

σ(B)
,
ω(B ∪H)

ω(B)

)
(37)

σ(B∪H), ω(B∪H) are support and weight of B� H i.e.,
respectively: the proportion of snapshots in Pn0 ∪Qn0 where
B ∪H has at least one binding, and its number of bindings.

The confidence is defined as the percentage of (i) snap-
shots in Pn0 ∪ Qn0 where B ∪ H has at least a binding with
regard to those where B has a binding, and (ii) bindings of
B ∪H in Pn0 ∪Qn0 with regard to those which bind B. That
is, they represent complementary conditional probabilities:

p(O,Qn0 (i) |= H[~a] | O,Pn0 (i) |= B[~a]|var(H)) (38)

evaluated with respect to the number of (i) snapshots and (ii)
bindings i.e., respectively σ- and ω-related entry of (37).

Ontology P7
5 Q7

5 R7
5 Q7

5 ∪R
7
5

Atomset B {(21)} {(22)} {(28)}*{(31)}* {(32)}* {(23)}
Variable V (x1) (x1, x2, x3) (x3) (x3) (x4, x3) (x3)

B
in

di
ng

at
Ti

m
e 5 {(e1)} {(e1, r1, r0)} {(r1)} {(b1, r1)} {(r1)}

6 {(e2)} {(e2, r2, r0)} {(r2)} {(b2, r2)}

7 {(e3), (e4)}
{(e3, r3, r0), {(r3)}{(r3)} {(b3, r3)} {(r3)}(e4, r3, r0)}

σ(B) 1 1 1 1/3 1 2/3

ω(B) 4 4 3 1 3 2

[*] From now on all termsNI of (28), (31-32) are free variables in V .

Table 2: Binding, Support and Weight of Atomsets B.

Example 9. (Confidence of an Association EL++ Rule)
Confidence γ(B� H) with B :{(21), (22)}, H :{(23)} is:(
σ({(21), (22), (23)})
σ({(21), (22)}) ,

ω({(21), (22), (23)})
ω({(21), (22)})

)
i.e.,

(
2/3
3/3
,
3

4

)
B� H is correct in 2/3 of time [5, 7] and its atomset B∪H
is bound by 3/4 of bindings of atomset B : {(21), (22)}.
Remark 1. (Rule Confidence and Ordering)
The level of confidence of rules can be compared by analyz-
ing their supports and weights since confidence is defined as
a tuple (Definition 5) e.g., γ(B1 � H1) > γ(B2 � H2) if

σ(B1 ∪H1)

σ(B1)
>
σ(B2 ∪H2)

σ(B2)

ω(B1 ∪H1)

ω(B1)
>
ω(B2 ∪H2)

ω(B2)

If conflict e.g., value of 1st element of γ(B1 � H1) is better
than 1st element of γ(B2 � H2) but worse for 2nd element,
we compare a weighted average of normalised components.

Mining Association EL++ Rules
Mining EL++ rules consists in generating all rules with a
minimum support σmin, confidence γmin, weight ωmin. This
can be decomposed (Agrawal, Imielinski, and Swami 1993)
by: (i) finding all significant atomsets i.e., atomsets with sup-
port, weight above σmin, ωmin, (ii) using them to generate
rules that meet γmin. Algorithm 1 revisits WARMR (Dehaspe
and Raedt 1997) to support EL++ atomsets bindings, con-
tainment and weight. It finds all significant atomsets by ex-
ploiting the lattice structure the containment relation ⊆T is

imposing on the space of atomsets to perform a breadth-first
search. Sk refers to the set of significant atomsets mined at
depth k in the lattice while Ck is the set of potential can-
didates for Sk. Their elements are called k-atomsets i.e.,
atomsets of k atoms. Initially (line 4) the set of significant
1-atomsets S1 is determined. A subsequent pass (line 5), say
pass k, consists of two phases. First (line 6), the significant
atomsets Sk−1 found in the (k−1)th pass are used to gener-
ate the candidate atomsets Ck, using Algorithm 2. Pn0 is then
analyzed (line 7) to determine support (line 10) and weight
(line 11) of candidates C ∈ Ck, when bound in Pn0 (line 9).

Algorithm 1: atomsets-mining〈On
0 , σmin, ωmin〉.

1 Input: EL++ axioms O .
= 〈T ,A〉; EL++ evolving ontology

Pn
0 ; Min. threshold of support σmin and weight ωmin.

2 Result: Set of significant atomsets.
3 begin
4 S1 ← Set of significant 1-atomsets; % Initialization
5 foreach k ≥ 2 | Sk−1 6= ∅ do % k-atomsets on top of k-1 ones
6 Ck ← atomsets-gen〈Sk−1〉; % k-atomsets Candidates
7 foreach point of time i ∈ [0, n] do % Snapshot Pn

0 (i)
8 % Atomsets with bindings ~a in Pn

0 (i)

9 foreach C ∈ Ck | ∃~a : T ,A ∪ Pn
0 (i) |= C[~a] do

10 count(C)← count(C) + 1; % Needed for σ(C)

11 ω(C)← ω(C) +
∣∣{~a | T ,A ∪ Pn

0 (i) |= C[~a]}
∣∣;

12 % Only significant atomsets are considered
13 Sk ← {C ∈ Ck | count(C)

(n+1)
≥ σmin, ω(C) ≥ ωmin};

14 return
⋃

k Sk;

Algorithm 2 generates candidate (k + 1)-atomsets from
significant k-atomsets. In join-step (lines 5-7) where atom-
sets are sorted in their lexicographic order (�lex), Sk is com-
bined with itself on the basis of its k common atoms. In the
prune-step, we discard all atomsets that have a subset which
does meet σmin, ωmin i.e., not in Sk (line 10). It is trivial
to show that any atomset in Ck+1 is significant only if all
subsets of size k are also significant by revisiting the re-
sults of (Agrawal et al. 1996) for EL++ atomsets. Thus line
10 maintains completeness. We also prune (k+ 1)-atomsets
which are redundant i.e., already contain(ed by) Sk (line11).

Algorithm 2: Atomsets Generation: atomsets-gen〈Sk〉
1 Input: A terminology T ; Set of Significant k-atomsets Sk.
2 Result: Set of Candidate (k + 1)-atomsets Ck+1.
3 begin
4 % Join-step of k-atomsets from the same level k to obtain Ck+1

5 C′k+1 ← {{S1, ..., Sk, Tk} | {S1, ..., Sk−1, Sk} ∈ Sk,
6 {S1, ..., Sk−1, Tk} ∈ Sk,
7 Sk �lex Tk}
8 % Prune-step of (k + 1)-atomsets
9 Ck+1 ← C′k+1 \ { {S1, ..., Sk, Tk} |

10 (i) ∃S ⊆ {S1, ..., Sk, Tk} with |S| = k such that S /∈ Sk,
11 (ii) {Tk} ⊆T (⊇T ){Sk} } % Redundant k-atomsets
12 return Ck+1;

The complexity of Algorithm 1 is Θ(|S|2×(n+1)) where
|S| is the number of atoms in Pn0 . The prune-step in Algo-
rithm 2 controls the exponential growth of atomsets.



Example 10. (Atomset Mining - Case k = 2)
Let {(21)},{(22)},{(20)} be significant 1-atomsets. Af-
ter the join-step of Algorithm 2 we obtain 2-atomsets
{(21), (22)}, {(22), (20)}, {(21), (20)}. The last one is dis-
carded during pruning (line 11) since {(21)} ⊆T {(20)}.

For generating EL++ rules with minimum confidence
(Definition 5), we refer to ap-genrules (Agrawal et al.
1996). This procedure for large itemsets, with minor modifi-
cations e.g., rules representation (Definition 2), applies to
significant atomsets. Its complexity is Θ(maxk |Sk| × k),
where |Sk| is the number of significant k-atomsets.

Knowledge Discovery in Evolving Ontologies
Knowledge is discovered by (i) determining its representa-
tive rules (Definition 7), and (ii) exploiting their combination
with background knowledge (Algorithm 3).

Representative Association EL++ Rules
Although measures of support, weight, confidence largely
pruned uninteresting rules, the remaining ones are not nec-
essarily all fundamental to discover new knowledge. Indeed
some can be logically derived from a minimal set of rules,
which represents the “representative” inductive rules. Def-
inition 7 formalizes this concept of representative rule by
refining the notion of “cover” (Zaki 2000) in Definition 6.
Definition 6. (Association EL++ Rules Cover)
LetR be association EL++ rules. The cover of a rule ρ : B
� H inR is defined by Γ(ρ)

.
= {A� H inR | A ⊆T B}.

The rule ρ, covering rules in Γ(ρ), synthesizes all rules
deriving same consequents as ρ from any contained an-
tecedents. It captures all rules which convey to similar
knowledge but requiring more specific knowledge than ρ.
Definition 7. (Representative Association EL++ Rules)
A set of representative association DL rules ofR, denoted by
R∗, is defined by {ρ ∈ R | @ρ′ ∈ R, ρ′ 6= ρ, ρ ∈ Γ(ρ′)}.

A set of representative association DL rules is a least set
of rules covering (Definition 6) all rules in R. It captures
a synthesis set of R, which is required to derive any rule
in R. Thus all rules in a cover can be derived from their
representative rule by atomset containment.
Proposition 1. (Minimum Support, Weight of Rules inR∗)
σ(ρ∗) ≥ σmin and ω(ρ∗) ≥ ωmin ∀ρ∗ ∈ R∗ iff ∃ρ ∈ R |
(i) σ(ρ) ≥ σmin, (ii) ω(ρ) ≥ ωmin and (iii) ρ ∈ Γ(ρ∗).

Proposition 1 states that any representative rule has mini-
mum support, weight if it covers a rule with minimum sup-
port, weight. The proof is trivial per Definitions 6 and 7.
Example 11. (Rules Cover and Representative Rules)
Let R be {(20), (22)} � {(23)}, {(19), (22)} � {(23)},
{(21), (22)} � {(23)} in Figure 4. The first rule covers the
last two since antecedents (19), (21) are contained by (20)
cf. Examples 3, 10 while their consequent are similar. R∗ is
{(20), (22)}� {(23)}, covering the other two rules.

The semantics of atomsets is crucial to prune large sets
of rules through its representative rules. The more semantic
relations (atomsets containment) among evolving ontologies
the more (resp. less) covered (resp. representative) rules.

Consistent Inductive Knowledge Discovery (CIKD)
Algorithm 3 presents our general approach CIKD for induc-
ing consistent knowledge from Pn0 to Qn0 at time i.

CongestedBus)(x3)

B

4

H

4

C

(22) : occur(x2, x1) , adj(x3, x2)

(22) : occur(x2, x1) , adj(x3, x2)

D
(19) : SocialEvent(x1)

(22) : occur(x2, x1) , adj(x3, x2)

(21) : (Event ⊓ ∃disruption.High)(x1)

(23) : (Road ⊓ ∃with.

(20) : Event(x1)

Figure 4:B�H as Representative Rule ofC�H,D� H.

All significant rules R in Pn0 ×Qn0 , which are generated
from significant atomsets (line 5), are identified by adapt-
ing ap-genrules (Agrawal et al. 1996) in line 7. Besides
atom(sets) to be substituted by item(sets), our revisited def-
initions of support and confidence needs to be applied. Its
representative rules R∗ are then elaborated (line 8). Propo-
sition 1 ensures minimum support, weight. All representa-
tive rules ρ : B � H, filtered by confidence (line 10), are
evaluated at time i of Pn0 , Qn0 (line 13). We checked consis-
tency ofQn0 (i) with knowledgeH derived from ρ, especially
for all bindings ~a of B with respect to Pn0 (i). This ensures
that only consistent knowledge H(~a) is derived from B(~a)
and added to Qn0 (i). This condition validates the consistent
combination TBox, ABox, rules axioms at time i ofPn0 ,Qn0 .

Algorithm 3: CIKD〈T ,Pn
0 ,Qn

0 , i, σmin, ωmin, γmin〉
1 Input: Terminology T ; Evolving Ontologies Pn

0 , Qn
0 ; Time i;

Min. support σmin, weight ωmin, confidence γmin.
2 Result: Consistent knowledge Qn

0 (i) induced from Pn
0 ×Qn

0 .
3 begin
4 % S : Set of significant atomsets in evolving ontology Pn

0 ∪Qn
0

5 S ← atomsets-mining〈Pn
0 ∪Qn

0 , σmin, ωmin〉;
6 %R : Set of rules in Pn

0 ×Qn
0 with minimum confidence γmin

7 R← ap-genrules〈S,Pn
0 ×Qn

0 , γmin〉; % Version adapted
8 R∗ ← {ρ ∈ R | @ρ′ ∈ R, ρ′ 6= ρ, ρ ∈ Γ(ρ′)}; % Definition 7
9 % All representative rules ρ : B� H with highest confidence

10 foreach rule ρ : B� H inR∗ | @ρ′ ∈ R∗, γ(ρ′) > γ(ρ) do
11 % Consistency of rule ρ at time i of Pn

0 ×Qn
0

12 if T ∪ Qn
0 (i) ∪ {H(~a)} 6|= > v ⊥

13
(
∀~a | T ∪ Pn

0 (i) |= B[~a]|var(H)

)
14 % Qn

0 (i) and knowledgeH[~a] from inductive reasoning
15 then Qn

0 (i)← Qn
0 (i) ∪ {H[~a]}; ;

16 return Qn
0 (i);

Its complexity is polynomial since (i) the representative
rules generation (lines 4-8) is polynomial in the number of
snapshots, atoms (line 5 i.e., Algorithms 1,2), k-atomsets
(line 7), rules (Definition 7); (ii) their consistency checking
(line 13), together with (iii) atomset binding, containment
are polynomial in EL++ (Bienvenu, Lutz, and Wolter 2012).
Example 12. (Consistent Knowledge Discovery)
Suppose Q7

5, R7
5 not exposed at time 5 due to defective sen-

sors.R7
5(5) cannot be deduced from T neither P7

5 (5). So we
apply Algorithm 3 with e.g., 〈T ,P7

5 ,R7
5, 5, 2/3, 2, (2/3, 3/4)〉.

This leads to the representative rule (among others) in Ex-
ample 11, which derives consistent knowledge in R7

5(5):
(Road u ∃with.CongestedBus)(r1). Applying the same
approach toR7

5(6) ends up with consistent but not accurate
knowledge, hence the use of support, weight, confidence.



Experimental Results
We report (i) scalability, (ii) accuracy of Algorithm 3 (noted
[A3]). The experiments have been conducted on a server of
4 Intel(R) Xeon(R) X5650, 2.67GHz cores, 6GB RAM.
• Context: Dynamic data: [a] weather, [b] travel time, [c]

incident, [d] event, [e] bus location in Dublin (Table 3) is
transformed in EL++ using mapping techniques. We used a
fixed (off-line) window of n = 4, 320 snapshots (48 hours)
for mining. We considered an ontology T of 55 concepts
and 19 roles. The objective is to derive the status of buses
(by mining EL++ rules across semantic data i.e., association
of types of weather, travel condition, incident, events, bus
delays) when not retrievable (due to 34% of missing data).

DataSet Size (Mb / Day) #Axioms / Update #RDF Triples / Update
[a] Weather 3 53 318
[b] Travel Time 43 270 810
[c] Incident 0.1 81 324
[d] Event 9.5 480 1, 150
[e] Bus 120 3, 000 12, 000

Table 3: Dynamic Data / Evolving Ontologies Details.

• Scalability Result: Figure 5 reports scalability of [A3]
((σmin, ωmin, γmin) being (1/2, n, (2/3, 3/4))) and compares
its computation time with (Dehaspe and Raedt 1997) using
inductive logic noted [D97], (Srikant and Agrawal 1995) us-
ing basic taxonomies noted [S95] and (Lécué and Pan 2013)
using ABox axioms-related rules noted [L13]. The evalua-
tion is achieved on different (i) variations of T i.e., T [0],
T [50], T [100] capturing a proportion of 0%, 50%, 100% of
GCIs, RIs of T , (ii) number of evolving ontologies |s| i.e.,
{1, 3, 5} for respectively [e], [c,d,e], [a,b,c,d,e] in Table 3.
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Figure 5: Scalability. 1st x axis: Approaches on 5 Test
Cases. 1st y axis: Computation Time in Seconds. 2nd x axis:
5 Types of Semantic and Evolving Ontologies Configura-
tions. 2nd y axis: Search Space of Association Rules.

The scalability of all approaches decreases with the number
of evolving ontologies, axioms. [D97] is the most scalable
(when |s| > 1) since it supports pruning strategies. Its per-
formance remains unchanged for any variation of T since no
semantics is supported. [S95], [A3] improve their scalabil-
ity by clustering rules using semantics, which highly reduces
the number of representative rules for [A3]. The off-line ver-
sion of [L13] is the least scalable since knowledge discovery
is based on the high number significant rules. Our approach
outperforms (i) [S95] when numerous evolving ontologies
occur, (ii) [D97] when more semantics is captured by T .

• Accuracy Result: Figure 6 reports accuracy with Table
4 as configuration. The weight is interpreted in [A3]. T [50]
and all ontologies are considered. Accuracy is measured by
validating induced knowledge over 10, 000 past situations
where buses status is known. All approaches are compared
as they expose similar results with different representation.

c1 c2 c3 c4 c5 c6 c7 c8

σmin .4 .4 .4 .4 .8 .8 .8 .8
γmin (.4, .4) (.4, .8) (.8, .4) (.8, .8) (.4, .4) (.4, .8) (.8, .4) (.8, .8)

Table 4: Support σmin, Confidence γmin Configuration.

[A3] outperforms all approaches, even significantly when (i)
weight associated to confidence γmin is higher than .4, (ii)
support σmin is .8. The experiments v.s. [L13] show that
genericity, representativeness, weight of rules largely con-
tribute in reducing their quantity while improving quality.
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Figure 6: Accuracy. 1st x axis: Approaches on 8 Test Cases.
1st y axis: Accuracy of Discovered Knowledge. 2nd x axis:
8 Types of Support / Confidence Configurations (Table 4).

• Lessons Learnt: The semantics of rules and its atom-
sets together with representativeness benefits classical rules
mining approaches. Our approach, as a variant of [L13],
[D97], [S95], benefits from (i) [L13] to discover associa-
tion, (ii) [D97] to prune atomsets (for scalability), (iii) [S95]
to capture their semantics (for consistency, accuracy). The
scalability (accuracy) of knowledge discovery is negatively
(positively) impacted by the number of data sources, snap-
shots, axioms c.f. Algorithms 1, 2. Their number are critical
as they drive heterogeneity in rules, which could improve
accuracy, but not scalability. It would be worst with more
expressive DLs due to binding and containment checks.

Conclusion and Future Work
Our approach, combining inductive and deductive reason-
ing, discovers consistent knowledge by mining and apply-
ing association EL++ rules across DL-augmented dynamic
data. Existing approaches learn knowledge from raw data
while we exploit its semantics and consistency during the
learning phase. Semantics was essential for (i) capturing
consistent knowledge across evolving ontologies, (ii) rais-
ing its accuracy, (iii) improving scalability through identifi-
cation of representative rules. Experiments have shown scal-
able, accurate, consistent knowledge discovery in Dublin.

In future work we will investigate scalable and incremen-
tal re-adjustment of rules in a context of streaming data.
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