
Graph Pattern based RDF Data Compression

Jeff Z. Pan1, José Manuel Gómez Pérez2, Yuan Ren1, Honghan Wu3,1, Haofen Wang4,
and Man Zhu5

1 Department of Computing Science, University of Aberdeen, United Kingdom
2 iSOCO, Spain

3 Nanjing University of Information & Technology, China
4 East China University of Science & Technology

5 School of Computer Science, Southeast University, China

Abstract. The growing volume of RDF documents and their inter-linking raise
a challenge on the storage and transferring of such documents. One solution to
this problem is to reduce the size of RDF documents via compression. Existing
approaches either apply well-known generic compression technologies but sel-
dom exploit the graph structure of RDF documents. Or, they focus on minimized
compact serialisations leaving the graph nature inexplicit, which leads obstacles
for further applying higher level compression techniques. In this paper we pro-
pose graph pattern based technologies, which on the one hand can reduce the
numbers of triples in RDF documents and on the other hand can serialise RDF
graph in a data pattern based way, which can deal with syntactic redundancies
which are not eliminable to existing techniques. Evaluation on real world datasets
shows that our approach can substantially reduce the size of RDF documents by
complementing the abilities of existing approaches. Furthermore, the evaluation
results on rule mining operations show the potentials of the proposed serialisation
format in supporting efficient data access.

1 Introduction

The digital universe is booming, especially in terms of the amount of metadata and user-
generated data available. Studies like IDC’s Digital Universe6 estimate that the size of
the digital universe turned 1Zb (1 trillion Gb) for the first time in 2010, reached 1.8Zb
just one year later in 2011 and will go beyond 35Zb in 2020. Some interesting figures
include that 70% of such data is user-generated through several channels like social
networks, mobile devices, wikis and other content publication approaches. Even more
interestingly, 75% of such data results from data transformation, copying, and merging
while metadata is the fastest growing data category. This is also the trend in semantic
data, where datasets are increasingly being dynamically and automatically published,
e.g. by semantic sensor networks [3], and consumed, e.g. by silico experiments in the
form of scientific workflows [2]. In these domains a large number of distributed data
sources are considered as opposed to classic data integration scenarios. This means that
the amount of data available is growing at an exponential rate but also that data is not
statically stored in their datasets. Combined with the growing size of the overall Linked

6 http://www.emc.com/leadership/digital-universe

Open Data cloud, with more than 30 billion triples, and of its individual datasets, with
some of its hubs e.g. DBPedia exceeding 1,2 billion triples, the need of effective RDF
data compression techniques is clear.

This raises serious data management challenges. Semantic data need to be compact
and comprehensible, saving storage and communication bandwidth, while preserving
the data integrity. Several approaches can be applied to achieve lossless RDF document
compression. They can be categorised into either application-dependent or application-
independent approaches: Application-dependent approachs include Michael Meier’s
rule-based RDF graph minimisation [10] and Reinhard et. al.’s appraoch [12]. They are
usually semi-automatic, requiring human input. Application-independent approaches
are more generic. First of all, universal file compression techniques [4], such as bzip2 7

and LZMA 8, can be applied on RDF document. Such approaches alter the file structure
of RDF documents and can significantly reduce file size. Alternative RDF serialisa-
tions, such as HDT serialisation [5], lean graphs [8] and K2-triples [1] can be used
to reduce file size. Such techniques preserve the structured nature of RDF documents.
Another approach is based on logical compression, such as the rule-based RDF com-
pression [9], which can be used to substantially reduce the number of triples in an RDF
document. Ontology redundancy elimination [6] can also be regarded as logical RDF
compression in which the RDF documents are intepreted with OWL (Web Ontology
Language 9) semantics.

Despite the compression results achieved by existing works, they make little or
no use of the graph structure of RDF datasets. For example, universal compression
techniques usually exploit the statistical redundancy in a document and the document
is treated as a series of ordered characters. However an RDF document is essentially a
graph in which the ordering in which nodes and edges are presented is irrelevant to the
semantics of the data. Even the few approaches that leverage this kind of information are
constrained to simple and fixed graph structures. This makes them less effective when
reducing the size of compressed file. For example, logical compression [9] compresses
re-occuring star-shaped graph structures of varying center nodes in an RDF document
with single triples:

Example 1. In an RDF document, if it contains the following triples, where both m and
n are large numbers:

< s1, p1, o1 >, . . . , < s1, pn, on >,

. . .

< sm, p1, o1 >, . . . , < sm, pn, on >

then it can be compressed with the following triples:

< s1, p1, o1 >, . . . , < sm, p1, o1 > (1)

And a rule <?s, p1, o1 >→<?s, p2, o2 >, . . . , <?s, pn, on >, where ?s is a variable,
can be applied to recover all the removed triples.

7 http://www.bzip.org/
8 http://www.7-zip.org/
9 http://www.w3.org/TR/owl2-overview/

This approach works well when the document contains many different nodes shar-
ing many same “neighbours”. But it is not applicable when such graph structures are
not observed, e.g. when n = 1. In fact, its results, the triples in (1) is an example of
such a scenario. This is because the logical compression presented by Joshi et al. [9] is
constrainted to graph patterns with only 1 variable. By extending to more generic graph
structures, improvement of compression rate can be easily achieved. In fact, triples in
(1) can be compressed by exploiting a graph pattern with 2 variables:

Example 2. Without lose of generality, we assume m is an even number. We can further
compress triples in (1) with the following ones

< s1, px, s2 >, . . . , < sm−1, px, sm >

where px is a fresh predicate introduced for this graph pattern. And we can use a rule
<?s, px, ?o >→<?s, p1, o1 >,<?o, p1, o1 > to decompress the triples.

Apparently, the number of triples is halved and such a further compression is guaranteed
applicable and better on any results obtained by Joshi et al.’s approach. This shows that
logical compression with lower compression rate can be achieved when more syntactic
and semantic information of RDF datasets are better exploited.

In addition to semantic redundancies, the ways in which RDF graphs are serialised
as sequences of bytes can also introduce another type of redundancies, i.e. the syntac-
tic one. Existing approaches including textual serialisation syntaxes, e.g. RDF/XML,
and binary ones, e.g. HDT [5] only deal with syntactic redundancies in concrete graph
structures (defined as intra-structural redundancy in section 3.2). Without the knowl-
edge of graph patterns in RDF graphs, they are not able to make use of the common
graph structure (defined as inter-structural redundancy in section 3.2) shared by many
instances of one graph pattern.

In this work, we aim at exploiting the graph structure of RDF datasets as a valu-
able source of information in order to increase the data compression gain in both the
semantic level and syntactic level. Main contributions of the paper include:

1. we develop application-independent graph pattern-based logical compression and
serialisation technologies for RDF documents;

2. we implement a framework that combines different compression techologies, in-
cluding logical compression and serialisation;

3. we show that implementations of our approach can complement the compression
abilities of existing solutions in semantic ans syntactic levels. The potentials of
efficient data access are also revealed in the evaluation.

The rest of the paper is organised as follows. Section 2 will introduce basic notions,
such as RDF graphs and graph patterns. Section 3 presents techniques of graph pattern
based approaches for removing both semantic and syntactic redundancies. Sections 4
and 5 present our implementation and evaluations respectively.

2 Preliminaries

Resource Description Framework (RDF) [7] is the most widely used data interchange
format on the Semantic Web. It makes web content machine readable by introducing

annotations. Given a set of URI referenceR, a set of literals L and a set of blank nodes
B, an RDF statement is a triple <s, p, o> on (R∪B)×R× (R∪L∪B), where s, p, o
are the subject, predicate and object of the triple, respectively. An RDF document is a
set of triples.

With these notions, to facilitate RDF data compression, we define a graph as fol-
lows:

Definition 1. (Graph) A labeled, directed multiple graph (graph for short) G = 〈N,E,M,L〉
is a four-tuple, where N is a set of URI references, blank nodes, variables and literals,
E is the set of edges, M : E → N ×N maps an edge to an ordered pair of nodes, L is
the labelling function that for each edge e ∈ E, its label L(e) is a URI reference.

It is apparent that every RDF document can be converted to a graph whose nodes are
not variables, and vice versa. In the following we use the notions RDF document, RDF
triple set and RDF graph interchangably. Given a set T of RDF triples, we use G(T) to
denote the graph of the triple set. Given a RDF graph G, we use T (G) to denote the set
of triples that G represents.

Definition 2. (Graph Operations) A graph 〈N1, E1,M1, L1〉 is a sub-graph of another
graph 〈N2, E2, M2, L2〉 IFF N1 ⊆ N2, E1 ⊆ E2, ∀e ∈ E1, M1(e) = M2(e) and
L1(e) = L2(e).

Two graphs 〈N1, E1,M1, L1〉 and 〈N2, E2,M2, L2〉 have a union IFF ∀e ∈ E1 ∩
E2, M1(e) = M2(e), L1(e) = L2(e). Their union is a graph 〈N,E,M,L〉 such that
N = N1 ∪N2, E = E1 ∪ E2, ∀e ∈ E1 ∪ E2, M(e) = M1(e) or M(e) = M2(e) and
L(e) = L1(e) or L(e) = L2(e).

Definition 3. (Graph Pattern) A graph pattern is a graph in which some nodes repre-
sent variables.

The none-variable nodes in a graph pattern are called constants of the graph pat-
tern.

In this paper we are not concerned with the direction of triples in a graph pattern.
For conciseness, we use <?x, p, o> to represent a triple with ?x as either the subject, or
the object.

Definition 4. (Instance) A substitution § = (v1 → v2) replaces a vector of variables
v1 with a vector of URI references/literals/blank nodes v2.

A graph G is an instance of a graph pattern G′, denoted by G : G′, IFF there exists
a sustitution § such that G′§ = G. Given an RDF graph D, we use ID(G′) to denote
the set of all sub-graphs of D that are instances of G′. Obviously, G ∈ ID(G) since an
empty substitution (∅ → ∅) exists. And ID(G) = {G} when G contains no variable.

When the D is clear from context, we omit it in the notations.

An RDF graph can be considered as the union of instances of several graph patterns.

Definition 5. (Rule) Let GP and GP ′ be two graph patterns, GP → GP ′ is a rule.
Let D be an RDF document, results of applying GP → GP ′ on D, denoted by

GP →D GP ′, is another RDF document D′ =
⋃

GP§∈ID(G) GP ′§.

In other words, D′ is the union of GP ′ instances with substitutions that are used by
instances in ID(GP).

With these notations, we invesitgated different graph pattern-based in for RDF and
their relation to the compression problem.

3 Graph Pattern-based Approaches

In this section, we propose graph pattern-based approaches to deal with both seman-
tic redundancies and syntactic redundancies in RDF data. They complement existing
approaches by either generalising existing semantic compression techniques, i.e. rule
based approaches, or extending serialisation approaches, e.g. RDF/XML or HDT, to
deal with new type of syntactic redundancies.

3.1 Semantic Compression: Graph Pattern-based Logical Compression

As we mentioned in the previous section, an RDF graph can be expanded from a smaller
graph with the help of rules, whose body and head are both RDF graph patterns. This
essentially means that the instances of the bigger graph pattern can be replaced by
smaller instances of the smaller graph pattern. Below is an example:

Example 3. In the DBpedia dataset, the following graph pattern has a large number of
instances:

GP1 :<?x, a, foaf : Person >,<?x, a, dbp : Person >

Such a graph pattern can be replaced by a smaller graph pattern. For example, we
can use one type T to represent the two types in the above graph pattern, and replace
the two triples with a single triple

GP2 :<?x, a, T > .

In this example, GP1 is compressed by GP2. As a consequence, I(GP1) is com-
pressed by I(GP2). This will reduce the number of triples in the original RDF docu-
ment by 50%. Such a compression can be achieved by applying rule GP1 → GP2 on
the RDF document. Decompression is achieved by applying rule GP2 → GP1 on the
compressed data set.

During logical compression, the fact that GP2 contains less triples than GP1 is
exploited to ensure that I(GP2) contains less triples than I(GP1). Such a reduction of
triple number is the main focus in logical compression.

A Unified Model for Graph Pattern-based Logical Compression We generalise the
above compression mechanism to support more variables with the following unified
model:

Definition 6. (Graph Pattern-based Logical Compression of RDF) Let D be a RDF
document, its graph pattern-based logical compression consists of an RDF document
D′ and a rule set S, such that the following holds:

D =
⋃

GP2→GP1∈S
(D′ \ ID′(GP2)) ∪ (GP2 →D′ GP1)

We call D the original RDF document, D′ the compressed RDF document, S the
decompression rule set. And for each GP2 → GP1 ∈ S, we say that GP1 is compressed
by GP2.

In this procedure, triples in ID(GP1) are replaced by triples in ID′(GP2). Note that
all triples in D′ that involve new resources introduced in GP2 but not GP1 are removed
during decompression.

It’s worth mentioning that variables in the decompression rules bind only to explic-
itly named entities in the RDF document. Hence the compression resultsD′ can directly
be used in RDF reasoning and SPARQL query answering, e.g. by reasoners supporting
DL-safe rules [11].

In the above definition,for each GP compressed by GP ′, the original |GP | triples
in D are replaced by |GP ′| new triples in D′. The extra cost of compression is the
maintenance of the rule, which consists of |GP | + |GP ′| triples. To characterise the
effect of compression we define the following notions:

Definition 7. (Compression Quantification) For GP compressed with GP ′ using the
graph pattern-based compression defined in Def. 6, let TO, TC and TR be the total num-
ber of different triples in I(GP), in I(GP ′) and in R, respectively, then the compression
gain is TO − TC − TR, the compression ratio is TC+TR

TO
.

Note that when several instances of GP share a triple, this triple will be compressed
multiple times but the actual size of the document D will only be reduced by at most
1. Similarly, when several instances of GP ′ share a triple, this triple only needs to be
included in the compression resultD′ once. With these considerations, the compression
quantification of a single graph pattern can be characterised as follows:

Lemma 1. (Compression Ratio) For a GP having n variables and N instances, as-
suming triples are shared redundantly by instances of GP for S times, then the com-
pression quantification of compressing GP with GP ′ as defined in Def. 6 is as follows,
where I is the redudant number of triples shared by instances of GP ′:

TO = N ∗ |E| − S

TC = N ∗m− I

TR = m + |E|

The lemma is quite straightfoward, N ∗ |E| is the total number of triples in all the
GP instances, S is the redundant number of shared triples, which should be removed
when calculating TO. Similarly I should be removed when calculating TC .

With the above quantification, graph pattern-based RDF logical compression is a
problem of finding appropriate graph patterns that yield best (highest) compression
gain. To achieve that, we should look for graph patterns with the following criterias:

– larger N , i.e. more instances;
– larger |E|, i.e. more triples in the original pattern;
– larger I , i.e. more triples shared by instances of the compressed graph pattern;
– smaller m, i.e. less triples in the compressed pattern;
– smaller S, i.e. less shared triples among instances of the original graph pattern;

These criterias are not easy to satisfy at the same time as the values of these param-
eters are related to one another. Yet they can already help us to identify “good” or to
eliminate “bad” patterns. For example, a compressed graph pattern should not contain
circle (removing an edge to eliminate the circle will only reduce the value of m but not
the others). More interestingly, we have the following observations:

Lemma 2. Let GP be a graph pattern containing a constant triple t, whose subject,
predicate and object are all constants, then compression gain of GP being compressed
by any GP ′ is no higher than the compression gain of GP \ {t} being compressed by
GP ′ \ {t}.

This lemma is quite obvious. Assuming compressing GP with GP ′ yields com-
pression gain TO − TC − TR, because t is shared by all instances of GP , it is main-
tained only once in TO. If t is also in GP ′, it is similarly maintained in TC only
once. In this case, compressing GP \ {t} with GP ′ \ {t} will yield compression gain
(TO−1)−(TC−1)−(TR−2); If t is not in GP ′, it is not included in TC . Then the com-
pression gain of compressing GP \{t} with GP ′ will be (TO−1)−TC − (TR−1). In
both cases, compressing GP with GP ′ is not more benificial than compressing GP \{t}
with GP ′ \ {t}. Although there is only minor, it implies that in graph-pattern based
logical compression, we only need to focus on graph patterns with no such “constant
triples”.

Another observation from the quantification is as follows:

Lemma 3. Let GP1, GP2 be two disconnected graph patterns, then the compression
gain of compressing them into a single connected graph pattern is lower than com-
pressing GP1 and GP2 separately.

This lemma is also quite straight-forward. Compressing two disconnected graph
patterns into a connected one will only require addition triples to connect previously
disconnected instances. This implies that we should always compress each connected
graph pattern separately.

A further observation is that the decompression rules themselves, particularly the
head part, may also contain redundancies that can be exploited:

Lemma 4. For N (N ≥ 2) graph patterns whose decompression rules share the same
head triples t1, . . . , tM (M ≥ 2), the compression gain will be higher if we replace
t1, . . . , tM with a single triple t′ and further compress with a decompression rule t′ →
t1, . . . , tM .

This lemma actually indicates that we can first compress all t1, . . . , tM with t′, and
then further compress the compressed graph pattern with the replaced rules. The reason
is also straight-forward: by changing the rules, we do not change the original triples,
nor the triples in the final compression results, but only replace the M ∗N triples in the

 <rdf:Description rdf:about="http://data.semanticweb.org/person/jeff-z-pan">
 <foaf:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Jeff Z. Pan</foaf:name>
 </rdf:Description>
 <rdf:Description rdf:about="http://data.semanticweb.org/person/jeff-z-pan">
 <foaf:creator rdf:resource="http://data.semanticweb.org/conference/iswc/2009/paper/research/423"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://data.semanticweb.org/conference/iswc/2009/paper/research/423">
 <rdfs:label>Concept and Role Forgetting in ALC Ontologies</rdfs:label>
 </rdf:Description>

 <rdf:Description rdf:about="http://data.semanticweb.org/person/jeff-z-pan">
 <foaf:name rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Jeff Z. Pan</foaf:name>
 <foaf:creator>
 <rdf:Description rdf:about="http://data.semanticweb.org/conference/iswc/2009/paper/research/423">
 <rdfs:label>Concept and Role Forgetting in ALC Ontologies</rdfs:label>
 </rdf:Description>
 </foaf:creator>
 </rdf:Description>

RDF/XML F1

RDF/XML F2

Fig. 1. Syntactic Redundancy

original compression rules with N + 1 +M triples. This replacement will be beneficial
when either M or N is large. In worst case, we only reduce the gain by 2, which is
negiligible. This implies a practical simplification of compression: when a graph pattern
contains multiple triples of form <?x, pi, oi > associated to the same ?x, we can first
compress them into a single triple <?x, p, o > before compressing the rest of the graph
pattern.

It is worth mentioning that the logical compression approach can be applied on
different syntactic forms of the RDF documents, as long as graph patterns and triples
can be accessed. In fact, in our compression solution we also apply it on the compressed
serialisation we will introduce in the next section because it has much smaller physical
size than the origianl RDF document.

3.2 Syntactic Compression: Graph Pattern-based Serialisation

Logical compression reduces the number of triples in an RDF graph by eliminating
semantic redundancies. Nevertheless, with the same set of triples, redundancies can
arise depending on how triples are serialised in an RDF file. For example, one RDF
graph can be represented as two different RDF/XML files of F1 and F2 in Figure 1. In
F1 (cf. the bold and red texts in the upper part), URIs of jeff-z-pan and iSWC09_423
appear twice; in F2 both of them appear only once (cf. the bold and blue texts in the
lower part). While the two files convey the same meaning, F2 is more concise by using
RDF/XML’s abbreviation and striping syntaxes10.

The above phenomenon emerging from RDF file serialisation can be characterised
with the following equation, in which F is a file, |F | is the file size in terms of bits, rb
is the average number of bits needed to encod a resource and Nc is the total number of
resource occurrences.

|F | = Nc × rb (2)

10 http://www.w3.org/TR/2002/WD-rdf-syntax-grammar-20020325/

A serialisation F of an RDF graph g with resource occurrences of Nc contains
syntactic redundancy if there is another serialisation F̄ of g with resources occurrences
N̄c, s.t. N̄c < Nc. Let n be the number of triples in an RDF graph. The worst case is
Nc = 3× n, which means that the serialisation is to store triples one by one11.

Most RDF serialisation approaches provide syntaxes to avoid the worst case e.g.,
the RDF abbreviation and striping syntax. Similar ideas are also adopted in other RDF
serialisation syntaxes like Turtle12 and Notation 313. Beside the textual serialisations,
Fernández and et. al. [5] introduced a binary serialisation approach which applies simi-
lar ideas by using bitmaps to record the resource occurrences.

Generally speaking, in the RDF graph, there are two types of syntactic redun-
dancies. The first type is the intra-structure redundancies, which denotes the multi-
ple occurrences of the same resources within the same structures (sub-graphs) of an
RDF graph. For example, in Figure 1 jeff-z-pan has 2 occurrences in F1. One of them
is redundant and can be committed in F2. The second type of syntactic redundan-
cies is the inter-structure redundancies, which denotes the multiple occurrences of the
same resources across different structures. Suppose there is another author Jose in
ISWC09 dataset. He might be described using the same graph pattern of jeff-z-pan:
GPauthor = {<?x, foaf :name, ?n >,<?x, foaf :made, ?p >,<?x, rdf :type, foaf :Person >} . In
such a graph pattern, resources such as foaf :name, foaf :made, foaf :Person, etc.
do not have to be repeated for both jeff-z-pan and Jose in a serialisation. According
to the above categorisation, existing work only deals with intra-structure redundancies
leaving inter-structure ones untouched. We will show (cf. Sec. 3.2) how these inter-
structure ones can be dealt with in our approach.

Grouping triples by graph patterns We introduce a graph pattern-based serialisa-
tion method which can remove both intra-structural redundancies and inter-structural
redundancies.

IGP
serialised−−−−−−→ GP +

(
(rI1,1, ..., rI1,k)...(rIN ,1, ..., rIN ,k)) (3)

As shown in formula 3, given the instances IGP of a graph pattern GP , the serialisation
method generates a sequence of bits which is composed of two components. The first
component is the graph pattern its self. Such graph pattern is essentially a structure
shared by its instances. The second component is a sequence of instances of GP and
each instance is a list of resource IDs. By using this graph pattern-based serialisation,
we can serialise an RDF graph G as a file F which takes the form as follows.

F −→ IGP1 , IGP2 , . . . , IGPi , . . . (4)

Given an graph pattern GP , the serialisation size of its instances can be calculated
as follows:

|IGP | = (|GP |+ N × |V |)× b

11 For the sake of simplicity, collection constructs like rdf:collection, rdf:list or rdf:bags are
viewed as single resources in this calculation.

12 http://www.w3.org/TeamSubmission/turtle/
13 http://www.w3.org/DesignIssues/Notation3

In the above formula, |GP | is the number of resources (edges and constant nodes) in
GP , N is the number of instances of GP and V is the number of variable nodes in GP .
The size of serialisation file F is calculated as follows:

|F | = (
∑

GPi∈{GP}

|IGPi |) + |Dictionary| (5)

Compared to triple based serialisation (formula 2), the storage space saved by graph
pattern based serialisation can be calculated as:∑

GPi∈{GP}

|GPi| × (NGPi
− 1)× b

4 Implementation

In this section, we discuss the implementation details. Firstly we overview our methods
by a framework. Following which are the technical details of the graph pattern-based
serialisation and the logical compression method respectively.

4.1 Framework

RDF Data

Graph Pattern-

based

Serialisation

Logical

Compression

Graph Pattern

Identification

Compressed

Binary File

Graph Pattern-based

RDF Compression Framework

Iterative

Fig. 2. RDF Data Compression Framework.

The framework (cf. Figure 2) is composed of 3 different steps, including graph pat-
tern identification, logical compression and data serialisation, to exploit both semantic
and syntactic redundancies discussed in previous sections.

We describe the main components in this framework as follows:

1. Graph Pattern Identification component implements an efficient and incremen-
tal graph pattern identification method. The identified graph patterns are not only
utilised in semantic compression by the logical compression component, but also
used to remove syntactic redundancies by the graph pattern-based serialisation
components.

2. Logical Compression component implements the graph pattern-based logical com-
pression techniques we presented in the Sec. 3.1. Given the identified graph pat-
terns, it tries to reduce the size of the graph patterns so that the total entities encoded
in the instances of graph patterns can be reduced.

3. Graph Pattern Serialisation component implements the graph pattern-based se-
rialisation techniques we presented in Sec. 3.2. It produces a compact serialisation
of the documents by grouping triple blocks with similar structures, called Entity
Description Blocks (EDBs), into graph patterns, and then applying the serialisation
techniques;

As shown as dashed line in Figure 2, an iterative compression method is imple-
mented in our framework. After each iteration, the serialisation will result with graph
pattern headed files (cf. formula 2 in section 3.2), which can be utilised to identify larger
graph patterns efficiently. Larger graph patterns can be used to further reduce redundan-
cies so that repetitive appearances of entities in different graph patterns can potentially
be reduced. Below we explain the implementation details of the first two components.
The graph pattern-based serialisation has been introduced in section 3.2.

4.2 Graph Pattern Identification

In this paper, we introduce an approach to find and generate graph patterns efficiently.
The basic idea is based on an observation that most RDF dump files were generated
by following some specific patterns. Such patterns lead to data patterns in the dumped
file e.g. triples about an entity are often put together or putting the same relation triples
together. Obviously, such data patterns are useful for the serialisation task, or at least
good sources for finding more useful graph patterns.

Following this idea, we propose an incremental serialisation approach, which is
composed of two stages. In the first stage, it utilises the graph patterns in the RDF file
directly. Such existing graph patterns are called direct graph patterns. The second stage
moves on from the results of the first stage by manipulating the direct graph patterns
to get better patterns for compression. The second stage can be iterative by applying
different graph pattern processing techniques.

Stage 1 Finding Direct Patterns This stage is composed of two steps of generating
entity description block (EDB shortly) and grouping EDBs. When iterating the triples
of an RDF file, we group the triples as an EDB, if these triples share the same subject
and also form a continuous sequence in the RDF file.

(..., < s1, p1, o1 >,< s1, p2, o2 >, ..., < s1, pn, on >, ...)

grouped−−−−−→ (..., EDB(s1), ...)

With this method, a sequence of triples is converted into a sequence of EDBs. In
the second step, we group EDBs by their schema information which is called entity
description pattern as follows.

EDP (EDB(s)) = (C,P),

where C is the types of s in this EDB and P is the properties of s in the EDB. Hence,
basically the grouping operation is to put all EDBs with the same structure together so
that we can apply techniques discussed in section 3.2 to store them. The EDP based
serialisation approach is called Level 0 method, LV0 shortly.

Stage 2 Merge Graph Patterns In this stage, the main problem to be dealt with
is how to merge existing graph patterns from previous stage(s) to get a better pattern
which can remove more redundancies. Hence, the key is how to define the merge op-
erator. Generally speaking, a bigger graph pattern will always be better because it can
avoid storing the same resources multiple times in smaller graph patterns. One possible
merge operation can be merge the EDBs of the same entities together so that we do not
have to store the same entity IDs in multiple places in a file. Another possible way is to
utilise the linking nature of RDF graph i.e. merge EDBs by there relations. In this paper,
we apply the second strategy in the evaluations, where we call it Level 1 method., LV1
shortly.

Later iterations The graph patterns identified stage 2 or later stages can be further
enlarged by applying merge operation on the results of current stage. Obviously, more
iterations require more processing time. Finding a trade-off between the compression
gain and costs of the processing timing is critical in this iterative process. In this paper,
we focus only on LV1, i.e. stage 2.

4.3 Logical Compression

We implement the logical compression approach with one variable, which is the ba-
sis for logical compression with multiple variables. As discussed in Sec. 4.2, the new
graph pattern proposed in this paper eliminates 50% of triples by combining a pair of
triples needed to be saved into one triple. This subsection discusses how this kind of
compression rules are found.

The logical compression algorithm is shown in Algorithm 1. After direct patterns
are constructed, subjects with same predicates will be grouped together into same direct
patterns, making finding the instances of each graph pattern very easily. In order to fa-
cilitate the logical compression, we support candidates(GP , threshold) as an atomic
operation, which is calculated through fast indexing of the graph patterns, and will list
the candidate graph patterns whose number of solutions is greater than threshold.

We find the compression graph patterns with the following procedure: We list all
candidate graph patterns with enough instances using candidates(GP, threshold).
Each candidate graph pattern GP ′ is renamed as an object property pGP ′ in the com-
pression. Suppose values of the variable in GP ′ are a1, a2, . . . , an, we save the follow-
ing triples in the compressed dataset:

{< a1, pGP ′ , a2 >,< a3, pGP ′ , a4 >, . . . , < an−1, pGP ′ , an >}

5 Evaluation

As introduced in the previous section, we implemented both RDF serialisation and log-
ical compression based graph patterns. And we can support different incremental so-
lutions. In this section, we evaluate their performance and compare against existing
technologies.

Algorithm 1 Logical Compression Algorithm
1: procedure LOGICAL_COMPRESSION(GPs, threshold) . GPs are direct patterns
2: for each direct pattern GP do
3: NEWGPs← candidates(GP, threshold)
4: for each graph pattern GP ′ in NEWGPs do
5: IGP ′ ← instantiations of variables in GP ′

6: rename GP ′ as pGP ′
7: compressedSet←< ai, pGP ′ , ai+1 > . ai ∈ IGP ′, ai+1 ∈ IGP ′

8: return compressedSet

Datasets The main strategy of our dataset selection is to use real world datasets with
various size and from different domains. The idea is that LV0 of our incremental ap-
proach tries to use the direct graph patterns in the dumped RDF files. A heterogeneous
datasets might reveal how our approach can work in different situations.

As aforementioned, LV0 utilises the data patterns in the dumped RDF file directly.
One might be interested to such direct graph patterns. The first concern would be how
many numbers of graph patterns one dataset could have. If there were too many graph
patterns, the compression method might not work as expected. For example, in the
worst case, each triple is a distinct pattern. In such case, the first level compression
would degrade to be each triple based serialisation. The second concern might be the
data distributions among such patterns. Our approach prefers leanly distributed data
patterns. One of the main reason is that our method would be much more efficient when
most of the data only reside in a small number of graph patterns.

Table 1. Dataset Statistics and Direct Graph Patterns

Dataset Archive Hub Jamendo linkedMDB DBLP2013
#Triples 431,088 1,047,950 6,148,121 94,252,254

Plain File Size 71.8M 143.9M 850.3M 14G
Compressed Size 2.5M 6M 22M 604M
#Direct GP 623 34 119 77

Top 5 GP 35% 78% 54% 72%

Table 1 gives the statistics of the four datasets used in our experiments. The datasets
are sorted ascendantly by size from left to right. The last two rows show the statistics of
direct graph patterns. The numbers of direct graph patterns in each dataset are displayed
in the fifth row. In most datasets, the pattern numbers are quite small. In addition, the
number does NOT increase with the dataset size. This is understandable because graph
patterns are more related to the complexity of data schemas instead of the individual
numbers. The last row list the ratio of entity numbers in top 5 largest graph patterns to
the number of all entities in the dataset. As we can see, in the three large datasets, most
data reside in the top 5 graph patterns. The exception is the Archive Hub dataset which
also has the largest number of graph patterns. One reason is that the dataset is a gateway
of collections in UK. This means that it might cover a large number of concepts.

A quick conclusion from the pattern analysis is that in most datasets the direct graph
patterns might be good resources which can be utilised to remove redundancies in them.

Logical Compression Evaluation In section 3.1, we propose a general model of RDF
logical compression. In this subsection, we focus on the evaluation of one particular
type of graph patterns i.e. <?x, p, o >. This type of patterns, or in other word rules cov-
ers the intra-property and inter-property rules of [9]. As we pointed out in section 3.1,
the compression techniques proposed in [9] can be further optimized by grouping two
instances together and compress with 1 triple.

In table 2, we compare such optimised results with the results reported in [9]. As
shown there, the optimized results outperforms existing work quite well. In addition to
the instance grouping optimization, the results also benefits from frequent data values.
As we mentioned, our logical compression, i.e. LV2 method is based on GP-LV0 result.
In the first level serialisation, the data values are also assigned with an ID value based
on their MD5 hashes. Hence, if some values are frequent, they will be treated similarly
as frequent instances.

Table 2. The optimized results of one variable patterns

Data Set # Total triples Optimized Compression RB Comp. ratio#Removed triples Comp. ratio
Archive Hub 431,088 187,887 1.77 1.41

Jamendo 1,047,950 436,101 1.72 1.22
LinkedMDB 6,148,121 2,679,593 1.77 1.33

DBLP 94,252,254 61,383,224 2.86 1.16

Graph pattern-based Serialisation Evaluation The proposed serialisation approach
can deal with inter-structure syntactic redundancies which are not touched by most
existing approaches. Table 3 gives an idea about the volume of such redundancies (re-
moved by basic EDP patterns) in test datasets. The syntactic redundancies 14 removed
by our approach can be quantified as SRRsyntac =

∑
EDPi

|EDPi| × (fEDPi
− 1), where

fEDPi
is the frequency or number of instances of EDPi.

The second row of Table 3 lists the SRRsyntac of four datasets. The third row shows
the ratios of the redundancies over the whole datasets by SRRsyntac/(3×#TriplesG). The
fourth row shows the syntactic redundancies our approach can further remove from the
results of approaches only dealing with intra-structure redundancies like HDT, which
are the inter-structure redundancies. It is interesting to see that in the first three datasets
most syntactic redundancies are not dealt with by existing serialisation approaches.
The situation in DBLP2013 is different which means that there are more intra-structure
redundancies in it. The last row shows the improvements in compression ratio by re-
moving inter-structural redundancies.

In general, these statistics show that compared to intra-structure redundancies the
inter-structure ones constitute the major part of syntactic redundancies in all test datasets.
This indicates that our graph pattern-based serialisation can improve compression ratio
significantly.

14 The syntactic redundancies are calculated by # (unnecessary) resource occurrences.

Table 3. Inter-structure redundancies removable

Dataset Archive Hub Jamendo linkedMDB DBLP2013
Total syntactic redundancies 370,389 999,353 5,939,980 79,399,947
Ratio over the original data 28.6% 31.8% 32.2% 28.1%
Inter-structure redundancies 355,917 855,893 5,583,975 46,208,641
Compression Ratio Improvement 38.49% 39.93% 44.65% 22.74%

Rule mining operation evaluation Mining rules from RDF graph directly might be
expensive, when the dataset is large. One of the biggest advantage of our incremental
approach is that the first serialisation results can provide efficient graph pattern manip-
ulation operations. Firstly, its a compacted representation of the original RDF graph.
This makes it more efficient in disk IO and RAM processing. Secondly, and more im-
portantly, the GP-LV0 results are EDP based. From the EDP definition EDP = (C,P),
one can figure out that instance types are already treated as constant nodes. Such pat-
terns can be used directly in mining compression rules. Finally, the graph pattern based
serialisation makes it very convenient to get pattern based index which can be very use-
ful for mining rules. Given these advantages, we propose a rule mining method based
on GP-LV0 results. Figure 3 illustrates the mining time of our approach by comparing
to RB [9] compression time. It can be figured out that we can get the compression rules
in less than 10 seconds in 3 datasets. For DBLP dataset, we can get the results in about
3 minutes.

0.100

1.000

10.000

100.000

1000.000

10000.000

Archive Hub Jamendo LinkedMDB DBLP

Mining Time - Based on GP-LV0

Mining Time - RB Compression

Fig. 3. Rule mining cost

6 Conclusion and Future Work

In this paper, we investigated the problem of application-independent, lossless RDF
compression based on graph patterns. By considering the graph nature of RDF and
its semantics, we focused on two types of redundancies, namely semantic redundancy
and syntactic redundancy. We developed graph pattern-based logical compression and

novel serialisation technologies for RDF data. Evaluation results showed that our ap-
proach can complement existing technologies such as HDT and rule-based compression
significantly in both semantic and syntactic levels on benchmark datasets. In addition,
the evaluation of the rule mining task shows the potentials of the graph pattern-based
serialisation in supporting efficient data accesses.

In the future, we will put special focuses on efficient data access over the proposed
serialisation formats, e.g. extending the results with dedicated index structures to sup-
port SPARQL query answering. In addition, we will also further look into the redun-
dancies of RDF data with special interests in the linked data environment, where the
redundancies might be different when different data sources are linked together or dif-
ferent vocabularies are reused.

References

1. S. Álvarez-García, N. R. Brisaboa, J. D. Fernández, and M. A. Martínez-Prieto. Compressed
k2-triples for full-in-memory rdf engines. arXiv preprint arXiv:1105.4004, 2011.

2. H. Chen, T. Yu, and J. Y. Chen. Semantic web meets integrative biology: a survey. Briefings
in bioinformatics, 14(1):109–125, 2013.

3. M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, et al. The ssn ontology of the w3c semantic sensor
network incubator group. Web Semantics: Science, Services and Agents on the World Wide
Web, 2012.

4. J. D. Fernández, C. Gutierrez, and M. A. Martínez-Prieto. Rdf compression: basic ap-
proaches. In Proceedings of the 19th international conference on World wide web, pages
1091–1092. ACM, 2010.

5. J. D. Fernández, M. A. Martínez-Prieto, and C. Gutierrez. Compact representation of large
rdf data sets for publishing and exchange. In The Semantic Web–ISWC 2010, pages 193–
208. Springer, 2010.

6. S. Grimm and J. Wissmann. Elimination of redundancy in ontologies. In The Semantic Web:
Research and Applications, pages 260–274. Springer, 2011.

7. P. Hayes. RDF Semantics. Technical report, W3C, Feb 2004. W3C recommendation,
http://www.w3.org/TR/rdf-mt/.

8. L. Iannone, I. Palmisano, and D. Redavid. Optimizing rdf storage removing redundancies:
an algorithm. In Innovations in Applied Artificial Intelligence, pages 732–742. Springer,
2005.

9. A. K. Joshi, P. Hitzler, and G. Dong. Logical Linked Data Compression. In Proc. of
ESWC2013, 2013.

10. M. Meier. Towards rule-based minimization of rdf graphs under constraints. In Web
Reasoning and Rule Systems, pages 89–103. Springer, 2008.

11. B. Motik, U. Sattler, and R. Studer. Query answering for owl-dl with rules. Web Semantics:
Science, Services and Agents on the World Wide Web, 3(1):41–60, 2005.

12. R. Pichler, A. Polleres, S. Skritek, and S. Woltran. Redundancy elimination on rdf graphs in
the presence of rules, constraints, and queries. In Web Reasoning and Rule Systems, pages
133–148. Springer, 2010.

