
Query Generation for Semantic Datasets

Jeff Z. Pan and Yuan Ren
Department of Computing

Science
University of Aberdeen

Honghan Wu
College of Computer and

Software
Nanjing University of

Information and Technology

Man Zhu
School of Computer Science &

Engineering
Southeast University, China

ABSTRACT
Due to the increasing volume of and interconnections between se-
mantic datasets, it becomes a challenging task for novice users to
know what are included in a dataset, how they can make use of
them, and particularly, what queries should be asked. In this paper
we analyse several types of candidate insightful queries and pro-
pose a framework to generate such queries and identify their rela-
tions. To verify our approach, we implemented our framework and
evaluated its performance with benchmark and real world datasets.

1. INTRODUCTION
Recent years have experienced a rapid growth of RDF data pub-

lished as Linked Data,1 where OWL ontologies are used to annotate
and connect data. Semantic data can be exploited by queries [12],
such as those in the standard RDF query language SPARQL.

It becomes a challenging task for novice users to know what are
included in a dataset and how they can be used. Firstly, novice users
tend not to be familiar with RDF and SPARQL. Secondly, users are
likely to be unfamiliar with external datasets that are linked to their
local ones. Given some target dataset(s), it would be desirable to
have service to recommend insightful queries to users. For exam-
ple, in the Lehigh University Benchmark (LUBM),2 the following
queries Q1 and Q2 have the same results under RDF simple inter-
pretation (i.e. without reasoning [7, 4]).

#Q1: Return those who take a Course
SELECT ?x WHERE {

?x lubm:takeCourse ?y .
?y rdf:type lubm:Course . }

#Q2: Return Undergraduates who take a Course
SELECT ?y WHERE {

?x lubm:takeCourse ?y .
?x rdf:type lubm:Undergraduate .
?y rdf:type lubm:Course . }

This implies that only undergraduate students are taking courses in
the dataset, which might be somehow surprising, as post-graduate
1http://wifo5-03.informatik.uni-mannheim.de/lodcloud/state/
2http://swat.cse.lehigh.edu/projects/lubm/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
K-CAP ’13, June 23-26, 2013, Banff, Canada.
Copyright 2013 ACM 978-1-45-03-2102-0/13/06 ...$15.00.

students are not taking any courses. This gives users a sense of the
quality of the query answers when reasoning is disabled.

Query generation (QG) has been studied in the field of data-
base, based on database schemas (e.g. [13]) or actual data (e.g. [9]),
where the main motivation is to generate queries for testing databases.
A related research problem is query recommendation (QR), where
query logs are widely used to generate queries based on query-
ing and browsing behaviours of users [2, 15]. Similar to QG for
databases, there exists work on QG for testing semantic web en-
gines [6, 5], based on ontologies or parameterisations. d’Aquin and
Motta [3] proposed a QG approach based on formal concept analy-
sis, which uses computationally complex ontological reasoning. In
this paper, we propose a tractable query generation approach based
on data summarisation and graph patterns.

2. GRAPH AND GRAPH PATTERN
We assume the readers have basic knowledge about RDF and

SPARQL. An RDF graph G can be divided into mutually disjoint
schema graph Gs and instance graph Gi. An RDF graph is an in-
stance graph if it only contains type triples of form <x, rdf :type,A>
or relation triples <y,R, z> , where A is a class, R is a user defined
property and x, y, z are resources. With these notions, to facilitate
query generation, we define a graph as follows:

Definition 1. (Graph) A labeled, directed multiple graph (graph
for short) G = 〈N,E,M,L〉 is a four-tuple, where N is the set of
nodes, E is the set of edges, M : E → N ×N maps an edge to an
ordered pair of nodes, L is the labelling function that for each node
n ∈ N , its label L(n) is a set of URI references, and for each edge
e ∈ E, its label L(e) is a URI reference.

For any RDF instance graph D, let T be its set of types and
TT be its set of type triples, a unique graph GD = 〈N,E,M,L〉
can be constructed as follows, where type triples are aggregated as
the labels of nodes, and relation triples are represented as directed,
labelled edges in the graph: (i) N = {x| < x, p, o >∈ D or <
s, p, x >∈ D}\T ; (ii) E = D\TT ; (iii)∀ < s, p, o >∈ E,M(<
s, p, o >) = (s, o), L(< s, p, o >) = p; (iv) ∀n ∈ N,L(n) =
{C| < n, rdf :type, C >∈ D}.

Definition 2. (Graph Operations) A graph 〈N1, E1,M1, L1〉
is a sub-graph of another graph 〈N2, E2, M2, L2〉 IFF N1 ⊆ N2,
E1 ⊆ E2, ∀e ∈ E1, M1(e) = M2(e), L1(e) = L2(e) and ∀n ∈
N1, L1(n) ⊆ L2(n).

A graph G is the intersection of graphs G1 and G2 IFF it is the
largest sub-graph of both G1 and G2.

Two graphs 〈N1, E1,M1, L1〉 and 〈N2, E2,M2, L2〉 have a union
IFF ∀e ∈ E1∩E2, M1(e) = M2(e), L1(e) = L2(e). Their union
is a graph 〈N,E,M,L〉 such that N = N1 ∪N2, E = E1 ∪ E2,

∀e ∈ E1∪E2, M(e) = M1(e) or M(e) = M2(e), L(e) = L1(e)
or L(e) = L2(e), and ∀n ∈ N1 ∪N2, L(n) = L1(n) ∪ L2(n).

SPARQL supports many different patterns. In this paper, we
are interested in basic graph pattern (BGP) and the FILTER NOT
EXISTS. A BGP is a set of triples with variables. A solution to
a BGP is a mapping of the variables to resources or blank nodes
in the RDF graph, s.t. the mapped graph is a subset of the RDF
graph. For a BGP bgp, the solution to FILTER NOT EXISTS
bgp are the mappings of variables to resources or blank nodes, s.t.
the mapped triples do not occur in the RDF graph. We also slightly
abuse the notion to say that, two queries Q1 and Q2 can be com-
bined into a composite query, denoted by Q1 ∧ Q2, by including
the variables and triples in both Q1 and Q2.

In this paper we are interested in counjunctive queries without
non-distinguished variables and their complements and compos-
ites. A conjunctive query BGP contains only the type triples and the
relation triples, where only the subject of type triples, and subject
and object of relation triples can be variables. Queries with non-
distinguished variables are supported by the new SPARQL stan-
dard, where all variables in queries must be bounded to named enti-
ties in the RDF graph. With the above considerations, BGP queries
discussed in this paper can be regarded as a special kind of graph:

Definition 3. (Graph Pattern) A graph pattern is a graph in
which some nodes are variables.

For any conjunctive query BGP, a unique graph pattern can be
constructed, and vice versa. We use Q(GP) to denote a query
constructed from a graph pattern GP . It is obvious that Q(GP1)∧
Q(GP2) = Q(GP), where GP is the union of GP1 and GP2.

Query answering can also be realised by graph pattern matching:

Definition 4. (Instance) A substitution § = (v1 → v2) replaces
a vector of variables v1 with a vector of URI references/literals/blank
nodes/variables v2. A substitution is variable-free IFF v2 contains
no variable. A graph G is an instance of a graph pattern G′, denoted
by G : G′, IFF there exists a substitution § such that G′§ = G.
Given a dataset D, we use ID(G

′) to denote the set of all sub-
graphs of D that are instances of G′. Obviously, G ∈ ID(G) since
an empty substitution (∅ → ∅) exists. And ID(G) = {G} when
G contains no variable. A graph G is an v-instance of a graph G′

w.r.t. D and a vector of variables v IFF there is a variable-free sub-
stitution (v → v′) such that G′(v→v′) = G, and ID(G) ⊆ ID(G

′).
We use ID,v(G) to denote the smallest set of all v-instances of G
w.r.t. D and v.

When the D is clear from context, we omit it in the notations.

The following proposition shows the relation between a solution
of a query and an instance of the graph pattern of the query:

Proposition 1 (Query Answering) Given a datasetD, for any coun-
junctive query BGP Q of a vector of variables v1, let GP be its
corresponding graph pattern, then if the mapping from v1 to v2, a
vector of resources, is a solution of Q w.r.t. D, then GP(v1→v2) ∈
I(GP). And if G ∈ I(GP) with substituition (v1 → v2), then the
mapping from v1 to v2 is a solution of Q w.r.t. D.

With the above notations, we can investigate query generation
problem by investigating graph patterns in datasets.

3. CANDIDATE INSIGHTFUL QUERIES
Given a target graph D, the generation of candidate insightful

queries for D can be regarded as a process of identifying typi-
cal graph patterns (or typical graph pattern pairs) having instances

within D, such that these typical graph patterns (or typical graph
pattern pairs) provide users some insights about the structure of D.

3.1 Typical Graph Patterns
Typical graph patterns are concerned with the structured rela-

tions among domain objects. While schema graphs (or ontologies)
specify some global structure, typical instance graph patterns in-
form users some possibly additional structure in the current version
of the graph. There can be different kinds of typical graph patterns,
such as star-shaped graphs, shallow tree shaped graphs, deep tree
shaped graphs and graphs with loops.

Definition 5. (Looped Graph Pattern) A graph pattern is a looped
graph pattern if it contains a circle of nodes.

A looped graph pattern is a variable-looped graph pattern if it
contains a circle of variables.

A query is a (variable-)looped query if its corresponding graph
pattern is a (variable-)looped graph pattern.

In this paper, we are particularly interested in graphs with looped
graph pattern, since loops reveal the multiplicity of the connections
between objects, i.e. objects are connected in the dataset via mul-
tiple paths. While nominal-free3 ontologies are not sufficiently ex-
pressive to accurately represent loops. In other words, graphs with
loops might give users some insights on complex relations among
objects that are not captured in the corresponding ontology.

In what follows, we first introduce the notion of graph pattern
correspondence and then will revisit looped queries.

3.2 Graph Pattern Correspondence
Graph pattern correspondence is concerned with the relation-

ships between two group of objects. In the Introduction, we gave
some example of queries with the same set of answers. They can
be formally described by the correspondence of two graph patterns
as defined below:

Definition 6. (Graph Pattern Correspondence) Given an RDF
instance graph D, two graph patterns GP1 and GP2 correspond
on a vector of variables v IFF there is a variable-free substitution
v → v′ such that GP1(v→v′) ∈ Iv,D(GP1) and GP2(v→v′) ∈
Iv,D(GP2). v′ is called the v-correspondence of GP1 and GP2

w.r.t. D.
We use CD,v(GP1, GP2) = {v′|v′ is a v-correspondence of

GP1 and GP2 w.r.t. D } to denote the set of all v-correspondences.
In the rest of the paper, we omit D from the notations when it is
clear from context.

From the above definition, it is obvious that two graph patterns
GP1 and GP2 correspond on a vector of variables v IFF there is a
solution to Q(GP1) and a solution to Q(GP2) that have the same
value assigned to v. While CD,v(GP1, GP2) actually indicates the
different values of v that can be shared by solutions of Q(GP1)
and Q(GP2). The following theorem shows the relation between
graph pattern correspondence and conjunctive query answering:

Theorem 1 Two graph patterns GP1 and GP2 corresponds on
variables v IFF Q(GP1) ∧Q(GP2) has a solution.

CD,v(GP1, GP2) = {v′|v′ is the value assigned to v in some
solution of Q(GP1) ∧Q(GP2) w.r.t. D}.

This result can be utilised to generate the following kinds of in-
sightful queries.
3Nominal is one of the OWL features that could introduce scalabil-
ity problem for reasoning.

1. Queries with strong Correspondence: For two graph pat-
terns GP1 and GP2, let v be a vector of all their shared vari-
ables, Q(GP1) and Q(GP2) are insightful queries with strong cor-
respondence if |Cv(GP1, GP2)| is higher or lower enough w.r.t.
|Iv(GP1)| or |Iv(GP2)|, which indicates that Q(GP1) and Q(GP2)
share a lot, or very few solutions on variables in v, respectively.

This is because, |Iv(GP1)| and |Iv(GP2)| are the number of
different solutions assigned to v in Q(GP1) and Q(GP2), respec-
tively, and |Cv(GP1, GP2)| is the number of different solutions
assigned to v in both Q(GP1) and Q(GP2). When |Cv(GP1,GP2)|

Iv(GP1)

is close to 1, it indicates that most of the solutions to Q(GP1)
can also be regarded as solutions to Q(GP2) for all variables they
share. When it is close to 0, it indicates that only very few solu-
tions to Q(GP1) can be regarded as solutions to Q(GP2). Both
queries with high shared solutions and the queries with low shared
solutions as insightful queries.

Note that such a solution-sharing relation is not symmetric, i.e.
it is possible that Q(GP1) shares many solutions with Q(GP2) but
Q(GP2) only shares a few with Q(GP1).

2. Queries on Exceptions: With the correspondence defined in
Definition 6 we can generate insightful queries due to exceptions.
• For a pair of queries Q1 and Q2 with very high correspon-

dence, Q1∧{FILTER NOT EXISTS (Q2)} (or Q2∧{FILTER
NOT EXISTS (Q1)}) will be an insightful query on excep-
tions. Obviously, if two queries share a lot solution, then the
solutions that do not belong to both of them are quite inter-
esting to users.
• For a pair of queries Q1 and Q2 with strong low correspon-

dence, Q1 ∧ Q2 will also be an insightful query on excep-
tions. If two queries share very few solutions, then the solu-
tions that belong to both of them are interesting to users.

An extreme case of queries on exception is empty queries. In
this paper, an empty query is a query that does not have any so-
lution on the given RDF dataset, rather than arbitrary datasets [1],
in which a query is empty if it does not have any solution for any
dataset. Our notion of emptiness is based on the input instance
graph(s), while their notion of emptiness is forced by the input on-
tology (schema graph). Our notion of empty queries is weaker and
cannot be checked by their approach.

Now that we introduce the notion of graph pattern correspon-
dence. Let us revisit looped queries, some of which can be re-
garded as a special extension of queries with high correspondence:
for two graph pattern GP1 and GP2, if there is a path of variables
v1, v2, . . . , vn in GP1 and a path of variables u1, u2, . . . , um in
GP2, v1 = u1 and vn = um are variables shared by GP1 and
GP2, and GP1 and GP2 have high correspondence w.r.t. vector
〈v1, vn〉, then Q(GP1) ∧Q(GP2) is a looped query.

This is obvious, since by combining GP1 and GP2 we have
a looped graph pattern containing variable loop v1, v2, . . . , vn,
um−1, . . . , u2, v1. And this looped graph pattern can be trans-
formed to Q(GP1) ∧ Q(GP2). If GP1 and GP2 have high cor-
respondence, it indicates that the solutions to Q(GP1) construct
loop structures with solutions to Q(GP2). Such loop structures are
captured by solutions of the looped query Q(GP1) ∧Q(GP2).

4. QUERY GENERATION FRAMEWORK
Our framework is depicted in Figure. 1. The first step identifies

the graph patterns in datasets and extract their corresponding in-
stances. The input of this step include the datasets and optionally
some related constraints, such as size on the graph patterns. The
output of this step is a set of pairs 〈GP, ID(GP)〉, where GP is a
graph pattern and D is a dataset. The main challenge is that there

Figure 1: Query Generation Framework.

can be too many graph patterns with useless 0 correspondence. To
avoid generating such meaningless query pairs, we make sure that
the shared variables of two queries (or graph patterns) belong to
the same type. Hence, we perform data summarisation based on
the types of nodes in the graph. Given an RDF graph, the sum-
marisation is to generate a condensed description which reduces
the search space of the graph pattern mining. Roughly speaking,
the summarisation is an analogue to the schema, e.g. E-R diagram,
in relational database system. This summarisation takes the form
of graph patterns which reveal the possible relations among indi-
viduals. One of its good properties is that any query which is inter-
esting by our definitions is a subgraph(or subgraphs) of the sum-
marisation. This property allows us jump out from the “swamp” of
original data graphs and focus on the summarisations to mine in-
teresting queries. Furthermore, the size of the summarisation graph
is extremely small by comparing to the original graph. The biggest
summarisation graph in our test datasets only has 44 triples. Such
tiny sized summarisations can largely facilitate the mining process
e.g. expensive mining algorithms are applicable.

The second step computes the correspondences between graph
patterns. The input of this step is the data summaries delivered
by the previous step and the datasets. The output of this step is
a set of 4-tuples 〈GP1, GP2, support, confidence〉 where GP1

and GP2 are graph patterns, support and confidence are used to
characterise the correspondences between GP1 and GP2. Assum-
ing GP1 and GP2 share a vector of variables v, then support =

|Cv(GP1, GP2)|, confidence = |Cv(GP1,GP2)|
|Iv(GP1)|

when Iv(GP1) >

0 and 1 when Iv(GP1) = 0. support indicates how frequent do
GP1 and GP2 share instances w.r.t. v. The higher support is, the
more frequent the two graph patterns share instances on v in gen-
eral. confidence indicates how frequent do instances of GP1 w.r.t.
v are also instances of GP2. The higher confidence(GP1, GP2)
is, the more frequent that instances of GP1 can be shared with
GP2. The challenge in this step is to identify different patterns
with desired correspondence. In the domain of ontology learning,
algorithms of inductive logic programming (ILP), association rule
mining have been explored to find relationships between concepts
and relations [14, 8]. Inspired by these works, we examine three
different approaches (worst case polynomial time) to find the cor-
responding graph patterns. FOIL (First Order Inductive Learning)
constructs the graph pattern by including a set of possible reachable
variables via graduately growing the graph pattern. The algorithm
selects a best variable from the set by a gain function (c.f. [11]).
FOIL tends to generate star-shaped graph patterns. COMB and
LOOP approaches utilise the association rule mining technology.
They tend to generate chain-shaped or looped graph patterns.

This third step generates insightful queries based on our discus-

sion in Sec. 3. The input of this step is the datasets, and the com-
puted correspondences between graph patterns. The output of this
step will be a set of insightful queries or query pairs.

5. EVALUATION
We implemented the framework in Sec. 4 and evaluate its per-

formance with benchmark datasets: LUBM (Lehigh University
Benchmark) is an artificial dataset in which data is automatically
generated. Its transparency makes it easier for us to examine whether
the queries genreated by our system is useful or not. We generated
15,247 triples in our evaluation. DBLP is a large and real world
dataset which includes bibliography data. In our evaluation, we
used DBLP2011 data 4 (3,584,734 triples). DBTune hosts a selec-
tion of music-related RDF datasets. In our evaluation, we used the
Jamedon 5 (1,047,950 triples) and BBC-PEEL 6 (271,369 triples)
datasets. They are both using the music ontology 7 and the FOAF
ontology 8 as terminologies.

We applied our framework on the above datasets and generate
queries on graph patterns with strongest support and confidence.
Such generation can be performed efficiently. We examined the
top 20 generated queries (query pairs) for each dataset and results
showed that they are all meaningful. Some examples of generated
queries from the LUBM dataset are presented in Table 1.

Table 1: Query examples.
Query correspondences

1 SELECT ?x
WHERE {?x rdf:type lubm:ResearchGroup.}

SELECT ?x
WHERE {?x lubm:subOrganizationOf ?y.

?y rdf:type lubm:Department.}

Query exceptions
2 SELECT ?x

WHERE {?x lubm:headOf ?y.
?y rdf:type lubm:Department.

FILTER NOT EXISTS
{?x rdf:type lubm:FullProfessor}}

Looped queries
3 SELECT ?x ?y ?z ?o

WHERE {?x lubm:worksFor ?z.
?x lubm:teacherOf ?y.
?o lubm:memberOf ?z.
?o lubm:takesCourse ?y.
?o lubm:advisor ?x.}

For example, query 1 suggests a high correspondence between
the sub-organizations of some department and research groups. This
reveals that a sub-organization of a department is very likely to be
a research group. Such insights will be helpful when investigating
the administration structures in universities. Query 2 investigates
if the head of a department must be a full professors. In the evalu-
ated dataset this indeed is the case. By automatically generating a
query on cases where head of department is not known to be a full
professor, users can easily identify potential exceptions. Another

4http://law.di.unimi.it/webdata/dblp-2011/
5http://dbtune.org/jamendo/
6http://dbtune.org/bbc/peel/
7http://musicontology.com/
8http://www.foaf-project.org/

category of insightful queries are queries with loops, such as Query
3 in Table 1. This query suggests very high support and confidence
that an advisor and an advisee work for (is a member of) the same
entity, and the advisor is the teacher of some course that is taken by
the advisee. This query contains three loops, and is very difficult to
be expressed with normal ontology language.

6. CONCLUSION AND FUTURE WORK
We presented a novel and tractable approach to generating can-

didate insightful queries for semantic datasets. Combination of
data summarisation and different mining technologies have been
exploited to extract graph patterns and construct candidate insight-
ful queries. Our evaluation shows that the proposed framework can
generate insightful queries from synthetic and real world datasets.

Apart from QG based on the systematic parametrisation [5], we
are currently exploring how to extend our framework to embed the
support of tractable reasoning and schema [10] into our framework,
so that, on the one hand, reasoning can be done on the fly with
data summarisation; on the other hand, reasoning can be used to
eliminate query pairs that are inferred to share all (or no) solutions.

Acknowledgement The work is supported by the EC Marie
Curie K-Drive project (286348).

7. REFERENCES
[1] F. Baader, M. Bienvenu, C. Lutz, F. Wolter, et al. Query and

predicate emptiness in description logics. Proc. of KR2010.
[2] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query

recommendations for interactive database exploration. In
Proc. of SSDBM 2009, pages 3–18, 2009.

[3] M. d‘Aquin and E. Motta. Extracting Relevant Questions to
an RDF Dataset Using Formal Concept Analysis. In
Proceedings of the sixth international conference on
Knowledge capture, pages 121–128, 2011.

[4] A. Fokoue, F. Meneguzzi, M. Sensoy, and J. Z. Pan.
Querying linked ontological data through distributed
summarization. In AAAI2012.

[5] O. Görlitz, M. Thimm, and S. Staab. Splodge: Systematic
generation of sparql benchmark queries for linked open data.
In Proc. of ISWC 2012, pages 116–132. Springer, 2012.

[6] B. C. Grau and G. Stoilos. What to Ask to an Incomplete
Semantic Web Reasoner? In IJCAI, pages 2226–2231, 2011.

[7] N. Heino and J. Z. Pan. RDFS Reasoning on Massively
Parallel Hardware. In Proc. of ISWC2012.

[8] J. Lehmann, S. Auer, L. Bühmann, and S. Tramp. Class
expression learning for ontology engineering. Journal of Web
Semantics, 9:71–81, 2011.

[9] C. Mishra, N. Koudas, and C. Zuzarte. Generating Targeted
Queries for Database Testing. In Proc. of SIGMOD, 2008.

[10] J. Z. Pan, E. Thomas, Y. Ren, and S. Taylor. Tractable Fuzzy
and Crisp Reasoning in Ontology Applications. In IEEE
Computational Intelligence Magazine, 2012.

[11] J. Quinlan and R. Cameron-Jones. Foil: A midterm report. In
Machine Learning: ECML-93, pages 1–20. Springer, 1993.

[12] W. Siberski, J. Z. Pan, and U. Thaden. Querying the semantic
web with preferences. In Proc. of ISWC2006.

[13] D. Slutz. Massive Stochastic Testing of SQL. In VLDB,
pages 618–622, 1998.

[14] J. Völker and M. Niepert. Statistical schema induction. The
Semantic Web: Research and Applications, 2011.

[15] Z. Zhang and O. Nasraoui. Mining search engine query logs
for query recommendation. In Proc. of WWW2006.

