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Abstract

Today’s ontology applications require efficient and reliable description logic (DL) reasoning ser-
vices. Expressive DLs usually have high worst case complexity while tractable DLs are restricted
in terms of expressive power. This brings a new challenge: can users use expressive DLs to build
their ontologies and still enjoy the efficient services as in tractable languages? Approximation has
been considered as a solution to this challenge; however, traditional approximation approaches
have limitations in terms of performance and usability. In this paper, we present a tractable ap-
proximate reasoning framework for OWL 2 that improves efficiency and guarantees soundness.
Evaluation on ontologies from benchmarks and real-world use cases shows that our approach
can do reasoning on complex ontologies efficiently with a high recall.
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1. Introduction

With the growing volume and complexity of ontologies [27] and large-scale linked data 2

available, there is a pressing need for efficient ontology reasoning services. Modern ontology
language OWL 2, the second version of OWL (Web Ontology Language), is based on a family
of different Description Logics (DLs) [3]. For example, OWL 2 DL, the most expressive and
decidable OWL, is based on SROIQ [30], a very expressive but complex DL. Its three tractable
profiles OWL 2 EL, OWL 2 QL and OWL 2 RL are based on simpler but less expressive for-
malisms EL++ [1], DL-LiteR [11] and DLP [26], respectively. Such a spectrum of DLs leads
to different approaches of ontology reasoning.

One approach is to develop fully-fledged universal algorithms that can be applied on any de-
cidable DL. For example, tableau-based algorithms [17, 31, 32] with complexity up to N2EXPTIME-
complete [40] can provide TBox (terminology) reasoning services, such as classification for very
expressive DLs including SROIQ. ABox (assertion) reasoning, such as checking whether a
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given individual is an instance of a given concept, is usually realised by extensions of TBox
algorithms [33], or by reduction to TBox reasoning [69]. To reduce non-determinism in tab-
leau algorithms, different absorption techniques [80, 79, 36] have been extensively investigated,
which are later generalised by the hypertableau calculus [59]. Decomposition-based approaches
have been developed to improve performance of ontology classification [67] and conjunctive
query answering [18]. Other work [37] reduces ontologies into disjunctive datalog to provide
dedicated ABox reasoning. Due to the high worst case complexity of the algorithms employed,
some of the expressive and difficult ones, such as the Foundational Model of Anatomy Con-
stitutional ontology (FMA Constitutional), can hardly be classified by any fully-fledged OWL
reasoner in reasonable time. Given the current efforts of ontology construction, it might not take
long before many other even larger and more complicated ontologies appear and go beyond the
capability of existing DL reasoners.

Another approach to ontology reasoning is to develop dedicated and very efficient algo-
rithms for specific light-weight DLs/profiles. For example, reasoning in EL family is PTIME-
complete [1] and can be executed even in parallel [42]. Similar consequence-based algorithms
can further be extended to support non-tractable DLs such as Horn-SHIQ [41] andALCH [73].
However, such light-weight DLs usually impose strong expressiveness restrictions that are diffi-
cult to be satisfied in real-world scenario. First of all, many applications inherently require highly
expressive ontology languages. For example, in software engineering extending UML (Unified
Modeling Language) or DSL (Domain Specific Language) with OWL [63, 84] requires combi-
nations of many OWL constructors not supported by any single profile. Secondly, forcing users
to use profiles in ontology engineering will under-specify the ontologies because they have to
give up the knowledge that can only be represented with more expressive languages. Last but
not least, in a linked data scenario, it is almost impossible to guarantee that all the connected
ontologies belong to the same profile. As a consequence, many real-world ontologies are beyond
any tractable profile and require an OWL 2 DL reasoner to reason with.

Like any other software, ontology engineering involves development and deployment. In the
development stage, ontology engineers would like to construct their ontologies with as much
expressiveness as possible. While in the deployment stage, ontology users want to reason with
the ontologies as efficient as possible. Given the trade-off between expressiveness and perfor-
mance, it is difficult for either of the above approaches to satisfy both requirements. This brings
a new challenge: can users use OWL 2 DL to build their ontologies and still enjoy the efficient
reasoning as in tractable profiles?

To answer this challenge, approximation-based approaches have been studied and evaluated.
Essentially, approximation approaches bring a new dimension–quality, in terms of complete-
ness and soundness of reasoning, into the trade-off between expressiveness and performance,
attempting to strike a balance among the three. This is motivated by the fact that real-world
knowledge and data are hardly perfect or complete. Hence sacrificing some theoretical qual-
ity to achieve more engineering flexibility and practical efficiency can be desirable in many
scenarios. Some approximation approaches apply the idea of knowledge compilation [72] and
language weakening by transforming ontologies in complex DLs into other easier-to-reason-with
formalisms [61, 16, 51, 6]. Some apply the idea of approximate deduction by treating complex
expressions or constructors in ontologies or queries as simpler ones [70, 68, 25, 76, 83, 28, 81].
There is also approach that improves reasoning efficiency by identifying and removing diffi-
cult sub-ontologies, known as hotspots [24]. However, most of the existing approximation ap-
proaches still have important limitations in the sense that they cannot always guarantee a reduc-
tion of complexity, or they rely on other reasoners that impose restrictions on expressive power,

2



or they require non-trivial off-line computation.
One important aspect on approximation is quality of approximation. Pan and Thomas [61]

proposed a notion of strongest weaker approximations (or semantic approximations) of DL on-
tologies, which come with a conditional completeness result: their approximation guarantees
both soundness and completeness for database style conjunctive quires (i.e., queries in which
variables could only be bounded to named individuals). In other words, database style conjunc-
tive queries can not tell the difference between an original ontology and its semantic approx-
imation. However, computing such optimal approximation is expense. Reasoning is needed
to compute semantic approximations; therefore, the construction of semantic approximations is
usually done off line. In fact, for ontologies in intractable DLs, it is in general not possible to
compute in polynomial time, the strongest weaker approximations in tractable DLs. Otherwise,
the classification of the original ontologies can be achieved in polynomial time by classifying the
tractable approximations.

In this paper we present recursive syntactic approximation, a less expensive yet sound-
ness preserving approximate reasoning approach to supporting TBox and ABox reasoning in
OWL 2 DL. The hypothesis behind syntactic approximation is that many real-world ontolo-
gies, although use expressive ontology constructors, mostly use them in a way that their interac-
tions can be captured by tractable algorithms. And consequently, it is possible to develop very
efficient algorithms to reason with these expressive ontologies without losing too much com-
pleteness. Particularly, our approach reduces reasoning complexity from N2EXPTIME-hard to
PTIME-complete and the reasoning result is reasonably complete (mostly from 97% to 100%)
according to our evaluations. More precisely, our contributions are:

1. We losslessly transform an OWL 2 DL ontology into an EL++ ontology with additional
data structures to maintain non-EL++ semantics, such as complement, cardinality and
inverse role, then extend the EL++ reasoning with approximate deduction rules to per-
form materialisation for both TBox and ABox. These additional rules are designed to
partially recover the non-EL++ semantics. We show that such materialisation services are
all tractable (cf. Theorem 4 and Theorem 10) and soundness-preserving (cf. Theorem 5
and Theorem 11).

2. To improve the performance on large data sets, we present and discuss several more and
more fine-grained ABox reasoning optimisations, all of which are tractable and soundness-
preserving. We also show that these optimisations will not affect the completeness of
approximation in materialisation (cf. Theorem 12, Theorem 14 and Theorem 15).

3. To evaluate the performance of our approach, we implement the presented approximate
reasoning mechanisms in the REL reasoner (one of the component reasoners in TrOWL [78,
62, 60]) and conduct comprehensive evaluations on both benchmark ontologies and real-
world ontologies. Results show that REL outperforms fully-fledged OWL 2 DL reasoners
and yields high recall on all tested ontologies. This further verifies our hypothesis. The
ontologies we evaluated in this paper and the REL reasoner we implemented are available
for reproduction of our results. They can be downloaded from http://homepages.
abdn.ac.uk/jeff.z.pan/pages/link/AIJReproductionPackage.zip.

Compared to our previous work [65, 66] on which this paper is based, the current paper
revises and extends the definition of transformations (cf. Def. 4 and Def. 8) and the rule sets
extensively (from Table 5 to Table 10). Preservation of reasoning results by transformations is
discussed (cf. Theorem 2 and Theorem 8). We also present formal proofs on the equivalence of
different ABox optimisation approaches in materialisation. The evaluation has also be extended
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to support the new technical extensions. More extensive discussion on the relation to existing
works, incompleteness and partial completeness (Theorem 17) is included.

The rest of this paper is organised as follows: in Sec. 2 we introduce preliminaries about
DLs. In Sec. 3 we review related work and discuss the technical challenges of existing reasoning
approaches. In Sec. 4 we outline our approach with examples. In Sec. 5 and 6 we present our
approaches to syntactic approximation. In Sec. 7 we present evaluation results of our approaches.
In Sec. 8 we discuss the relation to existing works, incompleteness and partial completeness of
our approach. In Sec. 9 we conclude the paper. As our approach is soundness preserving, it is
important to clarify the the charaterisation of incompleteness of our approach. For this purpose,
we have included, in Sec. 6.4, an example (Example 8) to illustrate motivation of our approach in
the light of the trade-off between incompleteness and intractability. In Sec. 7, we have detailed
discussions about recall, including the causes of incompleteness found in the evaluation. In
Sec. 8.2, we show that fixing certain types of incompleteness issues will lead to intractability
issues. In Sec. 8.3, we show how one could exploit above trade-off between incompleteness and
intractability for a conditional completeness approach for the ELHI DL.

For the sake of conciseness, we only present sketchy proofs for formal results throughout the
paper. Complete proofs are deferred to the Appendix after the end of the paper.

2. Background Knowledge

In this section, we briefly introduce description logics and ontology. To facilitate the presen-
tation of syntactic approximation and its formal properties, we focus on two DL dialects, namely
SROIQ and EL++ and present their syntax, semantics and inference problems. For the sake
of conciseness, in this paper we will omit the DL elements that are not relevant to our technical
work (e.g. datatypes).

The description logics is a family of logic formalisms that describe the domain of dis-
course with so called concept and role expressions and their instances. A signature is a triple
Σ = (CN ,RN , IN ) consisting of three mutually disjoint sets of named concepts CN , named
roles RN and individuals IN . In DLs, concept expressions (or concepts for short) and roles
expressions (or roles for short) can be constructed inductively from a signature with different
constructors. The kinds of constructors that can be used and the ways they can be combined de-
termine the level of expressiveness of the particular DL. Different DLs have different expressive
power.

2.1. SROIQ Syntax

In SROIQ, the underpinning logic of OWL 2 DL [57], the set of roles is RN ∪ {R−|R ∈
RN}. On this set, the inverse role function Inv(.) is defined as Inv(R) = R− and Inv(R−) =
R whereR ∈ RN . The set of role axioms, namely the RBoxR, is a finite set of either Inclusion
axioms of form R1 v R2 or R1 ◦R2 v R3, or Disjointness axioms of form Dis(S1, S2), where
R, R1 . . . R3 are roles, and S1, S2 are simple roles which we will define later.

In the full specification of SROIQ [30], there are other role axioms such as reflexivity
and irreflexivity, which we will omit in this paper and refer our readers to that paper for more
detail. Role inclusions axioms (RIAs) with role chains of more than two roles, such as R1 ◦
R2 ◦ · · · ◦ Rn v Rn+1, can also be normalised into binary role chain role inclusions as we
defined above in linear time [4]. Two roles R1 and R2 are Equivalent if they mutually include
each other, denoted by R1 ≡ R2. Besides, Symmetry Sym(R) can be defined as R ≡ Inv(R).
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AsymmetryAsy(S) can be defined asDis(R, Inv(R)). Transitivity Trans(R) can be defined
as R ◦R v R.

The notion of Simple Role is inductively defined inR as follows:

• S ∈ RN is simple if S does not appear on the RHS (right hand side) of any RIA inR;

• S ∈ RN is simple if Inv(S) is simple;

• S ∈ RN is simple if for each R v S ∈ R, R is simple;

Given Σ = (CN ,RN , IN ), the set of SROIQ concepts is the smallest set containing
every concept of the following form: atomic concept A, nominal {a}, the top concept >, the
bottom concept ⊥, complement ¬C, conjunction C u D, existential restriction ∃R.C and at-
least restriction ≥ nS.C, where A ∈ CN , a ∈ IN , C and D are concepts, R is a role, S is a
simple role, and n is a non-negative integer.

Conventionally, disjunction C t D, universal restriction ∀R.C and at-most restriction ≤
nR.C are used to abbreviate ¬(¬C u ¬D),¬∃R.¬C and ¬ ≥ (n + 1)R.C, respectively. Enu-
meration {a1, a2, . . . , an} can be regarded as abbreviation of {a1} t {a2} t · · · t {an}.

A TBox T is a finite set of general concept inclusions (GCIs) of the form C v D. Two
concepts C and D are Equivalent if they mutually include each other, denoted by C ≡ D. An
ABoxA is a finite set of concept assertion a : C, role assertion (a, b) : R, negative role assertion
(a, b) : ¬R, individual equality a .

= b and individual inequality a 6 .= b, for C a concept, R a
role and a, b ∈ IN . A SROIQ knowledge base (or ontology) K is a triple (T ,R,A). In what
follows, for sake of simplicity, we include the RBox R into TBox T , and simplify a SROIQ
knowledge base as tuple (T ,A) in which T contains all the GCIs and role axioms.

2.2. EL++ Syntax
The EL family is dedicated for large TBox reasoning and has been widely applied in some

largest ontologies, e.g. SNOMED CT [75]. EL++, the underpinning logic of OWL 2 EL [56],
supports the following concept constructors:

> | ⊥ | A | C uD | ∃r.C | {a},

in which A ∈ CN , C and D are EL++ concepts and a ∈ IN . Different from SROIQ, role
r can only be an atomic role. Similar as SROIQ, an EL++ ontology K is a tuple (T ,A),
in which T is a TBox consisting of finite GCIs and RIAs, and A is an ABox consisting of
finite concept assertions, role assertions, individual equality and inequality axioms, but without
negative role assertions. EL++ was further extended by Franz Baader et. al. [2] to support range
restrictions of form > v ∀r.C, where C is a valid EL++ concept. Some other features included
in the OWL 2 EL profile, such as Reflexivity, will be omitted in this paper.

Krötzsch et al. [44] showed that using nominals liberally in EL++ ontologies will make
reasoning more difficult. To address this problem, the authors later identified the nominal-safe
criteria in which nominals can be used without increasing the difficulty of reasoning [43]. An
EL++ ontology is nominal-safe if all GCIs are of form CNS v CS , where

CNS = {a} | CS and CS = > | ⊥ | A | CS u CS | ∃r.CS | ∃r.{a}.

Note that although axiom {a} ≡ {b} and {a} u {b} v ⊥ are not included in the above nominal-
safety syntax, they can be equivalently rewritten as a .

= b and a 6 .= b, respectively, so we regard
5



these kinds of axioms as nominal-safe. In this paper, we restrict ourselves to the kind of SROIQ
ontologies whose approximate reasoning closures, as we will define in later sections, are always
nominal-safe EL++ ontologies (Def. 6, 7 and Theorem. 6). This restriction is due to the follow-
ing reasons:

1. As indicated by Markus et al., reasoning procedure of nominal-safe EL++ ontologies is
simpler and more efficient.

2. Many real-world ontologies, including the majority of ontologies we used for evaluation
in this paper, satisfy such a nominal-safe SROIQ criteria. More detailed analysis will be
presented in Sec. 7.3.

Without loss of generality, in what follows, we assume all the concepts to be in their negation
normal forms (NNF)3 and use ~C to denote the NNF of ¬C. We also slightly abuse the notion
of atomic concept to include >, ⊥ and all nominals {a} as well, i.e. CN := CN ∪ {>,⊥} ∪
{{a}|a ∈ IN}. Given a knowledge base K, we also use CNK (RNK, INK) to denote the
set of atomic concepts (atomic roles, individuals) in K and use ΣK = (CNK,RNK, INK) to
denote the signature of K. Given an axiom α, we also use Σα to denote the signature of {α}.

2.3. DL Semantics
The semantics of a DL is defined in terms of interpretations. An interpretation I is a pair

(∆I , �I) where ∆I is a non-empty set and �I is a function that maps each atomic concept A ∈
CN to a subset AI ⊆ ∆I , each atomic role r ∈ RN to a binary relation rI ⊆ ∆I × ∆I and
each individual a to an object aI ∈ ∆I . Interpretation function �I can be extended to complex
concept and role expressions. Particularly, given an interpretation I = (∆I , �I), concepts C, D,
roles R, S, and non-negative integer n, the interpretation of complex concept or role expressions
used in the SROIQ and EL++ is inductively defined as in the upper part of Table 1, where ]X
denotes the cardinality of a set X . In addition to the original SROIQ role expressions, we also
include the complement of a roleR, denoted by ¬R. It is interpreted by the set of pairs of objects
that are not included inRI . Such a expression will be used in approximation of role disjointness.
I is a model of K, written I |= K, if it satisfies all axioms of K as shown in the lower

part of Table 1. A knowledge base is consistent if it has a model. An axiom α is entailed by
a knowledge base K, written K |= α, iff all interpretations I of K satisfies α. A concept C
is satisfiable w.r.t. a knowledge base K if there exists I |= K and CI 6= ∅. In DLs there are
several typical inference problems. In this paper, we are particularly interested in computing
materialisations defined as follows:

Definition 1 (Materialisation) For an ontology O, its ontology materialisation is the set {A v
B|A,B ∈ CNO,O |= A v B} ∪ {a : A|A ∈ CNO, a ∈ INO,O |= a : A} ∪ {(a, b) : r|r ∈
RNO, a, b,∈ INO,O |= (a, b) : r}. The TBox part of the materialisation, also called TBox
classification. is the set {A v B|A,B ∈ CNO,O |= A v B}.

A materialisation of an ontology tells us what the extension of each of its concepts and roles
is, and likewise which concepts in the ontology subsume each other. For example, given the fol-
lowing TBox T1 (inALC), we can infer that Koala v Herbivore is in its materialisation/TBox
classification.

3An SROIQ concept is in NNF iff negation is applied only to atomic concepts, nominals or Self-restriction. NNF
of a given concept can be computed in linear time[29].
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Table 1: DL Semantics
Interpretation of concepts and roles

>I = ∆I

⊥I = ∅
{a}I = {aI}

(¬C)I = ∆I \ CI
(C uD)I = CI ∩DI
(∃R.C)I = {x|∃y.〈x, y〉 ∈ RI , y ∈ CI}

(≥ nS.C)I = {x|]{y.〈x, y〉 ∈ SI , y ∈ CI} ≥ n}
Inv(R)

I
= {〈x, y〉|〈y, x〉 ∈ RI}

(¬R)I = ∆I ×∆I \RI
Satisfaction of axioms w.r.t. an interpretation

I |= R1 v R2 iff RI1 ⊆ RI2
I |= R1 ◦ · · · ◦Rn v Rn+1 iff RI1 × · · · ×RIn ⊆ RIn+1

I |= Dis(S1, S2) iff SI1 ∩ SI2 = ∅
I |= C v D iff CI ⊆ DI
I |= a : C iff aI ∈ CI
I |= (a, b) : R iff 〈aI , bI〉 ∈ RI
I |= (a, b) : ¬R iff 〈aI , bI〉 /∈ RI
I |= a

.
= b iff aI = bI

I |= a 6 .= b iff aI 6= bI

Example 1 An example TBox T1 includes the following axioms:

Koala v ∀eat.(∃partof.Eucalypt) (1)
Eucalypt v Plant (2)
Plant t ∃partof.P lant v V egeFood (3)
∀eat.V egeFood v Herbivore (4)

3. Related Work and Motivations

In this section, we motivate our work on tractable approximate deduction by reviewing dif-
ferent existing approaches of ontology reasoning. As we discussed in the introduction, we cat-
egorise these approaches into fully-fledged universal solutions for expressive DLs, dedicated
solutions for tractable DLs and solutions that exploit the gaps in between, such as approxima-
tion.

3.1. Reasoning in Expressive DLs

Traditionally in expressive DLs, reasoning is performed by tableau-based algorithms [17, 31,
32]. It constructs a tableau (as a witness of a model of ontology) as a graph in which each node
x represents an individual and is labelled with a set of concepts it must satisfy, each edge 〈x, y〉
represents a pair of individuals satisfying all roles that label the edge. Subsumption checking
Σ |= C v D can be reduced to consistency checking of an extended knowledge base Σ ∪ {x :
C u ¬D}, where x is a fresh individual. To test this, a tableau is initialised with the concept
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and role assertions in Σ and a node x labelled with C u ¬D, and is then expanded by repeatedly
applying the completion rules. To classify an ontology, tableau algorithms in general iterate
all necessary pairs of concepts, and try to construct a model of the ontology that violates the
subsumption relation between them [41]. Instance checking Σ |= a : C is reduced in a similar
way to consistency checking of Σ ∪ {a : ¬C} [69].

Due to the model construction mechanism of the tableau algorithms, GCIs become major
sources of non-determinism for such algorithms and contribute to their intractability. For each
GCI C v D in the ontology, a tableau algorithm will add a meta-constraint ¬C t D into the
label of each node of the tableau. The algorithm then first extends with one of the disjuncts
¬C (or D). If it finds a clash, it backtracks and extends with the other disjunct D (or ¬C). If
there are n GCIs, in worst case this will lead to 2n expansions for each node of the tableau. This
exponentially enlarges the search space.

Some techniques have been developed to deal with GCIs. Absorption [80] can reduce a
GCI, e.g. A u C v D with A being an atomic concept, into a non-GCI, e.g., A v ¬C t D;
however, it is only applicable for GCIs whose LHS is a conjunction with an atomic concept
as a conjunct or whose RHS is a complement of atomic concept or a disjunction with a com-
plement of atomic concept as a disjunct. (Extended) Role Absorption [79, Sec.4.1] can ab-
sorb GCIs of form ∃r.C v D (C v ∀r.D) into domain (range) constrains. For example
axiom (3) can be decomposed into ∃partof.P lant v V egeFood and thus be absorbed as
∃partof.> v V egeFood t ¬∃partof.P lant, which means that the domain of partof is
V egeFoodt¬∃partof.P lant. However, the applicability of this approach is still limited and it
still contains a disjunction in the domain. Binary Absorption [36] tries to rewrite GCIs into form
A1 uA2 v C where A1 and A2 are named concepts. To sum up, the above absorptions can only
be applied to a limited patterns of GCIs; e.g., axiom (4) can not be dealt with by any absorption
optimisation.

Motik et al. [59] proposed a novel reasoning calculus for very expressive DLs by combining
hypertableau and hyperresolution technologies, which is later implemented in the HermiT rea-
soner. This calculus generalises all known absorption variants by transforming DL axioms into
DL-clauses while maintaining their Hornness as much as possible. This approach can eliminate
all unnecessarily non-determinism introduced by Horn-GCIs hence it is deterministic and very
efficient for Horn-TBox. However, similar as other absorption technologies, it can not deal with
non-Horn GCIs, such as the axiom (4) in our example. Even for a pure Horn-TBoxes, its rea-
soning efficiency is restricted by the complexity of the corresponding Horn-DLs, which in most
cases is the same as their non-Horn siblings [46].

Sirin et al. [74] claimed that the appearance of nominals will introduce new challenges to tab-
leau algorithm and presented a suite of techniques for optimising tableau algorithm in the pres-
ence of nominals. These techniques extensively exploited the use of “OneOf” (i.e. {a, b, c, . . . })
and “hasValue” (i.e. ∃R.{a}) constructs in ontologies to absorb GCIs with nominals. For ex-
ample, axiom {a1, a2, . . . , an} v C can be equivalently replaced by a set of axioms a1 : C,
a2 : C, . . . , an : C. However, such an optimisation (together with many other optimisa-
tions presented by Sirin [74]) can not cover GCIs of many other patterns. For example, from
A ≡ ∀r.{a, b}, B ≡ ∀r.{a} it will be intuitive to infer that B v A but the two GCIs can not be
absorbed by any existing absorption technique. Even with optimisations, state-of-the-art fully-
fledged tableau and hypertableau reasoners still cannot provide “responsive” reasoning services
for some (smallish) ontologies with complex GCIs and nominals, such as the WINE Ontology.
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3.2. Reasoning in Tractable DLs

Tractable DLs such as the DL-Lite family [11] and EL family [1] enjoy a much lower
complexity than expressive DLs. In this paper, we are mainly interested in EL++ reasoning.
Baader et al. [1] presented a set of TBox completion rules (Table 2) 4 to compute, given a
normalised EL++ TBox T , the TBox classification of T . The reasoning is initialised with
T ∪

⋃
A∈CNT

{A v A,A v >}, and performed by repeatedly applying R1-8 until no more
rule can be applied. Such a procedure is tractable [1] and sound. Kazakov et al. [43] later
showed that this procedure is also complete for nominal-safe EL++ ontologies. In this case,
R6 will only be applicable to inference of subsumptions between singleton nominals, i.e. if
{x} v {a} and {y} v {a}, then {x} v {y}. Note that this implies {x} v {y} if {y} v {x}. In
this paper we will extend on this procedure. When an ABox A presents, an additional concept
CA :=

d
C(a)∈A ∃u.({a} u C) u

d
r(a,b)∈A ∃u.({a} u ∃r.{b}), where u is a fresh role name,

is introduced. To this end, instance checking a : C can be reduced to subsumption checking
{a}uCA v C, which can be realised by R1-R8. In general, such a reasoning approach that com-
putes the closure of a set of completion rules on a set of axioms is called a consequence-based (or
consequence-driven, completion-based, saturation-based by different authors) procedure.

Table 2: EL++ TBox completion rules (no datatypes)
R1 If X v A and A v B then X v B
R2 If X v A1, . . . , X v An and A1 u · · · uAn v B then X v B
R3 If X v A and A v ∃r.B then X v ∃r.B
R4 If X v ∃r.A, A v A′ and ∃r.A′ v B then X v B
R5 If X v ∃r.A and A v ⊥ then X v ⊥
R6 If X,A v {a} and X  R A then X v A
R7 If X v ∃r.A and r v s then X v ∃s.A
R8 If X v ∃r1.A, A v ∃r2.B and r1 ◦ r2 v r3, then X v ∃r3.B

Kazakov et. al. [42] showed that a consequence-based reasoning procedure of EL, a slightly
weaker DL, can be parallelised with carefully designed completion rules. Such a parallel algo-
rithm has been implemented in the ELK reasoner and demonstrated high performance on some
of the most difficult EL ontologies. Krötzsch also showed that a consequence-based procedure
can be developed for classification of other tractable DLs such as OWL 2 RL [45].

More importantly, by revising and extending the EL completion rules, Kazakov showed that a
very efficient consequence-based TBox classification procedure can be developed for intractable
DL Horn-SHIQ [41]. This procedure is further extended to support non-Horn DL ALCH [73].

Nevertheless, the consequence-based algorithms are restricted to limited expressive power
when applied on the EL family or OWL 2 RL, and lose their tractability when applied on more
expressive but intractable DLs such as Horn-SHIQ and ALCH.

Dedicated EL algorithms can also be combined with intractable algorithms to provide better
performance on ontologies beyond EL. A recent work by Romero et. al [67] tries to combine the
strength of a fully-fledged SROIQ reasoner and a very efficient EL reasoner in TBox classifi-
cation by applying modularisation techniques. Particularly, the atomic concepts of an ontology

4In R6 X  R A iff there exists C1, . . . , Ck ∈ CNT (k ≥ 1) s.t. C1 = X or C1 = {b}, Cj v ∃rj .Cj+1 for
some rj ∈ RNT (1 ≤ j < k) and Ck = A.
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is partitioned into two sets, one’s classification can be fully realised by only some EL axioms in
the ontology, the other’s can only be fully realised by involving some non-EL axioms in the on-
tology. Then a SROIQ reasoner such as HermiT is used to classify the non-EL signature, and
an EL reasoner such as ELK is used to classify the EL signature. This approach systematically
analyses and exploits the phenomena that not all axioms in an ontology are equally complex.
The result is sound, complete and shown rather efficient in evaluation.

Nevertheless, it has a limitation that it does not always guarantee reduction of complexity.
Hence its applicability is restricted to ontologies with large percentages of EL axioms. When
only a small number of the concepts can be fully classified by EL axioms alone, its effect on
improving reasoning efficiency might not be significant. This can be seen when the ontology
axioms are quite complex or are tightly coupled. The FMA ontology in our evaluation is an
example.

3.3. Reasoning with Approximation-based Approaches
The trade-off between representation expressiveness and computational efficiency has been

acknowledged in research of Artificial Intelligence and Knowledge Representation for decades [50].
In order to address this trade-off, various early works on approximate reasoning of proposi-
tional and first-order logic have been developed. Horvitz investigated the use of incomplete
inference mechanism by limiting the inference steps in resource-bounded environment [34, 35].
Levesque [47, 48, 49], Frisch [22, 23] and Patel-Schneider [64] explored approximation deduc-
tion with non-traditional semantics, such as multi-valued logics, or weaker notion of inferences
that disallow complex inference steps. Another important research track follows the spirit of
anytime reasoners [5], in which, it provides partial answers if it is stopped anytime during the
computation, but the completeness improves with the time used in computing the answer. Suck
kind of anytime reasoning is also suggested by Kautz [38] in the algorithm of knowledge com-
piling. Dalal [14, 15] firstly designed a approximation family for clausal logic, in which each
reasoner can be decided in polynomial time. An anytime family of reasoners is a sequence `0,
`1,. . . of reasoners such that each reasoner is tractable, each `i+1 is at least as complete as `i,
and for each theory Π, there is a `k complete for reasoning with Π. This polynomial approach
was further extended by Finger [19] to full classical logic.

Kautz and Selman [38, 39, 71, 72] proposed the knowledge compilation approach. This
approach essentially consists of two stages: In the off-line stage, it compiles a knowledge base
KB in a more expressive logic into two knowledge bases KBU and KBL in less expressive
logics, such that KBL |= KB |= KBU . KBL is called the lower bound and KBU is called
the upper bound. In the on-line stage, if KBL and KBU yield the same results for a reasoning
problem, then KB should also yield the same result. Since KBL and KBU are easier to reason
with than KB, such results can be computed more efficiently than on KB. If the upper bound
and lower bound yield different results, one can always use a fully-fledged reasoner to perform
reasoning in KB. For more details of knowledge compilation, we refer our readers to the survey
written by Cadoli and Donini [7].

Cadoli and Schaerf furthered the idea of approximate deduction and proposed the approx-
imate entailment approach [8, 70, 9]. They model a reasoning problem as deciding whether a
string x belongs to a set D or not. Their method then generates approximate sets D0, . . . , Dm

and D0, . . . , Dn such that D0 ⊆ · · · ⊆ Dm = D = Dn ⊆ · · · ⊆ D0, where n and m are
polynomially bounded by x. Then, x belongs to D if it belongs to any Di, and x does not belong
to D if it does not belong to some Dj . Di (Dj) is generated in a way that deciding membership
in D0 (D0) is a polynomial problem and gets exponentially harder as i grows but is no harder
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than deciding membership in D. Hence, the original reasoning problem can be computed more
efficiently by proving (disproving) membership in D0, . . . , Dm (D0, . . . , Dn). Their approach
was later extended by Massacci [53], Finger and Wassermann [21, 20].

The ideas of many propositional and first-order approximate reasoning approaches have been
adopted by DL researchers. Many approximation approaches [61, 16, 51, 6] combine the idea
of knowledge compilation and language weakening by first compiling an ontology in a more
complex DL L1 into one (or two) ontology(ies) in a less complex formalism L2, and then using
a L2 reasoner to reason with the compiled ontology(ies), which can be regarded as approxima-
tion(s) of the original ontology. For example, the semantic approximation technology [61] (also
referred to as global semantic approximations [13]) uses a fully-fledged DL reasoner to compute
all entailments of an ontology that can be expressed with a tractable DL, such as DL-Lite. The
computed entailments are compiled into a DL-Lite ontology and can be queried against with a
DL-Lite reasoner in run-time. When both the compilation and L2 reasoning are tractable, the
entire approximate reasoning procedure is tractable.

Other approximation approaches [25, 76, 83, 28, 81] apply the idea of approximate deduc-
tion by simplifying the treatment of complex axioms, expressions or constructors in ontology
reasoning. Such a simplification can be realised by replacing a complex concept expression with
a simpler one in the ontology [25] or query [76] or both [83], or by replacing a harder-to-deal-
with constructor, such as disjunction that leads to non-determinism, with a easier-to-deal-with
constructor, such as conjunction [28, 81]. Either, the deduction procedures are simplified as
they do not need to operate w.r.t. the full semantics of the original problem. For example,
Groot et al. [25] adopted the approximate entailment idea to speed up concept unsatisfiabil-
ity checking via approximation. Given a concept C, it constructs a sequence of C>i such that
C v · · · v C>1 v C>0 , and a sequence of C⊥i such that C⊥0 v C⊥1 v . . . C by replacing all
existential restrictions (∃R.D) after i universal quantifiers (∀) inside C with > and ⊥ respec-
tively.Then C is unsatisfiable (satisfiable) if some C>i (C⊥i ) is unsatisfiable (satisfiable). Since
C>i (C⊥i ) is usually simpler than C, its (un)satisfiability checking should also be easier.

The hotspot-based approximation [24] applies a similar idea as the modularisation-based
reasoning. It identifies a small subset of the ontology, called a hotspot, whose removal will
significantly reduce the classification time of the rest of the ontology, and then removes this
hotspot to boost reasoning.

Despite the successful application of approximation technologies, most DL approximation
approaches still have one of the following limitations:

1. No substantial reduction of complexity: For example, Groot et al.’s approximate de-
duction approach [25] simplifies the unsatisfiability of a concept expression by replacing
the existential restrictions in the test concept with > and ⊥. However, this approach only
approximates the tested concept, but not the ontology. Also, When the test concept sub-
sumption contains no existential restriction, such as Koala v Herbivore, this approach
doesn’t work. Thus the unsatisfiability checking still requires fully-fledged reasoning of
the original ontology. In other words, it does not necessarily reduce the complexity of
reasoning.

2. Limited expressive power: For example, Hitzler et al.’s resolution-based approxima-
tion [28] uses the KAON2 algorithm to perform reasoning. Similarly, the SCREECH [28,
81] approach utilises the KAON2 algorithm to translate a SHIQ TBox into disjunctive
datalog, and execute the rules together with a SHIQ ABox and a query by a datalog
engine. By rewriting or eliminating all the disjunctive rules the data complexity can be
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reduced from CONP-complete of OWL DL to polynomial time. Both of them rely on the
specific SHIQ reasoner KAON2 [55]. The SHER system [16] summaries the ABox to
provide more efficient instance retrieval for the DL SHIN , a sub-language of SHIQ.
The DLog system [51] applies Prolog to support efficient SHIQ reasoning. Because
SHIQ does not support role chain or nominal, the applicability of these approaches are
affected.

3. Non-trivial off-line compilation: Semantic Approximation [61, 6] directly applies knowl-
edge compilation. Particularly, Pan and Thomas’ approach [61] approximates to DL-LiteF
and is later extended by Botoeva et al. to approximate to DL-LiteA [6] by introducing
fresh names to represent complex expressions. Both approaches can produce optimal ap-
proximations in terms of soundness and completeness of query results. However such a
guarantee of quality is expensive. They both use a fully-fledged reasoner to materialise
the ontology and store in a database to speed up on-line query answering. Although they
supports arbitrary language, they need time-consuming preprocessing. The hotspot-based
approximation [24] discovers hotspots by comparing the effect of removing different can-
didates, which itself requires a lot of time, and in many cases making the whole procedure
taking even longer time than classifying the ontology directly. Therefore they are not effi-
cient for on-line applications.

To sum up, fully-fledged reasoning algorithms (Sec. 3.1) have difficulties to handle com-
plex structured axioms; tractable DL algorithms and modularisation-based approach (Sec. 3.2)
can not support more expressive languages without losing tractability; traditional approximation
approaches (Sec. 3.3) do not always reduce reasoning complexity and can be limited on expres-
sive power and/or efficiency. In what follows, we present our approach which is motivated and
inspired by these works, and show that it works well with real-world and benchmark ontologies.

4. Approach Overview

Before presenting the formal technical details, in this section we outline our approach with
examples and a brief overview . The basic idea behind our approach is that expressive construc-
tors used in ontologies do not always contribute to reasoning in a necessarily complex manner,
hence expressions involving them can be approximated with simpler ones and be exploited with
simpler inference procedures.

Considering the T1 in Example 1, it is easy to derive the following axiom:

∃partof.Eucalypt v V egeFood.

Given this, it is sufficient to derive the following axiom, in which we use underline to highlight
the expressions appearing in the above axiom:

∀eat.(∃partof.Eucalypt) v ∀eat.V egeFood.

Note that this can be achieved by a tractable inference rule:

C v D → ∀r.C v ∀r.D

or the combination of two tractable inference rules:

C v D → ¬D v ¬C
C v D → ∃r.C v ∃r.D
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Although there are other more complex axioms in T1, such as axiom (4), they are not necessarily
required in this step of inference. From this point, we can further combine with axiom (1) and
(4) to perform the following inference, in which we also use underline to highlight the sub- and
super-expressions from the previous axiom:

Koala v ∀eat.∃partof.Eucalypt v ∀eat.V egeFood v Herbivore

As we can see, although both ∀eat.∃partof.Eucalypt and ∀eat.V egeFood contains expressive
constructors, these constructors do not contribute to the inference of Koala v Herbivore.
Hence the two complex expressions can be simply treated as named concepts in this step of
inference.

This procedure can be applied on ABox reasoning as well. Most straight-forwardly, one can
always internalise ABox into TBox and use the same TBox reasoning procedure to materialise
ABox. Or, when the ontology contains no nominal, such as the T1 in the Koala example, one
can always classify TBox first and then use a more specialised and optimised version of TBox
reasoning procedure on ABox. When the ontology contains nominal only in a restricted manner,
such as under the nominal-safety condition, further optimisation can be made.

To summarise the above findings, we can perform tractable reasoning with complex ontolo-
gies by:

1. treating complex expressions as names because the expressive constructors used within do
not necessarily contribute to reasoning;

2. applying tractable inference procedure of a simpler DL since the above procedure have
simplified the syntax of ontology. For example, in the above inference we are primarily
using EL++ inference;

3. extending inference procedure with additional tractable rules to partially capture the se-
mantics beyond the simpler DL. The C v D → ¬D v ¬C above is an example;

4. extending formalisms to support the above additional rules. For example EL++ does not
support complement. To apply the C v D → ¬D v ¬C, we need to maintain the
complementary relations between concepts;

5. optimising inference rules to support ABox with TBox containing nominals.

The above 5 points constitute the major components of our approach. Particularly, points 1
and 4 are formalised with the transformations we will present later, which will be used to support
the EL++ inference rules and additional tractable rules. Points 2, 3 and 5 are formalised with
the approximate deduction. For ontologies satisfying certain syntactic or semantic criteria, more
optimised ABox rules can be applied. In the next two sections, we will present the formalisations
and their characteristics.

5. Syntactic Approximation for TBox Reasoning

In this section, we present syntactic approximation as an approach to tractable approximate
reasoning for TBox. We introduce the definition of approximation and completion rules. In later
sections, they will be extended to support ABox reasoning.

In approximation, we only consider concepts and roles (together they are called predicates)
corresponding to the particular ontology in question. We use the notion term to refer to these
“interesting” concept and role expressions:
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Definition 2 (Term) For an ontology O, a concept or a role expression t is a term of O if

1. t appears in any axiom of O, or
2. the complement of t is a term, or
3. the inverse of t is a term when t is a role expression, or
4. the syntactic sub-expression of t is a term when t is a concept expression.

In situation 2, the complement of a role can be interpreted as shown in Table 1. In order to
represent all these terms that will be used in EL++ reasoning, we first assign names to them.

Definition 3 (Name Assignment) Given an ontology O, a name assignment fa(�) is a function
such that for each concept expression C (each role expressionR) constructed from ΣO, we have:
fa(C) = C ifC ∈ CNO, fa(R) = R ifR ∈ RNO, otherwise fa(C) or fa(R) is a fresh name.

For each ontology there can be infinite number of concepts and roles to assign names to.
The following Table 3 illustrates name assignments of some complex terms in Example 1.
They will be used in this section to illustrate the idea of syntactic approximation. These fresh
names are chosen arbitrarily. It is easy to see that ∀eat.∃partof.Eucalypt is a complement of
∃eat.∀partof.¬Eucalypt, hence we assign C1 and cC1 to them, respectively, just to make the
complementary relation clearer. Similar applies to other complementary terms.

Table 3: Name assignment
Term Name
∀eat.∃partof.Eucalypt C1

∃eat.∀partof.¬Eucalypt cC1

∀partof.¬Eucalypt C2

∃partof.Eucalypt cC2

Plant t ∃partof.P lant C3

¬Plant u ∀partof.¬Plant cC3

∀partof.¬Plant C4

∃partof.P lant cC4

∀eat.V egeFood C5

∃eat.¬V egeFood cC5

¬Plant cP lant
¬V egeFood cV egeFood

5.1. TBox Transformation
Now we transform an SROIQ TBox to an EL++ TBox plus a complement table (CT), a

cardinality table (QT) and a inverse table (IT). Elements of CT are pairs (A,B) where A and
B are names assigned to a term and its complement, respectively. Elements of QT are 4-tuples
(A,B, r, n) where A and B are term names, r a role name and n an integer number. Elements
of IT are pairs (r, s) where r and s are names assigned to a role expression and its inverse. The
basic idea is to represent (non-EL++) terms with their name assignments.

Definition 4 (EL++
CQI TBox Transformation) Given an ontology O and a name assignment

fa(�), its EL++
CQI TBox approximation TAfa,EL++

CQI
(O) is a four-tuple (T , CT,QT, IT ) con-

structed as follows:
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1. T , CT,QT and IT are all initialised to ∅.
2. for each C v D (C ≡ D) in O, T = T ∪ {fa(C) v fa(D)} (T = T ∪ {fa(C) ≡
fa(D)}).

3. for each RI axiom β ∈ O, T = T ∪ {β′}, where β′ is obtained by replacing each role R
in β with fa(R).

4. for each axiom Dis(R,S) ∈ O, T = T ∪ {fa(R) v fa(¬S)}
5. for each term C in O, CT = CT ∪ {(fa(C), fa(~C))}, and if C is of the form:

(a) C1 u · · · u Cn, then T = T ∪ {fa(C) ≡ fa(C1) u · · · u fa(Cn)},
(b) ∃R.D, then T = T ∪ {fa(C) ≡ ∃fa(R).fa(D)}
(c) ≥ nR.D, then

i. if n = 0, T = T ∪ {> v fa(C)}
ii. if n = 1, T = T ∪ {fa(C) ≡ ∃fa(R).fa(D)}

iii. otherwise, T = T ∪ {fa(C) v ∃fa(R).fa(D)} and QT = QT ∪ {(fa(C),
fa(D), fa(R), n)}.

6. for each r ∈ RNO, IT = IT ∪ {(fa(r), fa(Inv(r))), (fa(Inv(r)), fa(r)), (fa(¬r),
fa(¬(Inv(r)))), (fa(¬(Inv(r))), fa(¬r))}.

The EL++
CQI in definition indicates that the transformation extends EL++ with additional

information maintaining complements (C), cardinality restrictions (Q) and inverse roles (I), and
is an extension of the EL++

C , EL++
CQ transformations presented in our earlier work [65]. In the

rest of the paper, we will omit the EL++
CQI to simplify the notation since in this paper all the work

are based on only the EL++
CQI transformation. Hence we will simply call TBox transformation

and denote it with TAfa(O).
As we mentioned in the overview section, the transformation and its components will be

used in reasoning. For convenience, we also define a complement function fc(�) as: for each
concept (including nominal) or role name A such that (A,B) ∈ CT , fc(A) = B and fc(B) =
A. And we define a inverse name function fi(�) as: for each role name r with (r, s) ∈ IT , we
have fi(r) = s and fi(s) = r. Since both CT and IT contain only symmetric pairs, fc(�) and
fi(�) are well-defined.

This Def. 4 deserves some explanations:

• Step-2 rewrites all the CIs;

• Step-3 rewrites all the RIs;

• Step-4 defines the relations between disjoint roles;

• Step-5 approximates terms and constructs the complement table CT and the cardinality
table QT . Non-EL++ terms such as disjunctions will be approximated via their com-
plements. For example, ≤ nR.D will be approximated via the approximation of its
complement ≥ (n + 1)R.D. Furthermore, this step also constructs the subsumption be-
tween a cardinality restriction and an existential restriction. Particularly, if i ≥ 2, then
≥ ir.A v ∃r.A;

• Step-6 maintains the inverse relations.

Based to Table 3, we can transform the TBox T1 into (TKoala, CTKoala, QTKoala, ITKoala)
as follows:
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Example 2 TKoala contains axioms generated by Step 2 and 8. Particularly, axiom (1)Koala v
∀eat.(∃partof.Eucalypt) is transformed into:

Koala v C1 (5)
cC1 ≡ ∃eat.C2 (6)
cC2 ≡ ∃partof.Eucalypt (7)

Axiom (2) Eucalypt v Plant is preserved. Axiom (3) Plant v ∃partof.P lant v V egeFood
is transformed into:

C3 v V egeFood (8)
cC3 ≡ cP lant u C4 (9)
cC4 ≡ ∃partof.P lant (10)

Axiom (4) ∀eat.V egeFood v Herbivore is transformed into:

C5 v Herbivore (11)
cC5 ≡ ∃eat.cV egeFood (12)

CTKoala contains pairs such as (C1, cC1), (C2, cC2), (C3, cC3), (C4, cC4), (C5, cC5),
(Plant, cP lant), (V egeFood, cV egeFood), etc.

It is easy to show that the TBox transformation can be performed in linear time since it
monotonically generates linear-sized results:

Proposition 1 (TBox Linear Transformation) In Def. 4, transforming fromO to TAfa(O) can
be done in linear time.

This proposition can be easily proved by investigating the origins of different axioms in the
approximation (cf. Appendix).

The transformation results can also be regarded as a syntactic variants of the original ontology
that preserves TBox classification:

Theorem 2 (TBox Reasoning Preservation) For any ontology O = (TO,AO) and its TBox
transformation (T , CT,QT, IT ), let T ′ be a TBox constructed as follows:

1. T ′ is initialised as T ;
2. for any concept pair (A,B) ∈ CT , T ′ = T ′ ∪ {A ≡ ¬B};
3. for any role pair (r, s) ∈ CT , T ′ = T ′ ∪ {Dis(r, s)};
4. for any (A,B, r, n) ∈ QT , T ′ = T ′ ∪ {A ≡≥ nr.B};
5. for any (r, s) ∈ IT , T ′ = T ′ ∪ {r ≡ Inv(s)};

then for any GCI α with Σα ⊆ ΣTO , we have TO |= α iff T ′ |= α:

This theorem can be proved by showing that TO ∪ T ′ ∪ Tfa is a ΣTO -conservative exten-
sion [52] of both TO and T ′, where Tfa is the set of definition fa(P ) ≡ P for all term P of
O except complement of roles. Note that a TBox T1 is an Σ-conservative extension of another
TBox T2 if T2 ⊆ T1, Sigma ⊆ SigmaT2

and for each GCI α with Σα ⊆ Σ, we have T1 |= α
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implies T2 |= α. Recall that ΣT is the signature of T and Σα is the signature of {α}. Hence,
TO |= α iff TO ∪ T ′ ∪ Tfa |= α iff T ′ |= α. The full proof is deferred to the appendix.

An important implication of this theorem is that the TBox transformation itself can be used
to fully preserve the semantics of the original TBox, if the information in CT , QT , IT can be
fully exploited, while the T alone is a naive soundness preserving EL++ approximation of the
original ontology.

Proposition 3 (TBox Approximation) For an ontologyO, let TAfa(O) be (T , CT,QT, IT ) as
defined in Def. 4, then T is an EL++ TBox such that for any axiom α with Σα ⊆ ΣO, we have
T |= α only if O |= α.

As we can see, there is a gap between T and T ′. Such a gap can be bridged as much
as possible by utilising CT , QT and IT . To achieve this while preserving the tractability of
reasoning is a major motivation behind the rules we will introduce later in this section. In Sec. 8.2
we will show that there are certain gaps that can hardly be bridged in a tractable manner, notably
resolution, cardinality counting and interactions between existential restrictions and inverse roles.

In order to apply the EL++ reasoning rules, we further perform normalisation of T by rewrit-
ing axioms of form C v D1 u · · · u Dn into C v D1, . . . , C v Dn. Since we only consider
RIAs with no more than 3 roles, we do not need to further normalise RIAs. The normalisation
can be done in linear time (this is the same case as in EL+ [4]). Apparently such rewriting does
not change the semantics or vocabulary of T and the CT , QT and IT will not be changed. In
the following, we assume T to be always normalised.

5.2. TBox Approximate Deduction Rules

Now we can do TBox approximate reasoning by utilising the complementary relations in
CT , the cardinality information in QT and the inverse relations in IT . In addition to the original
EL++ rules R1-8 in Table 2, we devise some additional rules. Particularly, the CT information
can be exploited by rules in Table 4. Note that the fc(�) is the complement function we have
introduced after Def. 4.

Table 4: TBox completion rules for CT

R9 If X v A,X v B and A = fc(B) then X v ⊥
R10 If B v A then fc(A) v fc(B)

R11 If X v A1, . . . , X v Ai−1, X v Ai+1, . . . , X v An
and A1 u · · · uAn v ⊥, then X v fc(Ai)

R12 If A v ∃r.{b} and B v ∃fc(r).{b}, then A v fc(B)

R9 realises axiomAu~A v ⊥. R10 realisesA v B →~A v~B. R11 builds up the relations
between conjuncts of a conjunction, e.g. A u B v ⊥ implies A v~B. R12 deals with disjoint
roles, i.e. disjoint roles should not share any instance. Thus if instances ofA andB are related to
the same individual with disjoint relations, then A and B should also be disjoint with each other.

Now we can infer Koala v Herbivore from Example 2. Particularly, from (2) we can infer
that cC2 v cC4. With R10 we can further infer that C4 v C2. Hence combining with (9) we
can infer the following:

cC3 v C2 (13)
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Similarly, applying R10 on (8) we can infer the following:

cV egeFood v cC3 (14)

Combining (13) and (14) we can derive cV egeFood v C2, which further leads to cC5 v cC1.
Applying R10 again we will have C1 v C5 and finally Koala v Herbivore can be derived.

Now we consider a new example, in which cardinality restrictions are used:

Example 3 A TBox T3 contains the following axioms:

Primate v≥ 4hasLeg.Leg (15)
Human v≤ 2hasLeg.Leg (16)
Human v Primate (17)

Apparently, from this TBox we have Human v ⊥. This is an intuitive result due to the inconsis-
tent understanding of Leg, i.e. in (15) Leg actually means limb while in (16) Leg means lower
limb.

Assuming TAfa(T3) = (TPrimate, CTPrimate, QTPrimate, ITPrimate). Apparently, after
transformation we should be able to obtain the following axioms from TPrimate:

Primate v C6 (18)
Human v C7 (19)

where C6 = fa(≥ 4hasLeg.Leg) and C7 = fa(≤ 2hasLeg.Leg). We also have (C7, cC7) ∈
CTPrimate and (C6, Leg, hasLeg, 4), (cC7, Leg, hasLeg, 3) ∈ QTPrimate, where cC7 = fa(≥
3hasLeg.Leg).

To derive the unsatisfiability of Human we exploit the QT information with the rule in
Table 5.

Table 5: TBox completion rules for QT

R13 If A v B, (X,A, r, i), (Y,B, s, j) ∈ QT , r v s and i ≥ j, then X v Y

R13 realises inference A v B,R v S, i ≥ j →≥ i R.A v≥ j S.B. Note that this R13
is equivalent to the R12 in our previous work [65]. While the R13-16 in our previous work are
omitted in this paper because they can be realised by the combination of the above R13, step
5.(c).iii of Def. 4 and the rules R1, R4 and/or R8.

With this additional rule Human v ⊥ can be derived. First of all, applying R13 we should
have C6 v cC7. This leads to the result that Primate v cC7 and hence Human v cC7.
Together with (19) we apply rule R9 to derive that Human v ⊥.

Due to the involvement of disjoint roles, inverse roles and nominals in axioms, the RIAs in the
above rules becomes non-trivial. Therefore we propose the following additional rules (Table 6)
to compute the RIAs and exploit the IT . For each role r, we initialise r v r. Note that the fi(�)
is the inverse function we have introduced after Def. 4.

R14 realises R v S, S v T → R v T . R15 realises R v S → R− v S−. R16 realises
R v S → ¬S v ¬R. R17 realises R1 ◦ R2 v R3 → R−2 ◦ R

−
1 v R−3 . Due to the role chain

normalisation, this can be generalised to R1 ◦ · · · ◦Rn v S → R−n ◦ · · · ◦R−1 v S−.
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Table 6: TBox completion rules for RIA and IT

R14 If r v s and s v t then r v t
R15 If r v s, then fi(r) v fi(s)
R16 If r v s, then fc(s) v fc(r)
R17 If r1 ◦ r2 v r3, then fi(r2) ◦ fi(r1) v fi(r3)

R18
If ∃r.> v X , X v A, ∃fi(r).> v Y , Y v B,

d
1≤i≤n fc({ai}) v fc(A),d

1≤j≤m fc({bj}) v fc(B), for any 1 ≤ i ≤ n, 1 ≤ j ≤ m,
fc(A) v fc({ai}), fc(B) v fc({bj}) and {ai} v ∃s.{bj}, then r v s

R19 If {a} v ∃r.{b}, then {b} v ∃fi(r).{a}
R20 If {a} v ∃r.A and A v ∃fi(fc(r)).{b}, then {a} v fc({b})

R18 needs more explanations: It realises a possible impact of nominal relations on role inclu-
sions. According to DL semantics, R v S iff RI ⊆ SI where RI and SI are the interpretations
of R and S, respectively. Given a role R, the domain and range restrictions make up a super
set of RI . Whereas ABox axioms regarding R make up a subset of RI . Therefore, suppose
∃R.> v A and ∃R−.> v B, if a ∈ A, b ∈ B, (a, b) : S can be entailed, then R v S can be
entailed. R18 detects such a pattern by matching the transformed axioms.

Due to the above reason, nominal relations become non-trivial. R19 realises the inverse
relations between nominals. Although we are not considering ABox reasoning in this stage
and only considering nominal-safe ontologies, such relation can still be important for TBox
materialisation. An example is given in the following:

Example 4 Given a TBox T4 containing the following axioms:

ScottishIsland v ∃locatedIn.{Scotland},
{Britain} v ∃include.{Scotland},
∃partOf.{Britain} v BritishP lace,
locatedIn ◦ include− v partOf,

using R19 to infer {Scotland} v ∃fi(include).{Britain} is significant for the derivation of
ScottishIsland v BritishP lace.

R20 infers individual inequality due to combination of disjoint relations and inverse relations,
i.e. a : ∃r.A and A v ∃fi(fc(r)).{b} imply a 6 .= b because if a .

= b then there is some c : A s.t.
(a, c) : r and (a, c) : fc(r), which is inconsistent.

5.3. TBox Approximate Reasoning Tractability & Soundness
We call the rules R1-20 (Table 2,4,5 and 6) the R rule set. With the R rules, TBox approxi-

mate reasoning can be performed by repeatedly applying the R rules until no new results can be
derived. The results of applying these rules is defined as follows. As we can see, the reasoning
is initialised with the approximated EL++ TBox and certain tautology axioms.

Definition 5 (TBox Approximate Reasoning Closure) For an ontology O that is transformed
into TAfa(O) = (T , CT,QT, IT ) w.r.t. name assignment fa(�), its corresponding TBox Ap-
proximate Reasoning Closure, denoted by ST (TAfa(O)), is the set of axioms computed as
follows:
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1. initialising ST (TAfa(O)) as T ∪ {fa(P ) v fa(P )|P is a term in O} ∪ {fa(C) v
>|C is a concept term in O};

2. repeatedly applying the R rules on ST (TAfa(O)), CT , QT , IT and adding inferred new
axioms into ST (TAfa(O)) until no new results can be inferred;

Computation of TBox approximate reasoning closure is tractable:

Theorem 4 (TBox Approximate Reasoning Complexity) For an ontology O, its TBox Approx-
imate Reasoning Closure ST (TAfa(O)) can be computed in polynomial time w.r.t. the size of
O.

This theorem can be proved by showing that the size of ST (TAfa(O)) is polynomial w.r.t.
|CN T |+ |RN T |, and it can be computed incrementally.

This theorem shows that the overall complexity of perform TBox syntactic approximate rea-
soning is PTIME-Complete.

The reasoning is also soundness guaranteed:

Theorem 5 (TBox Approximation Reasoning Soundness) For an ontologyO, letα be an axiom
such that Σα ⊆ ΣO, then α ∈ ST (TAfa(O)) only if O |= α.

In Sec. 7 we will also see that, our approach have practically high recall on many benchmark
and/or real-world ontologies.

5.4. Nominal-safety Under Approximate Reasoning

As we explained in Sec. 2.2, in this paper we will focus on ontologies whose approximate
reasoning closure is nominal-safe. With the notion of TBox approximate reasoning closure, we
can now define the notion of nominal-safety under approximate reasoning.

Definition 6 (Semantic Nominal-safety Under Approximate Reasoning) An ontology O is se-
mantic nominal-safe under approximate reasoning if ST (TAfa(O)) is a nominal-safe EL++

ontology (axioms of form {a} ≡ {b} and {a} u {b} v ⊥ are allowed).

Basically, an ontology is safe if its closure is always safe. As we mentioned earlier, the
nominal-safety condition is useful to improve the effectiveness of the EL++ completion rules in
approximate reasoning. However it requires computation of the closure hence cannot be checked
before reasoning. Given the R rules, we define a syntactic notion of nominal-safety:

Definition 7 (Syntactic Nominal-safety Under Approximate Reasoning) An ontologyO is syn-
tactic nominal-safe under approximate reasoning if TAfa(O) = (T , CT,QT, IT ) satisfies the
following syntactic properties, where A is a concept such that A, fc(A) ∈ CN T , B(i) is an
arbitrary concept, a and b are individuals and r is a named role:

1. T is a nominal-safe EL++ TBox;
2. fc({a}) v A /∈ T ;
3. fc({a}) v {b} /∈ T ;
4. B1 u · · · u fc({a}) u · · · uBn v ⊥ /∈ T ;
5. fc({a}) v ∃r.A /∈ T ;
6. fc({a}) v ∃r.{b} /∈ T ;
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7. fc({a}) v ∃r.fc({b}) /∈ T ;

This syntactic condition can be checked directly on the transformation results. It can be
shown that when an ontology is syntactic nominal-safe, it is also semantic nominal-safe:

Theorem 6 (Nominal-safety Under Approximate Reasoning) If an ontologyO satisfies the syn-
tactic nominal-safety condition defined in Def. 7, then it is semantic nominal-safe under approx-
imate reasoning, as defined in Def. 6.

In the rest of the paper, we consider only ontologies that satisfy the syntactic conditions spec-
ified in Def. 7 and simply call them nominal-safe ontologies. As we will show in the next section,
this condition is important to guarantee the quality of some ABox reasoning optimisations.

5.5. TBox Syntactic Approximation Summary
So far, we have presented the definition of TBox Transformation (Def. 4) and the correspond-

ing approximate deduction rules–the R rule set. The results of such approximate reasoning is
soundness-guaranteed (Theorem 5) and tractable (Theorem 4). In the Evaluation section (Sec. 7)
we will conduct experiments on TBox classification and compare with other off-the-shelf rea-
soners to show that our approach is indeed efficient and yields high recalls.

Comparing to our previous work [65], the transformation and completion rules are extended
and revised to support more expressive power such as inverse roles, role disjointness and nom-
inals. We also formally characterised the relation between the orignal ontology and transfomed
TBox (Theorem 2). Furthermore, we presented the semantic (Def. 6) and syntactic (Def. 7)
conditions of nominal-safety under approximate reasoning. We assume that such conditions are
satisfied in the rest of the paper. In the next section, we will extend the transformation and
approximate deduction to supporting ABox reasoning.

6. Syntactic Approximation for ABox Reasoning

TBox transformation does not include information about ABox axioms in the original on-
tology thus can not be used for ABox materialisation. Also, when the TBox contains nomi-
nals, ABox materialisation and TBox classification can not always be completely separated. The
T4 (page 19) is an example in which axiom {Britain} v ∃include.{Scotland} can be regarded
as an ABox axiom.

In this section, we further extend syntactic approximation as an approach to tractable approx-
imate reasoning for ABox. Combined with the TBox approximate reasoning introduced in Sec. 5
we can provide syntactic approximation for the entire ontology. Similar as the last section, we
first present the transformation (Sec. 6.1), then the approximate deduction approaches with differ-
ent optimisations, including internalisation (Sec. 6.2), separate ABox reasoning for nominal-free
ontology (Sec. 6.3) and combined TBox and ABox reasoning with nominals (Sec. 6.4).

6.1. ABox Transformation
We perform ABox transformation in a similar manner as the TBox transformation in Def. 4,

with an addition of an EL++ ABox:

Definition 8 (EL++
CQI Transformation) Given an Ontology O and a name assignment fa(�), let

TAfa = (T ′, CT ′, QT ′, IT ′) be its TBox transformation, its EL++
CQI transformation Afa(O) is

a five-tuple (T ,A, CT,QT, IT ) constructed as follows:
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1. T = T ′, CT = CT ′, QT = QT ′, IT = IT ′.
2. for each a : C ∈ O, A = A ∪ {a : fa(C)}.
3. for each (a, b) : R ∈ O, A = A ∪ {(a, b) : fa(R)}.
4. for each (a, b) : ¬R ∈ O, A = A ∪ {(a, b) : fa(¬R)}
5. for each axiom a 6 .= b ∈ O, A = A ∪ {a 6 .= b}.
6. for each axiom a

.
= b ∈ O, A = A ∪ {a .

= b}.

Similar as the TBox transformation, the EL++
CQI transformation will also be used to support

the approximate deduction procedures. Step-1 reuses the TBox transformation. Note that in
the TBox transformation we have already considered all the terms, even if they appear only in
ABox. Thus we do not need to change any of the CT , QT or IT ; Step-2 to 6 rewrite all the
ABox axioms; Also similar as before, we omit the EL++

CQI in the notation in the rest of the paper,
simply calling it the transformation and denoting it with Afa(O)

The transformation can be illustrated with the following example:

Example 5 Ontology O5 contains TBox T5 and ABox A5. T5 contains axioms:

BritishCity ≡ City u ∃locatedIn.(EnglishArea t ScottishArea tWalesArea) (20)
locatedIn ◦ locatedIn v locatedIn (21)

A5 contains axioms:

aberdeen : City (22)
(aberdeen, grampian) : locatedIn (23)
grampian : ∃locatedIn.ScottishArea (24)

A name assignment fa(�) assigns the following names (among others):

fa(City u ∃locatedIn.(EnglishArea t ScottishArea tWalesArea)) = C1

fa(∃locatedIn.(EnglishArea t ScottishArea tWalesArea)) = C2

fa(EnglishArea t ScottishArea tWalesArea) = C3

fa(¬EnglishArea t ¬SottishArea t ¬WalesArea) = cC3

fa(∃locatedIn.ScottishArea) = C4

fa(¬EnglishArea) = cEArea

fa(¬ScottishArea) = cSArea

fa(¬WalesArea) = cWArea

fa(¬{grampian}) = cGrampian

fa(¬{aberdeen}) = cAberdeen

Then by Def. 8, we have Afa(O5) = (Tcity,Acity, CTcity, QTcity, ITcity), where Tcity con-
tains axiom (21) and the following axioms:

BritishCity ≡ C1 (25)
C1 ≡ City u C2 (26)
C2 ≡ ∃locatedIn.C3 (27)
cC3 ≡ cEArea u cSArea u cWArea (28)
C4 ≡ ∃locatedIn.ScottishArea (29)
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Acity contains axioms (22), (23) and

grampian : C4 (30)

CTcity contains corresponding name pairs for complementary terms, such as (C3, cC3),
(ScottishArea, cSArea). Note that pairs of nominals and their complements such as ({aberdeen},
cAberdeen) and ({grampian}, cGrampian) are not included in CTcity because {aberdeen}
and {grampian} are not terms of O5.

QTcity is empty.
ITcity contains corresponding name pairs for locatedIn and its inverse.

The transformation can also be performed in linear time:

Proposition 7 (Linear Transformation) In Def. 8, the transformation fromO toAfa(O) can be
done in linear time.

Similar as the TBox transformation, this transformation results can also be regarded as a
syntactic variants of the original ontology that preserves reasoning of the original signature:

Theorem 8 (Ontology Reasoning Preservation) For any ontology O and its transformation
(T ,A, CT,QT, IT ), let O′ = (T ′,A′) be an ontology constructed as follows:

1. T ′ is constructed in the same way as in Theorem 2;
2. A′ = A;

then for any axiom α with Σα ⊆ ΣO, we have O |= α iff O′ |= α:

Similar as Theorem 2, this theorem can be proved by showing thatO∪O′∪Tfa conservatively
extends both O and O′ on ΣO, where Tfa is the set of definition fa(P ) ≡ P for all term P of
O except complement of roles. The full proof is deferred to the appendix. This theorem also
indicates that the transformation itself fully preserves the semantics of the original ontology,
while the (T ,A) is a naive soundness preserving EL++ approximation of the original ontology:

Proposition 9 (Approximation) For an Ontology O, let its transformation results Afa(O) be
(T ,A, CT,QT, IT ) as specified in Def. 8, then (T ,A) is an EL++ ontology such that for any
axiom α with Σα ⊆ ΣO, we have (T ,A) |= α only if O |= α.

6.2. ABox Approximate Deduction via Internalisation
ABox reasoning can be done as in classical EL++ (cf. Sec. 3) by encoding the ABox as

a concept. However this approach introduces a rather complex concept and will introduce ad-
ditional concept names in the normalisation phase, making reasoning more difficult. Also, for
each instance checking, a separate subsumption checking needs to be performed, making it less
efficient for materialisation. Alternatively, we can do the following internalisation:

Definition 9 (ABox Internalisation) Given an ontology O and its transformation Afa(O) =
(T ′,A′, CT ′, QT ′, IT ′), its ABox internalisation, denoted by AI(Afa(O)), is a four-tuple
(T , CT,QT, IT ) constructed as follows:

1. T is initialised as T ′, CT is initialised as CT ′.
2. QT = QT ′, IT = IT ′.
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3. for each a ∈ INO, CT = {({a}, fa(¬{a})), (fa(¬{a}), {a})}.
4. for each a ∈ INO, T = T ∪{{a} v {a}, fc({a}) v fc({a}), {a} v >, fc({a}) v >}.
5. for each a : A ∈ A′, T = T ∪ {{a} v A}.
6. for each (a, b) : r ∈ A′, T = T ∪ {{a} v ∃r.{b}}.
7. for each a .

= b ∈ A′, T = T ∪ {{a} ≡ {b}}.
8. for each a 6 .= b ∈ A′, T = T ∪ {{a} v fc({b})}.

In this definition, all ABox axioms are internalised into the approximated EL++ TBox. And
singleton of each individual and its complement are now treated as terms of the ontology.

Applying the above definition on the transformation described in Example 5 yields the fol-
lowing results:

Example 6 AI(Afa(O5)) = (T ′city, CT ′city, QTcity, ITcity), where T ′city includes Tcity and the
following axioms (among the others):

{aberdeen} v City (31)
{aberdeen} v ∃locatedIn.{grampian} (32)
{grampian} v C4 (33)

CT ′city = CTcity∪{({aberdeen}, cAberdeen), (cAberdeen, {aberdeen}), ({grampian},
cGrampian), (cGrampian, {grampian})}.

It’s easy to show that such internalisation can be constructed in linear time and the result
(T , CT,QT, IT ) is still linear w.r.t. the size of O. Also, T is normalised if T ′ normalised. So
AI(Afa(O)) is syntactically similar to a TBox transformation. To this end, we reduce ABox
reasoning to TBox reasoning on T and the same R rule set can be used. The result of applying
these rules is defined as follows:

Definition 10 (Approximate Reasoning Closure via Internalisation) For an ontology O, let
AI(Afa(O)) be its ABox internalisation, its corresponding Approximate Reasoning Closure via
Internalisation, denoted by SIfa(O), is computed as SIfa(O) = ST (AI(Afa(O))).

Note that although many nominals internalised from individuals are not terms of the original
O, hence will not be used to initialise some tautology axioms as in step-1 of Def. 5, such axioms
will still be included in the initialisation of the closure due to step-4 of Def. 9.

The computation of the closure is tractable and soundness-preserving:

Theorem 10 (Complexity) Given an ontology O, its approximate reasoning closure via inter-
nalisation SIfa(O) can be computed in polynomial time w.r.t. the size of O.

This theorem can be proved by showing that the internalisation described in Def. 9 is tractable
in terms of both time and size.

Theorem 11 (Approximate Reasoning via Internalisation Soundness) For an ontology O, let
α be an axiom with Σα ⊆ ΣO, then α ∈ SIfa(O) only if O |= α.
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Note that the closure is a nominal-safe EL++ ontology if the original ontologyO is nominal-
safe (Theorem 6), because the internalised ABox axioms will not affect the nominal-safety of
the TBox. Also note that the closure contains not only concept subsumptions, but also concept
assertions in form of {a} v A and role assertions in form of {a} v ∃r.{b}. For example, we can
infer that {aberdeen} v BritishCity ∈ SIfa(O5). First applying R3 on axiom (29) and (33)
derives {grampian} v ∃locatedIn.ScottishArea. Applying R8 on this axiom and axiom (21)
and (32) derives

{aberdeen} v ∃locatedIn.ScottishArea. (34)

Applying R10 on axiom (28) we have ScottishArea v C3. Combining with axiom (27)
and the above axiom (34) we can apply R4 to derive {aberdeen} v C2. Further combining with
axiom (26) and (31) we can apply R2 to derive {aberdeen} v C1. Eventually, combining with
axiom (25) we can apply R1 to derive {aberdeen} v BritishCity.

The ABox internalisation internalises the entire ABox into the TBox and reduces ABox rea-
soning to TBox reasoning. However, a critical limitation is that, treating individuals as nom-
inals will significantly increase the number of terms in the transformation result (Step-3 and
4 of Def. 9) and produce many intermediate results that are neither desired by nor contribut-
ing to ontology materialisation. For example, when {a} v A is entailed, another entailment
fc(A) v fc({a}) will be derived by rule R10. As we will show later, such entailments do
not contribute more than what {a} v A can offer. With a large amount of individuals , such
non-desired intermediate results require a lot of computation and should be minimised.

6.3. ABox Approximate Deduction for Nominal-free Ontologies

To optimise the performance we devise more fine-grained reasoning mechanisms for com-
bined TBox and ABox. In this sub-section, we start from a simpler case, in which the transformed
TBox contains no nominals, such as the O5 in Example 5. In this case, the ABox reasoning has
no effect on the TBox reasoning, which can thus be precomputed. After that, ABox materiali-
sation can be performed directly using ABox axioms and TBox materialisation closure without
internalisation. To do that, the nominal-free ABox completion rules in Table 7 are required. In
rule AR1d, AR1e and AR10, we have ] ∈ { .=, 6 .=}.

We call the rules AR1-19 (in Table 7) the AR rules. Each rule ARi(a,b,c,d,e) is analogous
to the corresponding TBox completion rule Ri.

In reasoning, the execution of rules are performed as in the following definition:

Definition 11 (Nominal-free Approximate Reasoning Closure) For an ontologyO that is trans-
formed into Afa(O) = (T ,A, CT,QT, IT ) w.r.t. name assignment fa(�), its corresponding
nominal-free approximate reasoning closure, denoted by SNFfa(O), is the set of axioms com-
puted as follows:

1. initialising SNFfa(O) as ST ((T , CT,QT, IT )) ∪ A ∪ {a .
= a, a : >|a ∈ INO};

2. repeatedly applying the AR rules on SNFfa(O), CT , QT , IT and adding inferred new
axioms into SNFfa(O) until no new results can be inferred;

Step-1 in the above definition shows that TBox materialisation using the R rules should be
performed before computing the ABox materialisation. Note that duo to the absence of nominals,
rules R6, 12, 18, 19 and 20 won’t be executed.

The nominal-free closure also contains desired materialisation results. For example, with the
same ontology O5 and its transformation Afa(O5) as in Example 5, we can derive aberdeen :
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Table 7: ABox completion rules (no datatypes)
AR1a If x : A and A v B then x : B
AR1b If x : A and x .

= y then y : A
AR1c If x : A and y : fc(A) then x 6 .= y
AR1d If x .

= y and y]z then x]z
AR1e If x : ⊥ and y is an individual, then x .

= y and x 6 .= y
AR2 If x : A1, . . . , x : An and A1 u · · · uAn v B then x : B
AR3a If x : A and A v ∃r.B then x : ∃r.B
AR3b If x .

= y and y : ∃r.A then x : ∃r.A
AR3c If (x, y) : r and x .

= z then (z, y) : r
AR4a If x : ∃r.A, A v A′ and ∃r.A′ v B then x : B
AR4b If (x, y) : r, y : A and ∃r.A v B then x : B
AR5a If x : ∃r.A and A v ⊥ then x : ⊥
AR5b If (x, y) : r and y : ⊥ then x : ⊥
AR7a If x : ∃r.A and r v s then x : ∃s.A
AR7b If (x, y) : r and r v s then (x, y) : s
AR8a If x : ∃r1.A, A v ∃r2.B and r1 ◦ r2 v r3, then x : ∃r3.B
AR8b If (x, y) : r1, y : ∃r2.B and r1 ◦ r2 v r3, then x : ∃r3.B
AR8c If (x, y) : r1, (y, z) : r2 and r1 ◦ r2 v r3, then (x, z) : r3
AR9a If x : A,B and A = fc(B) then x : ⊥
AR9b If x .

= y and x 6 .= y then x : ⊥
AR10 If x]y, then y]x
AR11 If x : A1, . . . , x : Ai−1, x : Ai+1, . . . , x : An and

d
1≤j≤nAj v ⊥ then x : fc(Ai)

AR12 If (x, y) : r and (z, y) : fc(r) then x 6 .= z
AR19 If (x, y) : r then (y, x) : fi(r)

BritishCity ∈ SNFfa(O5). First applying AR3a on axiom (29) and (30) derives grampian :
∃locatedIn.ScottishArea. Applying AR8b on this axiom and axiom (21) and (23) derives

aberdeen : ∃locatedIn.ScottishArea. (35)

Applying R10 on axiom (28) we have ScottishArea v C3. Combining with axiom (27)
and the above axiom (35) we can apply AR4a to derive aberdeen : C2. Further combining with
axiom (22) and (26) we can apply AR2 to derive aberdeen : C1. Eventually, combining with
axiom (25) we can apply AR1a to derive aberdeen : BritishCity. The procedure and result
are similar to deriving {aberdeen} v BritishCity ∈ SIfa(O5).

Compared with the internalisation approach, nominals are not used. Consequently, entail-
ments involving Complements of Nominals (CoNs for short, e.g. fc({a})) are not computed at
all. This reduces the size of the closure and improves efficiency.

The analogousness of completion rules indicates that similar algorithms can be applied and
tractability and soundness are preserved. We show that this approach should be as complete as
the internalisation approach when the ontology contains no nominal:

Theorem 12 For a nominal-free ontology O, let a, b ∈ INO be two individuals, A,B ∈ CNO
be two concepts, and r ∈ RNO be a role, then the following holds:
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1. A v B ∈ SIfa(O) iff A v B ∈ SNFfa(O);
2. {a} v A ∈ SIfa(O) iff a : A ∈ SNFfa(O);
3. {a} v ∃r.{b} ∈ SIfa(O) iff (a, b) : r ∈ SNFfa(O);

The ← direction is obvious because the AR rules are special cases of the corresponding R
rules where certain atomic concepts are restricted to nominals.

The→ directions of the theorem can be shown by proving the following stronger lemma:

Lemma 13 For a nominal-free ontologyO, letAfa(O) = (T ,A, CT,QT, IT ) andAI(Afa(O))
be (T ′, CT,QT, IT ). If we use SI to denote SIfa(O), ST to denote ST ((T , CT,QT, IT )),
and SNF to denote SNFfa(O), then the following invariants hold in each step of computation
of SI , where a, b ∈ INO are two individuals, A,B ∈ CN T ∪ {>,⊥} are two concepts, and
r ∈ RNO is a role:

A v B ∈ SI only if A v B ∈ ST (36)
A v fc({a}) ∈ SI only if a : fc(A) ∈ SNF (37)
{a} v B ∈ SI only if a : B ∈ SNF (38)
{a} v {b} ∈ SI only if a .

= b ∈ SNF (39)
{a} v fc({b}) ∈ SI only if a 6 .= b ∈ SNF (40)

fc({a}) v fc({b}) ∈ SI only if a .
= b ∈ SNF (41)

A v ⊥ /∈ SI and A v ∃r.B ∈ SI only if A v ∃r.B ∈ ST (42)
{a} v ⊥ /∈ SI and {a} v ∃r.B ∈ SI only if a : ∃r.B ∈ SNF (43)

{a} v ∃r.{b} ∈ SI only if (a, b) : r ∈ SNF (44)

Apparently the → directions of the theorem hold if the above lemma holds. This lemma
can further be proved by induction on application of rules. A detailed proof is deferred to the
Appendix.

Theorem 12 shows that when the original ontology is nominal-free, the combination of the R
rules and AR rules without using CoNs in transformation and reasoning can achieve as complete
results as the internalisation approach. When the materialisation contains a lot of class assertion
axioms of individuals, this significantly reduces the memory and computation cost of reasoning.

The Lemma 13 also shows that internalising an individual a into nominal {a} alone will
not introduce unnecessary inference results, because for each inferred axiom involving {a} in
internalisation there is a corresponding inferred axiom involving a without internalisation. The
major source of unnecessary results is the introduction of CoNs. Particularly, invariant 37 and
invariant 41 suggest that certain axioms involving CoNs are redundant as they can be replaced
by other inferred axioms. In the next section, we will exploit this observation to develop more
fine-grained algorithms for reasoning with nominals.

6.3.1. Optimising for Ontologies with Transitive-only Role Chains
We can further restrict the syntax of ontology to simplify the intermediate results of material-

isation. Particularly, if the original ontology contains only one type of role chain – the transitive
role, then we can avoid computing axioms of form a : ∃r.A at all in ABox materialisation. More
precisely, in the approximate deduction of such an ontology, rules AR3a, 3b, 4a, 5a, 7a, 8a, 8b
can be replaced by the alternative rules illustrated in Table 8.
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Table 8: Alternative ABox completion rules for transitive-only role chains
TR4a If (x, y) : r, y : A and ∃r.A v B then x : B

TR4b If (x, y) : r, y : A, A v ∃r.A′, r ◦ r v r, r v s,
A′ v A′′ and ∃s.A′′ v B then x : B

We use the TR rules to denote the set containing AR1(a,b,c,d,e), AR2, AR3c, AR4b,
TR4(a,b), AR5b, AR7b, AR8c, AR9(a,b), AR10, AR11, AR12, AR19. In other words, the
TR rule set is the AR rule set after replacing rules involving axioms of form a : ∃r.A with the
two alternative rules in Table 8.

In reasoning, the execution of rules are performed as in the following definition:

Definition 12 (Transitive-only Nominal-free Approximate Reasoning Closure) For a nominal-
free ontologyO that is transformed into Afa(O) = (T ,A, CT,QT, IT ) w.r.t. name assignment
fa(�), its corresponding transitive-only nominal-free approximate reasoning closure, denoted by
STNFfa(O), is the set of axioms computed as follows:

1. initialising STNFfa(O) as ST ((T , CT,QT, IT )) ∪ A ∪ {a .
= a, a : >|a ∈ INO};

2. repeatedly applying the TR rules on STNFfa(O), CT , QT , IT and adding inferred new
axioms into STNFfa(O) until no new results can be inferred;

As can be seen from the definition, the transitive-only closure (Def. 12) is similar as the
normal nominal-free closure (Def. 11) except that the former is closed under the TR rules while
the later is closed under the AR rules.

The TR rules can also compute desired materialisation results. For example, theO5 in Exam-
ple 5 is an ontology with transitive-only role chains. We can derive aberdeen : BritishCity ∈
STNFfa(O5) with the TR rules. First we can derive ScottishArea v C3 in the same way as
before. Then we apply TR4b on this axiom and axioms (21), (23), (27), (29) and (30), which
yield aberdeen : C2. After that we can derive aberdeen : BritishCity in the same way as
before.

Compared with the AR rules, entailments involving a : ∃r.A are not computed at all. This
reduces the size of the closure and improves efficiency.

The tractability and soundness of computing the transitive-only nominal-free closure is quite
obvious. We show that this approach should be as complete as the normal nominal-free ap-
proximate reasoning approach when the ontology contains no other role chains except the role
transitivity:

Theorem 14 For a nominal-free ontology O, let a, b ∈ INO be two individuals, A,B ∈ CNO
be two concepts, and r ∈ RNO be a role, if for any r1 ◦ . . . rn v s ∈ O, we have n = 2 and
r1 = · · · = rn = s, then the following holds:

1. A v B ∈ SNFfa(O) iff A v B ∈ STNFfa(O);
2. {a} v A ∈ SNFfa(O) iff a : A ∈ STNFfa(O);
3. {a} v ∃r.{b} ∈ SNFfa(O) iff (a, b) : r ∈ STNFfa(O);

This theorem can be proved in a similar manner as Theorem 12, by showing some invariants
with induction on rule applications.
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The above theorem shows that when a nominal-free ontology contains no role chains except
the role transitivity axioms, its ABox approximate reasoning can be significantly simplified due
to the fact that intermediate results of form a : ∃r.A no longer need to be computed and main-
tained. Such an optimisation will not affect the quality of reasoning and is rather practical as
many of the existing real-world ontologies do not employ complex role chains.

6.4. Combined TBox and ABox Approximate Deduction with Nominals

ABox completion presented in Sec. 6.3 has a restriction that the approximated TBox should
contain no nominals. Following our objective of combining TBox and ABox approximate rea-
soning, in this section we further investigate how to handle ABox when TBox contains nominals.
Considering the following ontology:

Example 7 OntologyO7 contains TBox T7 and ABoxA7. T7 contains axiom (21) and two other
axioms as follows:

BritishCity ≡ City u ∃locatedIn.{england, scotland,wales} (45)
ScottishArea v ∃locatedIn.{scotland} (46)
locatedIn ◦ locatedIn v locatedIn

A7 contains axiom (22) and another axiom as follows:

aberdeen : City

aberdeen : ∃locatedIn.ScottishArea (47)

A name assignment fa(�) assigns the following names (among others):

fa(City u ∃locatedIn.{england, scotland,wales}) = C5

fa(∃locatedIn.{england, scotland,wales}) = C6

fa({england, scotland,wales}) = C7

fa(¬{england} u ¬{scotland} u ¬{wales}) = cC7

fa(∃locatedIn.{scotland}) = C8

fa(∃locatedIn.ScottishArea) = C9

fa(¬{england}) = cEngland

fa(¬{scotland}) = cScotland

fa(¬{wales}) = cWales

fa(¬{grampian}) = cGrampian

fa(¬{aberdeen}) = cAberdeen

Then by Def. 8, we have Afa(O7) = (T ∗city,A∗city, CT ∗city, QT ∗city, IT ∗city), where T ∗city con-
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tains axiom (21) and the following axioms:

BritishCity ≡ C5 (48)
C5 ≡ City u C6 (49)
C6 ≡ ∃locatedIn.C7 (50)
cC7 ≡ cEngland u cScotland u cWales (51)
ScottishArea v C8 (52)
C8 ≡ ∃locatedIn.{scotland} (53)
C9 ≡ ∃locatedIn.ScottishArea (54)

A∗city contains axiom (22) and the following axiom:

aberdeen : C9 (55)

CT ∗city contains name pairs for complementary terms, such as ({england}, cEngland),
({scotland}, cScotland), ({wales}, cWales), (C7, cC7). Note that ({aberdeen}, cAberdeen)
is not included in CTcity because {aberdeen} is not a term of O7.

QT ∗city is empty.
IT ∗city contains corresponding name pairs for locatedIn and its inverse.

This ontology contains nominals in the TBox. Using the internalisation approach will intro-
duce a new nominal {aberdeen} and new CoN cAberdeen, which will trigger further unneces-
sary inference, e.g. deriving fc(BritishCity) v cAberdeen.

One naive strategy for materialising such ontologies is to partition the transformed ABox A
into two disjoint-union subsetsAI andAE such thatAI contains all axioms that are syntactically
reachable from the nominals 5 while AE contains the others. When doing reasoning, AI can be
internalised into the TBox to compute a closure under the R rules. Then the closure can be
combined with theAE to further compute a closure under the AR rules. BecauseAI contains all
nominal reachable ABox axioms and AE contains none, it is easy to realise that such a closure
should contain the same ontology materialisation results as the internalisation approach presented
in Sec. 6.2. But the individuals in AE do not need to be treated as nominals and the reasoning
can be simplified for these individuals as the approach presented in Sec. 6.3.

This partitioning-internalisation approach is similar to the spirit of the modularisation-based
classification recently presented by Armas Romero et. al. [67] and provides a means to combine
the approximate reasoning of TBox and ABox when nominals present. However, it still has its
limitations when applied on real-world ontologies. Particularly, when the ontology is tightly
coupled, the nominal-reachable partitioning becomes too coarser, resulting inAI almost as large
asA. In this case, the reasoner has to internalise almost the entire ABox, making the partitioning
almost useless. For example, the nominal reachable part ofA∗city actually contains all its axioms.

Recall that Lemma 13 suggests that the introduction of CoNs, i.e. concepts of form ¬{a}, is
the major source of redundancy in the internalisation approach. Hence they should be minimised.
In what follows, we show that when the EL++ ontology obtained through transformation satisfies
the nominal-safe criteria described in Theorem 6, TBox and ABox reasoning can be combined

5An axiom is syntactically nominal-reachable if it contains a nominal, or it contains a concept or role name that
appears in another syntcatically nominal-reachable axiom.
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and no non-native CoN is needed in reasoning, where a CoN ¬{a} is native w.r.t. an ontology
O iff it is a term of O. Note that in the ABox internalisation approach (Def. 9) many non-native
CoNs can be created in addition to the native terms.

Such a combined reasoning approach involves the following major components:

1. In order to classify TBox with nominals, the R rules will be needed. Especially, in R18,
the condition {ai} v ∃s.{bj} (1 ≤ i ≤ n, 1 ≤ j ≤ m) should be changed to (ai, bj) :
s (1 ≤ i ≤ n, 1 ≤ j ≤ m) because now these relations are all converted into ABox.

2. Similarly, the AR rules will all be needed.
3. In order to reuse the above rules as much as possible, rules to convert axioms in forms

with and without nominals are needed (Table 9). Each of these rules can be executed on

Table 9: nominal-related axiom conversion rules
IR1 {x} v A ↔ x : A
IR2 {x} v ∃r.{y} ↔ (x, y) : r
IR3 {x} v {y} ↔ x

.
= y

IR4 {x} v fc({y}) ↔ x 6 .= y
IR5 {x} v ∃r.A ↔ x : ∃r.A
IR6 x : {y} ↔ x

.
= y

IR7 x : fc({y}) ↔ x 6 .= y
IR8 x : ∃r.{y} ↔ (x, y) : r

both the→ direction and the← direction, respectively. The← direction can be regarded
as internalisation while the→ direction can be regarded as reverse internalisation.
In order to minimise the use of nominals, each of these rules can be applied only if cor-
responding nominals have already been introduced in inferences. For example, when we
have derived A v ∃r.{a}, a .

= b and ∃r.{b} v B, it is safe to apply IR3 to rewrite a .
= b

into {a} v {b} because both {a} and {b} have already been introduced in other axioms.
This helps to reuse R4 to derive A v B without introducing additional nominals. Note
that native nominals are always introduced.
When introduced nominals are much fewer than individuals, such duplication of entail-
ments will not significantly increase the size of reasoning closure. Nevertheless it’s worth
mentioning that in reasoner implementation it is easy to use one of the two forms to repre-
sent the other to reduce redundancy. Consequently, syntactic variations of corresponding
rules need to be implemented as well.

4. The above R rules and AR rules do not deal with nominals in axioms. To handle them,
additional rules illustrated in Table 10 are needed. Note that CR8a introduces non-native
nominals when certain semantic criteria are met. Nevertheless, their introduction is not
accompanied by introduction of any CoN, thus shall not introduce redundancy.

We use the name CR rules to denote the set of rules containing all the R rules (Table 2,4,5
and 6), AR rules (Table 7), IR1-8 rules (Table 9) and the rules in Table 10. In reasoning the
executions of the R rules yield the following closure:

Definition 13 (Combined Approximate Reasoning Closure) For a ontology O that is trans-
formed to Afa(O) = (T ,A, CT,QT, IT ) w.r.t. a name assignment fa(�), its corresponding
Combined Approximate Reasoning Closure, denoted by SCfa(O), is the set of axioms computed
as follows:
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Table 10: Combined completion rules

CR2 If
d

1≤i≤nAi v fc({b}), for all 1 ≤ i ≤ n, either > v Ai,
or Ai = fc({ai}) and a .

= ai, then a .
= b

CR8a If A v ∃r1.{a}, (a, b) : r2 and r1 ◦ r2 v r3 then A v ∃r3.{b}
CR8b If a : ∃r1.A, A v ∃r2.{b} and r1 ◦ r2 v r3 then (a, b) : r

CR11 If
d

1≤i≤nAi v ⊥, for all j = 1, . . . , i− 1, i+ 1, . . . , n, either > v Aj or
Aj = fc({aj}) and a .

= aj , then a : Ai
CR12 If A v ∃r.{b} and (a, b) : fc(r), then a : fc(A)
CR20 If a : ∃r.B and B v ∃fi(fc(r)).{b}, then a 6 .= b

1. initialising SCfa(O) as T ∪ A;
2. for each term P of O, SCfa(O) = SCfa(O) ∪ {fa(P ) ⊆ fa(P )};
3. for each concept term C of O, SCfa(O) = SCfa(O) ∪ {fa(C) v >};
4. for each individual a in O, SCfa(O) = SCfa(O) ∪ {a .

= a, a : >};
5. repeatedly applying the CR rules on SCfa(O), CT , QT , IT and adding inferred new

axioms into SCfa(O) until no new results can be inferred;

As can be seen from the above definition, the combined closure (Def. 13) is similar to the
combination of the TBox closure (Def. 5) and nominal-free ABox closure (Def. 11) except that
this time TBox and ABox reasonings are not separated, and more importantly, non-native CoNs
are not introduced as in step-3 and 4 of Def. 9.

The CR rules produce the desired results in the closure. For example, aberdeen : BritishCity ∈
SCfa(O7) can be derived without introducing non-native CoN ¬{aberdeen}. First of all, we
can re-derive axiom (47) by applying AR3a on axiom (54) and axiom (55). Then we can re-
derive axiom (46) by applying R3 on axiom (52) and (53). Combining these two axioms with
axiom (21), applying CR8b we can infer

(aberdeen, scotland) : locatedIn (56)

On the other hand, applying R10 on axiom (51) yields that {scotland} v C7. Combining
this with axiom (50) and the above axiom (56), applying AR4b we can derive aberdeen : C6.
Together with axiom (22) we can further derive aberdeen : C5. Together with axiom (48) we
can eventually derive aberdeen : BritishCity. As we can see, in this inference procedure,
{aberdeen} or ¬{aberdeen} does not need to be introduced.

Given the forms of the additional rules in the CR rule set, it is apparent that soundness and
tractability of reasoning can be guaranteed. Furthermore, the results should be as complete as
the internalisation approach:

Theorem 15 For a nominal-safe ontology O under approximate reasoning, let a, b ∈ INO be
two individuals, A,B ∈ CNO be two concepts, and r ∈ RNO be a role, then the following
holds:

1. A v B ∈ SIfa(O) iff A v B ∈ SCfa(O);
2. {a} v A ∈ SIfa(O) iff a : A ∈ SCfa(O);
3. {a} v ∃r.{b} ∈ SIfa(O) iff (a, b) : r ∈ SCfa(O);
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The theorem is similar to Theorem 12 hence we follow a similar proof. The← direction is
obvious because the additional CR rules are special cases of the corresponding R rules where
certain atomic concepts are restricted to nominals.

We can prove the→ directions of the theorem by proving the following stronger lemma:

Lemma 16 For an ontology O, let Afa(O) = (T ,A, CT,QT, IT ) and AI(Afa(O)) be
(T ′, CT,QT, IT ). If we use SI to denote SIfa(O), and SC to denote SCfa(O), then the fol-
lowing invariants hold in each step of computation of SI , where a, b ∈ INO are two individuals,
A,B ∈ CN T are two concepts, and r ∈ RNO is a role:

fc(A), fc(B) ∈ CN T and A v B ∈ SI only if A v B ∈ SC (57)
fc(A) ∈ CN T and A v fc({a}) ∈ SI only if a : fc(A) ∈ SC (58)

A v ⊥ /∈ SI and A v ∃r.B ∈ SI only if A v ∃r.B ∈ SC (59)
A v ∃r.{a} only if A v ∃r.{a} ∈ SC (60)

{a} v B ∈ SI only if a : B ∈ SC (61)
{a} v {b} ∈ SI only if a .

= b ∈ SC (62)
fc({a}) v fc({b}) ∈ SI only if a .

= b ∈ SC (63)
r v s ∈ SI only if r v s ∈ SC (64)

{a} v fc({b}) ∈ SI only if a 6 .= b ∈ SC (65)
{a} v ∃r.{b} ∈ SI only if (a, b) : r ∈ SC (66)
r1 ◦ r2 v s ∈ SI only if r1 ◦ r2 v s ∈ SC (67)

{a} v ⊥ /∈ SI and {a} v ∃r.B ∈ SI only if a : ∃r.B ∈ SC (68)

Apparently the→ directions of the theorem hold if the above lemma holds. Similar as in the
proof of Theorem 12, this lemma can further be proved by induction on application of rules. A
detailed proof is deferred to the Appendix.

It is worth mentioning that, although the syntactic nominal-safety condition as defined in
Def. 7 ensures that the optimisation of ABox reasoning presented in this section can yield the
same results as the internalisation approach, it does not guarantee the completeness of ABox rea-
soning in general, even when the TBox classification results are complete. Below is an example:

Example 8 Ontology O8 contains the following axioms:

A ≡≥ 3 r.B (69)
bi : B (i = 1, 2, 3) (70)
(a, bi) : r (i = 1, 2, 3) (71)
b1 6

.
= b2 (72)

b2 6
.
= b3 (73)

b1 6
.
= b3 (74)

It is easy to see that O8 satisfies the syntactic and semantic nominal safety conditions and
O8 |= a : A. However, using the syntactic approximation techniques presented so far, a : A or
{a} v A will not be included in the computed closure.
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The incompleteness is because our approach does not count the unique r-objects of a. Later
in Sec. 8.2, we will show that supporting such kind of counting with arbitrary cardinality values
will in general lead to intractability.

6.5. ABox Syntactic Approximation Summary

In this section, we presented the transformation (Def. 8) and different approximate deduction
approaches, realised with different rule sets–internalisation with the R rules, or the AR rules, the
TR rules or the CR rules.

This section is based on one of our previous work [66] but has been extensively revised. All
definitions and reasoning rule sets have been extended to support a more expressive DL. Relation
between the original ontology and the transformation result is characterised by Theorem 8. A
new optimisation for transitive-only role chain is introduced (Sec. 6.3.1). A new optimisation
for combined TBox and ABox reasoning with nominals is also developed (Sec. 6.4). The equiv-
alence of results between different ABox approximate reasoning approaches is now formally
characterised (Theorem 12,14 and 15). We explicitly show that the combined approach yields
the same materialisation results as the internalisation approach without introducing unnecessary
complements of nominals when the transformation results of the ontology is nominal-safe as
specified in Theorem 6. This further indicates that they should all be tractable (Theorem 10) and
soundness-guaranteed (Theorem 11).

Notably, in the combined approach (Sec. 6.4) the introduction of non-native CoNs is com-
pletely eliminated. And the introduction of non-native unpaired nominal is minimised to a single
rule CR8a. As we indicated earlier, such introduction will not substantially increase the cost
of computation or the size of the closure. This makes the combined approach the overall most
preferred solution among the ones introduced in this section. When the ontology contains no
nominal, this approach is as efficient as the nominal-free approach (Sec. 6.3) since it contains
all the AR rules. When the ontology contains nominals, it is much more efficient than the inter-
nalisation approach (Sec. 6.2) due to the smaller number of terms. In the next section we will
conduct experiments on ontology materialisation and compare with other off-the-shelf reasoners
to show that this approach is indeed efficient and yields high recalls.

7. Evaluation

To evaluate the effectiveness of our approach and compare to other reasoners, we imple-
mented a syntactic approximation reasoner REL based on the EL++

CQI transformation (cf. Def. 8)
and the CR rules. Hence, its reasoning results will be the combined approximate reasoning
closure (cf. Def. 13). We then conducted experiments on both TBox classification and ontol-
ogy materialisation as defined in Def. 1 with the recent versions of mainstream fully-fledged
OWL 2 DL reasoners. The reasoners we compared with were Pellet 2.3.0 6, HermiT 1.3.8 7

and FaCT++ 1.6.2 8. All of these reasoners and our implementation were using the same
OWLAPI 3.4.5 for parsing of ontologies and retrieval of results. All experiments were con-
ducted in an environment of 64-bit Ubuntu 14.04 with 3.20GHz CPU and 10GB RAM allocated
to the JVM.

6http://clarkparsia.com/pellet/
7http://www.hermit-reasoner.com/
8http://code.google.com/p/factplusplus/
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In each of the following tests, each reasoner was given a 30-minute execution time on each
ontology, to create the corresponding OWLReasoner, to load the OWLOntology object cre-
ated by OWLAPI, to perform reasoning, to retrieve results and then count the numbers. The
recall of REL was calculated against the results of complete reasoners.

7.1. TBox Classification Evaluation
In this evaluation, we mainly examined the ontologies from the HermiT benchmark [27] and

the OWL 2 DL category ontologies from the OWL Reasoner Evaluation Workshop 2013 (ORE2013) 9.
There are 393 ontologies in the HermiT Benchmark. Among these ontologies:

1. 17 ontologies do not conform to the OWL 2 standard (with malformed literals or violating
the global restrictions).

2. 5 ontologies had different results from the 3 fully-fledged reasoners (when the reasoner
could finishing reasoning with the ontology).

3. One ontology was identified as inconsistent by all the 4 reasoners.

We removed these ontologies from comparison as they did not have consistent and coher-
ent classification results. This left us 370 ontologies that reasoning results from fully-fledged
reasoners were coherent. Among these ontologies:

1. HermiT ran out of time on 2 ontologies and was terminated due to error on another one. It
successfully classified the remaining 367 ones.

2. FaCT++ ran out of time on 6 ontologies and was terminated due to error on another 22. It
successfully classified the remaining 342 ones.

3. Pellet ran out of time on 10 ontologies and ran out of memory on another one. It success-
fully classified the remaining 359 ones.

4. REL successfully classified all of them within 5 minutes.

The classification time of REL in comparison to that of HermiT, FaCT++ and Pellet on ontologies
that could be classified by the corresponding fully-fledged reasoner is shown in Figures 1, 2 and
3, respectively. The ontologies in each figure are sorted w.r.t. their classification time by HermiT,
FaCT++ and Pellet, respectively. Time unit is second in all figures.

As we can see from Figure 1-3, REL was in general more efficient than the fully-fledged
reasoners when classifying the HermiT benchmark. Particularly, REL was slower than HermiT
on only 12 ontologies, slower than FaCT++ on only 19 ontologies, and slower than Pellet on
only 11 ontologies. And none of these ontologies took REL more than 5 seconds. On the other
hand, REL was faster than fully-fledged on all ontologies that took either of them more than 1.5
seconds.

In the 370 comparable ontologies, 367 ones could be classified by at least one of the fully-
fledged reasoners. On each of these ontologies, we counted the total number of ancestor and
equivalent concepts for each concept (excluding > and ⊥). We compared the numbers returned
by REL and other reasoners to calculate the recall of REL. A breakdown of the recall distribution
is shown in Table 11.

As we can see from the distribution. REL was empirically highly complete on the HermiT
benchmark. The only one ontology with less than 98% recall contains axioms with empty con-
junction and disjunction, e.g. of form A v

d
B∈∅B. After removing such axioms, REL could

9ORE workshop website: http://ore2013.cs.manchester.ac.uk/
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Figure 1: Classification Time of REL and HermiT on HermiT Benchmark

Table 11: Recall Distribution of REL on HermiT Benchmark
recall #ontology %ontology
100% 358 97.55%

98-100% 8 2.18%
<98% 1 0.27%

achieve 100% recall. All the ontologies that REL was incomplete are relatively easy. They could
be classified by HermiT in less than 8 seconds. REL yielded high recall on ontologies that were
hard for fully-fledged reasoners. In Table 12 we show the time of all reasoners and recall of REL
on ontologies that none of the fully-fledged reasoners could classify in 10 seconds. Note that
there were 2 almost identical variants of FMA Lite. In the table we show the average classifica-
tion time on these 2 ontologies. As we can see in the table, apart from the Gazetteer ontology,
these difficult ontologies are not in tractable DLs. In our additional study, we have also confirmed
that syntactic approximation can achieve 100% recall on the FMA Constitutional ontology [60].

Table 12: Comparison on Hard Ontologies in HermiT Benchmark (t/o: time out; N/A: not applicable)

Ontology O DL HermiT FaCT++ Pellet REL
time recall

FMA Constitutional ALCOIF(D) t/o t/o t/o 58.91 N/A
NCI Thesaurus ALCH(D) t/o t/o t/o 274.583 N/A
Full Galen from Web ELHIF+ error t/o t/o 44.619 N/A
FMA Lite ELI+ 385.072 t/o t/o 3.983 100%
Gazetteer EL+ 51.131 t/o 29.881 10.874 100%

The OWL 2 DL category of the ORE2013 benchmark was used for TBox classification com-
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Figure 2: Classification Time of REL and FaCT++ on HermiT Benchmark

petition, in which HermiT was the winner. Hence, we classified these ontologies with both
HermiT and REL. Same as before, HermiT and REL were given 30 minutes to classify each of
the 203 ontologies. Among these ontologies, HermiT managed to finish reasoning 191 of them
without timeout. REL managed to finish reasoning all of them without timeout. In the ontologies
finished by HermiT, 5 were inconsistent. REL was able to identify 2 of them. The classification
time of REL and Hermit on the 186 ontologies that both reasoners classified without inconsis-
tency are illustrated in Figure 4. The ontologies are sorted by their classification time of HermiT.
The time unit is second.

As one can see from the figure, REL was in general faster than HermiT. Out of the 186
ontologies, REL was faster on 162 of them, and took between 100% to 500% time of HermiT on
another 21 of them, took more than 10 times time on only 2 of them. In total, REL classification
time was about 13.55% of HermiT classification time on these ontologies. REL was notably
faster than HermiT on ontologies that were difficult for HermiT (on the right end of Figure 4).
Furthermore, on the 12 ontologies that HermiT ran out of time, REL spent at most 22.71 seconds
and in average 5.80 seconds.

The distribution of recall of REL on the 186 ontologies is shown in Table 13.

Table 13: Recall Distribution of REL on ORE2013 Benchmark
recall #ontology %ontology
100% 148 79.57%

95-100% 30 16.13%
80-95% 1 0.54%
70-80% 2 1.08%
60-70% 1 0.54%
50-60% 1 0.54%
<50% 3 1.61%
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Figure 3: Classification Time of REL and Pellet on HermiT Benchmark

As one can see, REL was complete on 79.57% of the ontologies, was rather complete (recall
≥ 95%) on most of the remaining ontologies. The ontologies that REL was incomplete are
relatively simple ontologies. They could be classified by HermiT within 10 seconds.

To better understand the incompleteness of REL, we also looked into the ontologies with
incomplete results and analysed the causes for incompleteness:

1. All of the 4 ontologies with recall lower than 60% are caused by disjointness between
datatypes, such as literal and long. Since datatypes were not discussed in this paper
and were not fully supported in the evaluated REL, the reasoner failed to recognise such
disjointness, and hence failed to infer the unsatisfiability of many concepts. This signifi-
cantly reduced the recall of REL. Nevertheless, such a problem can be easily resolved by
treating datatypes as concepts and asserting the disjointness among them. By doing so
REL could achieve 100% recall on these ontologies.

2. Among the other incomplete ontologies, 14 of them are variants of the Pizza ontology. 10

This ontology contains cardinality restrictions in axioms such as:

InterestingP izza ≡ Pizza u (≥ 3 hasTopping.>)

This axiom is similar to the axiom (69) in Example 8. In order to infer that a given Pizza
is an InterestingP izza, the reasoner needs to identify 3 mutually disjoint hasTopping-
fillers of the concept. This can be realised by the following rule:

If X v ∃r.B1, . . . , X v ∃r.Bn, Bi v B,Bi v fc(Bj), r v s and (Y,B, s, n) ∈ QT,
then X v Y

In general, this rule is intractable, as we will discuss in more detail in Sec. 8.2. Neverthe-
less, when the maximal value of n in this rule is a constant, the above rule is tractable. For

10Pizza ontology: http://130.88.198.11/co-ode-files/ontologies/pizza.owl
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Figure 4: Classification Time of REL and HermiT on ORE2013 Benchmark

the pizza ontology variants, n ≤ 3. Hence, this rule can be executed in a tractable manner.
By including this rule in the rule set of REL, REL yields 100% results on all the 14 pizza
variants.

3. Another pattern similar as the above one involves universal restriction with an enumeration
as filler. For example, if there are following axioms in the ontology:

X v ∀r.{a1, . . . , an}
ai : A

Y ≡≤ k r.A

then it is possible to infer that X v Y if there are at least (n − k) pairs of equivalent
individuals in a1, . . . , an. With syntactic approximation, such a pattern can be resolved
using the same cardinality restriction checking rule as shown before. But it will leads to
intractability in the same way in general case if the maximal cardinality value is not fixed.

Such observation shows that REL is in general efficient and rather complete on the majority
of ontologies in the ORE2013 benchmark. The recall of REL can be further improved with-
out affecting its tractability by considering more tailored rules based on the axiom patterns in
ontologies.

To give an indication about why it is non-trivial to perform the syntactic approximation, we
also used a pure EL++ reasoner ELK 0.4.1 11 to classify the ontologies tested in the TBox classi-
fication evaluation and investigated its recall. Although ELK was rather efficient on these ontolo-
gies, it ignored all axioms with expressive power beyond EL++. This led to rather incomplete
results on some complex ontologies. For example, FMA has 33,433 unsatisfiable concepts [60].
ELK was not able to find any of them except the ⊥. Hence, its recall was as low as 0.4% on this
ontology. Such a phenomena can also be observed on the ORE benchmark. The distribution of
recall of ELK on the same 186 ontologies that REL, HermiT and ELK could classify is presented
in Table 14. Comparing Table 14 to Table 13, it can be seen that ELK is much less complete than
REL on these ontologies and the additional rules implemented in REL helped improve the recall.

11ELK reasoner website: https://code.google.com/p/elk-reasoner/
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Table 14: Recall Distribution of ELK on ORE2013 Benchmark
recall #ontology %ontology
100% 113 60.75%

95-100% 12 6.45%
80-95% 20 10.75%
70-80% 19 10.22%
60-70% 3 1.61%
50-60% 6 3.23%
<50% 13 6.99%

The comparison between recalls of REL and ELK clearly suggests that using only an EL++

algorithm to reason with ontologies in more expressive DLs will often leads to significantly
incomplete results. The approximate deduction rules utilised in syntactic approximation can
exploit the semantics of the non-EL++ axioms in these ontologies to partially fill the incom-
pleteness gap and yield high recall on these ontologies.

7.2. Ontology Materialisation Evaluation
In this evaluation, we created a test suite using both benchmark and real-world ontologies.

We included all ontologies in the HermiT Benchmark with more than 100 individuals. We also
included the SEMINTEC 12 ontology, which is developed for semantic web mining, and the VI-
CODI 13 ontology, which is developed to represent the history of Europe. Both of them have
been used as benchmark for ABox reasoning [58]. Besides, we used the ADOxx Metamod-
elling ontologies provided by the BoC-group. 14 These ontologies followed the research in the
MOST (Marrying Ontology and Software Technologies) project, 15 using ontologies to repre-
sent meta-modelling information in model-driven software development and using reasoning
to detect inconsistencies. We used 3 such ontologies with identical TBox and varying size of
ABoxes. 16 We also used the Travel ontology (v26) from the SWAT (Semantic Web Author-
ing Tool) project. 17 Both the BoC ontologies and the Travel ontology are in highly expressive
DLs and have complex TBox and ABox. Some of the ontologies have imported other ontolo-
gies (such as Travel). We have merged these ontologies with their imported ontologies so the
materialisation results presented later are all for the import closures.

For each ontology, we performed ontology materialisation, getting all the subsumptions be-
tween named concepts, all named classifications of all individuals and all named relations be-
tween all pairs of individuals. Recall was then calculated for each of these 3 categories of results.

There are 46 ontologies in the HermiT Benchmark with more than 100 individuals. Among
these ontologies, there are 2 ontologies that the fully-fledged reasoners yielded different re-
sults (when they were able to finish materialising). Another ontology was identified inconsistent
by all 4 reasoners. This left us 43 materialisable ontologies that the fully-fledged reasoners did
not have conflicting results. In these ontologies:

12http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
13http://www.vicodi.org/about.htm
14http://www.boc-group.com/
15http://217.74.68.230/
16Due to intellectual property rights reasons, we have anonymised these ontologies.
17http://swatproject.org/
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1. HermiT ran out of time on one of them and finished materialisation on the remaining 42.
2. FaCT++ ran out of time on 3 of them and was terminated with error on the other 4. It

successfully materialised 36 ontologies.
3. Pellet ran out of time on one of them and was terminated with error on another. It success-

fully materialised 41 ontologies.
4. REL finished materialising all of them. The hardest one took REL about 3 seconds.

The materialisation time of REL in comparison to that of the fully-fledged reasoners on their
corresponding materialisable ontologies is shown in Figure 5. The ontologies are sorted w.r.t.
their materialisation time by the fully-fledged reasoners. Time unit is second.

Figure 5: Materialisation Time on HermiT Benchmark

As we can see from Figure 5, REL was in general more efficient than the other reasoners
on the materialised ontologies. Particularly, REL was slower than HermiT on 5 ontologies and
slower than Pellet on 4 ontologies. None of these ontologies took REL more than 3 seconds. On
the other hand, REL was more efficient than HermiT or Pellet on any ontology that took them
more than 2 seconds and was at least 4 times faster than FaCT++ on all ontologies.

The recalls of REL on entailed named concept subsumptions, named concept assertions and
named role assertions were calculated for all ontologies that at least one fully-fledged reasoner
could materialise. The distribution of these recalls is shown in Table 15

As we can see from Table 15, the recall of REL is practically high on materialising the Her-
miT Benchmark. Subsumption and role assertion recalls are 100%. Class assertion is incomplete
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Table 15: REL Recall on HermiT Benchmark (Sub.: subsumption; CA.: class assertion; RA.: role assertion)

recall Sub. CA. RA.
#ontology %ontology #ontology %ontology #ontology %ontology

100% 43 100% 41 95.35% 43 100%
99-100% 0 0% 1 2.33% 0 0%
95-99% 0 0% 1 2.33% 0 0%

on only 2 ontologies, and the recalls are both above 95%. Similar as in the TBox classification,
the two ontologies on which REL was incomplete are not very difficult. Both of them could be
materialised by HermiT within one second. While REL performed well on ontologies difficult
for other reasoners. In Table 16 we show the time of all reasoners and recall of REL on ontolo-
gies that none of the fully-fledged reasoners could materialise in 5 seconds. Note that, there were
3 almost identical variants of the Wine/Food ontology. In the table we show the average time and
recall on these 3 ontologies for Wine/Food. Also, the 100% recall of REL means that REL had
all the results that were yielded by the fully-fledged reasoner.

Table 16: Materialisation Comparison on Hard Ontologies in HermiT Benchmark (t/o: time out)

Ontology O DL HermiT FaCT++ Pellet REL
time recall

MGED ELFO(D) 5.55 error 5.239 0.04 100%
Sweet Phenomena SHOIN (D) 14.65 error error 0.15 100%
Wine/Food SHOIN (D) 22.59 147.62 8.00 0.21 100%
OBI SHOIN (D) 101.21 t/o t/o 2.98 100%
Teleost taxonomy EL t/o t/o 95.04 1.42 100%

The results shown in Table 16 suggest that REL was efficient and yielded all intended results
when materialising the hardest ontologies in the HermiT Benchmark. It is worth mentioning
that such difficult ontologies are not necessarily big. For example, the Wine/Food ontology
contains only 138 concepts, 16 roles, 206 individuals and 889 axioms. But it was still not easy
for fully-fledged reasoners to materialise. Also note that apart from the Teleost taxonomy, the
other ontologies are not in tractable DLs. Hence, the efficient and highly complete results of
REL on these ontologies could not have been achieved without approximation.

The additional ontologies we used for materialisation evaluation are shown in Table 17. Sim-
ilar as before, every reasoner was given 30 minutes to materialise each ontology. No ontology
had different results from the fully-fledged reasoners (when they were able to materialise). Re-
call of REL was calculated by comparing results of REL and the fully-fledged reasoners. The
time of all reasoners and recall of REL on these ontologies are shown in Table 18. Time unit is
second.

From the results in Table 18 we can see that in general REL preformed very well on materi-
alisation of these ontologies, especially when the ontology was hard for fully-fledged reasoners.
Notably, REL had a 100% recall on all ontologies except the Travel, even if some of the ontolo-
gies are in very expressive DL and are quite complex. This means that REL had 100% results
for named concept subsumption, named class assertion and named role assertion, respectively.

We were, however, unable to obtain the accurate recall of REL on the Travle ontology. This
is because HermiT, as the only fully-fledged reasoner able to materialise the Travel ontology, did
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Table 17: Additional Ontology Materialisation Benchmark Ontologies
Ontology O DL |CN | |RN| |IN | |O|
Semintec ALCIF 60 16 17941 65459
VICODI ALUH 184 10 29614 114375
BoC small SROIQ 408 46 387 4616
BoC middle SROIQ 408 46 2067 25435
BoC big SROIQ 408 46 7734 99525
Travel SROIQ(D) 269 150 2032 8507

Table 18: Additional Ontology Materialisation Comparison (t/o: out of time)

Ontology O HermiT FaCT++ Pellet REL
time recall

Semintec 1.317 t/o 1.764 2.09 100%
VICODI 6.283 t/o 4.041 1.655 100%
BoC small 12.634 271.439 40.365 0.714 100%
BoC middle 175.674 t/o t/o 3.065 100%
BoC big 1302.235 t/o t/o 16.746 100%
Travel 1484.948 t/o t/o 7.834 <100%

not yield all materialisation results. For example, Travel ontology contains the following axioms:

is part of ≡ has part− (75)
EuropeanIsland ≡ Island u ∃is part of.{europe} (76)

In addition, HermiT was able to entail that:

(europe, oldany island) : has part (77)
oldany island : Island (78)

It should have further entail the following two results but it did not:

(oldany island, europe) : is part of (79)
oldany island : EuropeanIsland (80)

Hence, the results yielded by HermiT were incomplete and we cannot know what the com-
plete results should be. We did notice that the results of REL were also incomplete. By looking
into the details of this ontology we realised that Travel is actually not a nominal-safe ontology.
It contains axioms like the following

isola comacina : ∃directPartOf.({continental europe} u ∃is occupied by.{italy})

Assuming fa({continental europe} u ∃is occupied by.{italy}) = X , the above axiom
will lead to an EL++

CQI transformation including the following axiom

X v {continental europe},
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which is not a nominal-safe EL++ axiom. Hence the relation (continental europe, italy) :
is occupied by cannot be inferred with the current rule set in REL. We have identified other
similar axioms in both TBox and ABox of Travel that are not nominal-safe, which partially
explains the missing of some results and also motivates us to investigate approximation based on
a complete EL++ rule set in the future.

7.3. Entailments with Unsafe Nominals in Evaluation Benchmark
In the evaluation presented in the previous two sections, we have tested ontologies with differ-

ent levels of expressive powers, including ontologies without nominals, with only safe nominals
as defined in Def. 7, and potentially with unsafe nominals. As we have shown in Theorem 12
and Theorem 15, the rule set implemented in the evaluated REL should yield as many results as
an internalisation-based approach (as presented in Sec. 6.2) on nominal-free and nominal-safe
ontologies. In order to have a better overview of nominal-free and nominal-safe ontologies in
our evaluation benchmark. We obtained statistics of unsafe entailments (entailments with unsafe
nominals) computed by REL in the evaluation benchmark.

In the 585 ontologies we used, there are 326 ones with at least one individual. The others
apparently will not cause any unsafe entailment. In the 326 ontologies with individuals, there
are 242 ones without any unsafe entailment. These ontologies are either nominal free, or they
satisfy the nominal-safety condition. Some of the hardest ontologies for fully-fledged reasoners,
such as FMA Constitutional, are included in these 242 ones. In the other 84 ontologies with
unsafe entailments, such entailments are few and constitute only a small percentage of the total
entailments inferred by REL. Only 28 ontologies have more than 10 unsafe entailments. Only
one ontology has more than 200 unsafe entailments. The one with the most unsafe entailments
is GALEN-Full-Union ALCHOI(D), on which REL inferred 635 unsafe entailments. This on-
tology, however, has a closure as large as 1,656,159 entailments, in which unsafe ones constitute
only 0.04%. Only 6 ontologies have more than 1% unsafe entailments in their closure. The
highest percentage of unsafe entailments is 4.23% in these ontologies.

These statistics suggest that the nominal-free and nominal-safety conditions can be satisfied
by a large number of real-world ontologies, including some of the most difficult ones such as
FMA Constitutional. Even when it is not satisfied, an ontology usually contains only a very
small percentage of unsafe entailments in its closure. Using syntactic approximation on these
ontologies may lead to incomplete results. But as our evaluation shows, in most cases, the recall
is empirically high.

8. Discussion

In this section, we discuss the relation between our approach and other related works. After
that, we will analyse in more detail the incompleteness of our approach and present the idea and
first result of a partial completeness guarantee of our approach.

8.1. Related Work
Our approach is related to and different from several existing works:

1. As shown in the previous sections, the reasoning of our approach is achieved by computing
the closure of some completion rule set that includes the original EL++ completion-rules
and additional rules that exploit the non-EL++ features. Hence, our approach can be
regarded as a consequence-based approach.

44



Our rule sets include the rules presented in Table 2 and therefore it is sound and complete
for nominal-safe EL++. A difference is that, the transformation presented in Def. 4 in-
troduces a pair (fa(C), fa(~C)) into CT for each term C in the ontology, even if C is
an EL++ concept, and such a structure will be exploited by the additional rules. Hence,
the closure computed by our approach will be larger than that computed by the original
EL++ rules even when applied on EL++ ontologies. For example, if the original ontology
contains an axiom C v D, then due to the involvement of rule R10, the closure of our
approach will include fa(~D) v fa(~C), which corresponds to ¬D v ¬C in the origi-
nal ontology. Such unnecessary entailments in the closure will not increase the complexity
of reasoning but will make our approach less efficient than dedicated EL++ reasoners on
pure EL++ ontologies.
Similar to other consequence-based procedures, the consequences of executing a com-
pletion rule can be used to identify the next rules to be executed. Due to the fact that
the consequences of our rules are always normal form EL++ axioms, our rule set can be
implemented with a rule-chaining mechanism similar to the one presented by Baader et
al. [4]. A difference from other consequence-based procedures is that, our rule sets in-
clude rules whose premise and consequence do not share any concept or role. For example
in R10, the premise is A v B, while the consequence is fc(B) v fc(A). Although A
and fc(A) (B and fc(B)) are related in the CT , they are not structurally or syntactically
related in the closure. To incorporate such rules, the EL++ due-ontology classification
mechanism [77] can be applied so that the completion procedure can be treated as incre-
mental reasoning with the consequences of these rules as newly added axioms. The REL
reasoner we evaluated in Sec. 7 was implemented with such mechanisms.

2. The idea of approximating the reasoning of a complex DL with the reasoning of a simpler
DL is related to that of knowledge compilation. More specifically, a closure S computed
by our approach can be regarded as an upper bound of the original ontologyO in the sense
that for each α ∈ S, if the signature of α is included in that ofO, thenO |= α (Theorem 5).
Nevertheless, there are several essential differences. First of all, knowledge compila-
tion [38, 39, 71, 72] and its DL adoptions [61, 6] attemp to compute the least upper
bounds (and the greatest lower bound) while our approach does not guarantee to com-
pute the least upper bound. We argue that this should not be regarded as a limitation of
our approach. Instead, it is an inevitable consequence of the high complexity of finding a
least upper bounds. In fact, finding the Horn least upper bound of a propositional theory
is already NP-hard [39]. Finding a tractabel-DL least upper bound for an intractabel-DL
ontology is not easier. Particularly, for an ontology O in a DL whose classification cannot
be performed in polynomial time, if one can compute in polynomial time a EL++ least
upper bound O′ of O s.t. for any other upper bound O′′ we have O′ |= O′′, then the clas-
sification of O can be performed by classifying O′ because O′′ = {A v B|O |= A v B}
is also an upper bound of O. This is contradictory to the intractability of classification of
O. This implies that, it is impossible to find the semantically most complete EL++ ap-
proximation of the original ontology in polynomial time. Without attempting to compute
such an optimal approximation, our approach, as Theorem 4 and 10 showed, is tractable.
The NP-hardness of computing the least upper bound also leads to the separation of off-
line and on-line computation in knowledge compilation. In order to achieve tractable
reasoning in the on-line stage, intractable compilation is performed off line and can be
time-consuming. Our approach presented in this paper does not require such an off-line
compilation stage and its entire procedure is tractable.
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3. Similar as the original EL++ rules, the additional completion rules presented in this paper
are individually tractable. This is achieved by ensuring that all the rules can be executed in
polynomial time and the size of the closure is polynomial w.r.t. the size of the original on-
tology. This is different from some other intractable consequence-based algorithm [41, 73],
in which the execution of certain rules may lead to an exponential blowup of the closure.
The idea of avoiding complex inference steps is similar to that of approximate deduc-
tion. For example, disallowing the modus ponens rule in propositional calculus facilitates
tractable consistency checking [23, 22]. Despite the conceptual resemblance, the applica-
tion setting and concrete techniques of our approach is quite different from these earlier
works. Most notably, we are dealing with DLs instead of propositional logic.
Of course, avoiding intractable rule execution will affect the completeness of our rule sets
on expressive DLs. In the next section, we will further discuss such impact in more detail
with examples.

8.2. Incompleteness

Our approach is soundness guaranteed but incomplete. Due to the intractability of SROIQ,
it is in general not possible to develop a tractable procedure that guarantees complete results for
SROIQ. In fact, the simple combination of EL++ with inverse role will cause intractability [1].
In this section, we show that repairing certain incompleteness of our approach will lead to an
intractable procedure.

The first type of such incompleteness is related to resolution. Consider the following exam-
ple:

Example 9 Ontology O9 contains the following axioms:

A v B t C (81)
A v D t ¬C (82)
B tD v E (83)

A name assignment fa(�) assigns the following names (among others):

fa(B t C) = X1

fa(¬B u ¬C) = cX1

fa(D t ¬C) = X2

fa(¬D u C) = cX2

fa(B tD) = X3

fa(¬B u ¬D) = cX3

fa(¬A) = cA

fa(¬B) = cB

fa(¬C) = cC

fa(¬D) = cD
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Then we shall have Afa(O9) = (T9,A9, CT9, QT9, IT9), where T9 contains the following
axioms:

A v X1 (84)
A v X2 (85)
X3 v E (86)
cX1 ≡ cB u cC (87)
cX2 ≡ cD u C (88)
cX3 ≡ cB u cD (89)

CT9 contains pairs such as (Xi, cXi) (i = 1, 2, 3), (A, cA), (B, cB), (C, cC), (D, cD).

Obviously, we have O9 |= A v E. However, such a result cannot be computed by our
approach proposed in this paper. This is because our approach does not resolve conjunctive
disjunctions, e.g. resolving (B t C) u (D t ¬C) into B tD.

One can, for example, extend the rule set with the following resolution rule:

If A1 u · · · uAi u . . . An v X1, B1 u · · · uBj u . . . Bm v X2, X1 v Y,X2 v Y,Ai v fc(Bj),
then A1 u · · · uAi−1 uAi+1 u · · · uAn uB1 u · · · uBj−1 uBj+1 u · · · uBm v Y.

Then the rule set will be able to infer that A v E. Particularly, from (84) and (85) one can infer
that cX1 v cA and cX2 v cA. Then applying the above resolution rule together with (87) and
(88) yields that cB u cD v cA. Together with (89) this implies that cX3 v cA, which can be
further combined with (86) to infer that A v E.

However, such a new rule will generate consequences of form A1 u . . . An v X , where Ai
are atomic concepts in the approximated TBox and n is bounded by the size of the vocabulary.
In worst case, the total number of such axioms will be exponential w.r.t. the size of the ontology.
This means that the inclusion of such a rule will lead to intractability of the completion closure.
In fact, consequence-based algorithm forALCH [73] includes a variation of the above resolution
rule (the Rnu rule) and consequently such an algorithm is intractable.

This intractability result is not surprising. It has been shown that an exponential lower bound
can be established for the time complexity of resolution [82]. Therefore, it is impossible to
develop a tractable algorithm that supports resolution in general. In order to provide worst-case
tractable classification and materialisation, our approach does not fully cover resolution and is
incomplete in this regard.

Another type of incompleteness is related to cardinality. In Example 8 we already discussed
such kind of incompleteness. It is also the reason behind the incompleteness of REL on the Pizza
ontology variants in our evaluation. Below is an example showing a more generic case:
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Example 10 Ontology O10 contains the following axioms (among others):

X v ∃ri.Bi (i = 1, . . . , k) (90)
Bi v B (i = 1, . . . , k) (91)
ri v r (i = 1, . . . , k) (92)
X v≥ Nj rj .Bj (j = k + 1, . . . , n) (93)
Bj v B (j = k + 1, . . . , n) (94)
rj v r (j = k + 1, . . . , n) (95)
≥ N r.B v Y (96)

And there is a set B1 ⊆ {B1, . . . , Bk} and another set B2 ⊆ {Bk+1, . . . , Bn} s.t. the
following holds:

∀Bi, Bj ∈ B1 ∪ B2, there is Bi v ¬Bj ∈ O10 (97)
|B1|+ ΣBj∈B2

Nj ≥ N (98)

A name assignment fa(�) assigns names such that

fa(≥ Nj rj .Bj) = Yj (j = k + 1, . . . , n)

fa(≥ N r.B) = Z

fa(¬Bi) = cBi (i = 1, . . . , n)

Then we shall have Afa(O10) = (T10,A10, CT10, QT10, IT10). Particularly, the above
axioms (93) will be approximated into X v Yj ∈ T10, where (Yj , Bj , rj , Nj) ∈ QT10. The
above axiom (96) will be approximated into Z v Y ∈ T10, where (Z,B, r,N) ∈ QT10. And the
above axioms in (97) will be approximated into (Bi v cBj) ∈ T10, where (Bj , cBj) ∈ CT10.

It can be shown that O10 |= X v Y :

1. Let x be an arbitrary instance of X , x will have an ri-object of type Bi for each Bi ∈ B1,
due to axioms (90).

2. Similarly, x will have Nj rj-objects of type Bj for each Bj ∈ B2, due to axioms (93).
3. Since ri/j v r and Bi/j v B, x will have |B1|+ ΣBj∈B2Nj r-objects.
4. Due to condition (97), all these r-objects are different from each other.
5. Due to condition (98), x is of type ≥ N r.B, hence x is also an instance of Y .

However, it can be realised that X v Y will not be computed by our approach presented
in this paper. This is because our approach does not count the unique fillers of existential and
minimal cardinality restrictions.

Such incompleteness can be repaired by the following cardinality counting rule:

If X v ∃s.Ai (i = 1, . . . , l), X vWj with (Wj , Aj , sj ,Mj) ∈ QT (j = l + 1, . . . ,m),

Ai v A (i = 1, . . . ,m), sj v s (j = l + 1, . . . ,m), Ai v fc(Aj) (i, j = 1, . . . ,m),

l + Σj=l+1,...,mMj ≥M and (W,A, s,M) ∈ QT , then X vW

Our approach can infer that X v Y with the extended rule set.

48



Nevertheless, such a new rule will also introduce intractability into the reasoning procedure.
Although the rule does not generate new form of consequence, its premise has a larger search
space. Particularly, there are in total k Bis and (n− k) Yjs in Afa(O10). In order to execute the
rule for Afa(O10), the algorithm needs to find l Bis from the total k ones and (m− l) Yjs (and
correspondingly the Bjs) from the total (n − k) ones that satisfy the cardinality restriction and
disjointness. Note that 1 ≤ m ≤ n is a variable. In worst case, it will need to search for
2n combinations of Bis and Bjs. Even if we disallow the use of axioms similar to (93) in the
original ontology, the algorithm will still need to search for k!

N ! combinations of mutually-disjoint
Bis. If the ontology contains multiple cardinality restriction axioms of form (96) with different
values of N , in worst case, the algorithm still needs to perform 2k searches, where k is bounded
by the size of the concept vocabulary.

In order to avoid intractability in our approach, we did not include the above cardinality
counting rule in the rule set presented in this paper.

Nevertheless, when the maximal value of cardinality in all cardinality restrictions is a con-
stant, the above rule is tractable. Such a phenomenon is exploited by our TrOWL reasoner 18 to
provide efficient reasoning in ontology-based pharmacogenomic decision support solution with
the Genomic-CDS ontology [54].

A further type of incompleteness is caused by the interaction between existential restrictions
and universal restrictions. Below is a simple example illustrating such an interaction:

Example 11 Ontology O11 contains the following axioms:

X v ∃r.A (99)

∃r−.X v B (100)
A uB v C (101)
∃r.C v D (102)

A name assignment fa(�) assigns the following names:

fa(r−) = ir

fa(∃r−.X) = Y

Then we shall have Afa(O11) = (T11,A11, CT11, QT11, IT11). Particularly, the above
axiom (100) will be approximated to Y v B and Y ≡ ∃ir.X in T11. IT11 will include (r, ir).

From the example it can be derived that O11 |= X v D. Particularly, axioms (100) is
equivalent to X v ∀r.B, which together with axiom (99) entails the following

X v ∃r.(A uB) (103)

This entailment is exactly what is missing from our approach, which makes it not possible
to derive X v D with our approach. It can be recovered if the rule set is extended with the
following rule, where C is of form A1 u · · · uAn (n ≥ 1):

If X v ∃r.C, Y v B, Y ≡ ∃fi(r).X , thenX v ∃r.(C uB)

18TrOWL is a public released reasoner that implements the classification and materialisation mechanism developed in
this paper.
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In fact, a more generalised variation of the above rule is used in consequence-based algo-
rithms for Horn-SHIQ [41] and ALCH [73] to deal with similar forms of interactions between
existential restrictions and inverse roles (note that an ALCH axiom of form X v ∀r.B is equiv-
alent to the axiom (100) in our example). Nevertheless, the computational price is that such a
rule will generate consequences of form X v ∃r.(A1 u · · · u An) with n ≥ 1. This results in
an exponential increase of the size of the closure. This contributes to the worst-case exponential
complexity of the said Horn-SHIQ and ALCH algorithms. In order to ensure the tractability
of our approach, we did not include such a rule in our rule set.

8.3. Towards Partial Completeness
As we observed in the previous section, there are several patterns of axioms on which our

approach will yield incomplete results. Such observations can be exploited to develop partial
completeness-guarantee for our approach. To illustrate the idea, in this section, we present a
partial completeness-guarantee for restricted ELHI ontologies based on the pattern shown in
Example 11. A comprehensive investigation of the (partial) completeness of tractable algorithms
on intractable DLs is beyond the scope of the current paper and will be left for future work.

The DL ELHI is an extension of EL with inverse roles. Without lose of generality, in this
section we focus on its TBox classification. We also assume such TBoxes consist of only normal
form axioms. In ELHI, normal form TBox axioms can be of the following forms:

A v B (104)
A1 u · · · uAn v B (105)
A v ∃R.B (106)
∃R.A v B where A 6= > (107)
R v S (108)

where A(i), B can be >, ⊥ or named concepts, R and S are named roles or their inverse. Note
that an axiom of form ∃R.> v B is essentially a range restriction of inv(R) and can always
be eliminated without affecting the semantics of the TBox [1]. Hence, we omit such a form of
axioms here for the sake of conciseness. An example of such an ELHI TBox is the ontology
O11 in Example 11. Following the intractability result of ELI [1], we know that the worst case
complexity for ELHI TBox classification is exponential.

As Example 11 shows, the incompleteness of our approach on ELHI occurs when there
are interactions between existential restrictions and inverse roles. Such incompleteness can be
avoided if we restrict the interactions. There are many ways to achieve this goal. In this section,
we employ the idea of safe role developed by Carral et al. [12] and use it to establish a sufficient
condition for restricted ELHI in which our approach yields complete results. Particularly, a role
R is safe in an ELHI TBox O iff one of the following two situations occurs:

1. R does not occur in any axiom of form A v ∃R.B ∈ O;
2. If there is an axiom ∃S.A v B ∈ O, then R 64∗ inv(S), where R 4 S if one of the

following situations occurs:
(a) R = S;
(b) Inv(R) v Inv(S);
(c) R v S ∈ O;

With this notion, the following theorem shows that our approach is complete for classification
of ELHI TBoxes with only safe roles:
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Theorem 17 Let O be an ELHI TBox with only safe roles and TAfa(O) its TBox transfor-
mation with name assignment fa(�), then for any A,B ∈ CNO, O |= A v B iff A v B ∈
ST (TAfa(O)) or A v ⊥ ∈ ST (TAfa(O)).

The← direction of this theorem immediately follows from the soundness of our approach (The-
orem 5) therefore we will only need to prove the completeness. The → direction of this theo-
rem can be proved with model construction and contrapositive. Particularly, assuming there are
X,Y ∈ CNO s.t. O |= X v Y , X v Y /∈ ST (TAfa(O)) and X v ⊥ /∈ ST (TAfa(O)), we
can show that a model I of O can be constructed such that I 6|= X v Y .

This theorem has the following implications:

1. Given the tractability of our approach, this theorem also confirms part of the results of
Carral et al. [12], i.e. ELHI ontologies with only safe roles can be reasoned with by
tractable algorithms with complete results.

2. Note that another tractable description logic DL-LiteR [10], which is the logic underpin-
ning the OWL 2 QL profile, always satisfies the condition in this theorem. Hence, our
approach is also complete for DL-LiteR.

3. The condition identified in this theorem is a sufficient condition but it is not necessary.
Our approach may yield complete results even if an ontology does not satisfy the safe-
role-only condition. For example, the ontologyO11 in Example 11 contains an unsafe role
r. It remains unsafe if we extend O11 with an additional axiom A v B. However, with
such an extension, our approach will now be able to infer that X v D. This suggests that
a weaker completeness guarantee can be developed. We will look into this in our future
work.

As we mentioned at the beginning of this section, it is not the focus of this paper to develop
a comprehensive completeness guarantee. Therefore, the partial completeness guarantee devel-
oped in this section is limited. For example, it does not cover the tractable OWL 2 RL profile.
Nevertheless, covering OWL 2 RL with only our approach is not really significant because it
can be easily achieved by incorporating into our rule set the complete and tractable completion
rules of OWL 2 RL [45]. What will interest us is to identify the conditions in which combina-
tions of ELHI, RL and even more expressive DL features such as cardinality restrictions and
complements can be covered by our approach or its extensions. The partial completeness study
presented in this section points out a direction to address this problem, i.e. limiting the interac-
tions between different DL features. Particularly, we conjecture that it is possible to extend the
result in Theorem 17 to a sufficient condition for completeness guarantee of our approach on DL
SRIQ by eliminating the necessity of performing resolution and cardinality counting. We will
look into this problem in our future work.

9. Conclusion & Future Work

In this paper, we presented an approach to addressing the issue of real time approximate
reasoning in expressive DL SROIQ, the logic underpinning OWL 2 DL. Although our approach
does not produce an optimal approximation like semantic approximation [61], which is expensive
to compute, it is soundness preserving, tractable (in PTIME) and produces very high recalls,
evidenced by our evaluations on benchmark and real-world ontologies.
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The proposed approach consists of two parts. The first part is a transformation from an
SROIQ ontology to an EL++ ontology plus a complement table (CT) maintaining the com-
plementary relations between predicates, a cardinality table (QT) maintaining cardinality infor-
mation and a inverse table (IT) maintaining inverse relations. Such a transformation can be
performed on TBox alone (Def. 4), or on both TBox and ABox (Def. 8). The result is essentially
a syntactic variant of the original TBox or ontology that preserves all reasoning results, as we
have shown in Theorem 2 and Theorem 8. Therefore this part can be regarded as a normalisation
or structural transformation procedure.

The second part of our approach is a set of TBox approximate deduction rules and sev-
eral more and more optimised ABox approximate deduction procedures with more and more
fine-grained completion rules. The purpose of these rule sets is to approximate a fully-fledged
SROIQ materialisation procedure by considering only the interactions between axiom pat-
terns that can be addressed in polynomial time. We show that the optimised ABox reasoning
procedures can improve efficiency without losing results compared to the internalisation proce-
dure (Theorem 12, Theorem 14 and Theorem 15) when certain syntactic requirements are met.
Particularly, we extend the notion of EL++ nominal-safety (as described in Def. 6, Def. 7 and
Theorem 6) to facilitate the optimisation of combined TBox and ABox materialisation with nom-
inals.

Our approach is different from many other approximation approaches in a sense that instead
of weakening an ontology in a more expressive language L1 into a less expressive language L2

so that it can be reasoned with by a fully-fledged reasoner of L2, we are actually weakening
the reasoning procedure of L1, granted that this weaker procedure is obtained by extending the
reasoning procedure of L2. To facilitate such an approximate deduction procedure between those
of L1 and L2, we transform the ontology into L2-like forms. Nevertheless, such a transformation
is purely syntactic and the approximate deduction are actually performed on L1 axioms. In
fact, it is possible to rewrite the rules so that they can be directly used to materialise SROIQ
ontologies.

An important consequence of the above characteristic that distinguishes our approach from
the other tractable reasoning solutions is that the tractability is not achieved by restricting the
syntax of the ontology, but rather the possible interactions between axioms. Therefore it allows
users to construct ontologies with more expressive constructors as they see appropriate but still
enjoy the tractable reasoning service with high quality, especially when the expressive construc-
tors in these ontologies only interact with each other in reasoning in limited manners. From our
evaluation it can be seen that many real-world ontologies, despite being in very complex DLs,
are actually created in this way hence our approach can offer highly efficient reasoning with
very high recalls. By further restricting the interactions between different DL features to avoid
intractability, it is even possible to devise partial completeness guarantee for our approach (The-
orem 17).

Recall that in the introduction we discussed three categories of approaches to ontology rea-
soning, namely fully-fledged algorithms for expressive DLs, dedicated algorithms for light-
weight DLs and approximation-based approaches. Our work belongs to the third category. In the
future we would like to further explore its implication on the other two categories. Particularly:

1. Our work approximates a fully-fledged reasoning procedure of SROIQwith a completion-
based algorithm. It is interesting to extend on the current rule set to develop an actual
fully-fledged completion-based algorithm for SROIQ by introducing certain intractable
rules, e.g. the ones examined in Sec. 8.2.
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2. Following the result of Theorem 17, another interesting research topic is to establish a
maximal completeness guarantee for our approach. In other words, we would like to iden-
tify a set of conditions such that when an ontology satisfies these conditions, our approach
is guaranteed to provide complete materialisation results. The discovery of such conditions
essentially means the development of a new tractable DL.

Despite their relevance to the work presented in the current paper, they are exploring either
an intractable algorithm, or a new stand-alone tractable DL. Hence they are not within the scope
of the current paper and should be investigated as their own tracks of work.

Last but not least, we would like to adopt the idea of parallel reasoning presented by Kazakov
et. al. [42] in our approach so that efficiency can be further improved. In this work, the new
research challenge is to formulate the rules in ways that parallelisation can be achieved.
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Appendix

In this appendix we provide proofs for all propositions, lemmas and theorems in the paper.
The proofs for Proposition 1, Proposition 3, Theorem 4, Theorem 5, Proposition 7, Proposi-

tion 9, Theorem 10 and Theorem 11 are relative simple. The other proofs are more sophisticated.

Proposition 1 (TBox Linear Transformation) In Def. 4, transforming fromO to TAfa(O) can
be done in linear time.

Proof We prove the proposition by showing that for any ontologyO and its TBox transformation
(T , CT,QT, IT ), if O contains nO number of terms, then we have:

1. |T | ≤ nO + |O|;
2. |CT | = nO;
3. |QT | ≤ nO;
4. |IT | = 4× |RNO|.

where |T | and |O| are the numbers of axioms in T andO, respectively. |CT | (|QT |, |IT |, |RNO|)
is the number of pairs (triples, or elements) in CT (QT , IT ,RNO).

Particularly:

1. |T |: For each axiom in O, at most one axiom is added into T (Step-2 to 4). For each term
in O, at most one axiom is added into T (Step-5). Together |T | ≤ nO + |TO|.

2. |CT |: For each term in O, one element is added into CT (Step-5).
3. |QT |: For each term in O, at most one element is added into QT (Step-5.c.iii).
4. |IT |: For each role in O, four elements are added into IT (Step-6). �

Theorem 2 (TBox Reasoning Preservation) For any ontology O = (TO,AO) and its TBox
transformation (T , CT,QT, IT ), let T ′ be a TBox constructed as follows:

1. T ′ is initialised as T ;
2. for any concept pair (A,B) ∈ CT , T ′ = T ′ ∪ {A ≡ ¬B};
3. for any role pair (r, s) ∈ CT , T ′ = T ′ ∪ {Dis(r, s)};
4. for any (A,B, r, n) ∈ QT , T ′ = T ′ ∪ {A ≡≥ nr.B};
5. for any (r, s) ∈ IT , T ′ = T ′ ∪ {r ≡ Inv(s)};

then for any GCI α with Σα ⊆ ΣTO , we have TO |= α iff T ′ |= α:

Proof This theorem can be proved by showing that TO ∪ T ′ ∪ Tfa is a ΣTO -conservative exten-
sion [52] of both TO and T ′, where Tfa is the set of definition fa(P ) ≡ P for all term P of O
except complement of roles. A TBox T1 is a Σ-conservative extension of another TBox T2 for
Σ ⊆ ΣT2 iff T2 ⊆ T1 and for any GCI α with Σα ∈ Σ, T1 |= α implies T2 |= α.

We first show that TO ∪ Tfa ∪ T ′ is a conservative extension (CE) of TO by induction.
Apparently TO ⊆ TO ∪ T ′ ∪ Tfa and TO ∪ Tfa is a CE of TO since it only adds definitions of
fresh names. Assuming some Ti with TO ∪ Tfa ⊆ Ti ⊆ TO ∪ Tfa ∪ T ′ is a CE of TO, an axiom
β ∈ T ′ \ Ti can be of the following origins:

1. β is generated by Step-2 or Step-3 of Def. 4: β simply rewrites an axiom in TO with the
name assignments of the corresponding LHS and RHS of the axiom. Given that all name
assignments are defined by Tfa except those of complement of roles, and complement of
roles don’t appear in TO, we have Ti |= β. Hence Ti ∪ {β} is still a CE of TO;
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2. β is generated by Step-4 of Def. 4: β is of form r v s where r is a named assignment
defined by Tfa and s as the name assignment of some role S do not appear anywhere in
TO, we shall still have Ti ∪ {β} a CE of TO;

3. β is generated by Step-5.(a) of Def. 4: Given that Tfa ⊆ Ti we know that Ti |= β hence
Ti ∪ {β} is still a CE of TO;

4. β is generated by Step-5.(b) of Def. 4: here we have two possibilities:
(a) β is the axiom fa(C) ≡ ∃fa(R).fa(D): since C ≡ ∃R.D is a tautology and
Tfa ⊆ Ti, we have Ti |= β hence Ti ∪ {β} is a CE of TO;

(b) β is the axiom ∃fa(Inv(R)).fa(~C) v fa(~D): from C ≡ ∃R.D we have Ti |=
∃R.D v C, hence Ti |=~C v ∀R.~D. This further implies Ti |= ∃Inv(R).~C v~D.
Together with Tfa ⊆ Ti we have Ti |= β hence Ti ∪ {β} is a CE of TO;

5. β is generated by Step-5.(c).i of Def. 4, then β is a tautology.
6. β is generated by Step-5.(c).ii of Def. 4, then it is similar to the above situation of 5.(b)

that Ti ∪ {β} is still a CE of TO;
7. β is generated by Step-5.(c).iii of Def. 4: since C ≡≥ nR.D is a tautology, we have
Ti |= C v ∃R.D. With Tfa ⊆ Ti it is easy to show that Ti |= β hence Ti ∪ {β} is still a
CE of TO;

8. β is generated by Step-2 in Theorem 2: apparently there is a concept term C of O s.t.
β = fa(C) v ¬fa(~C). Given that Tfa ⊆ Ti, we have Ti |= β and hence Ti ∪ {β} is
still a CE of TO;

9. β is generated by Step-3 in Theorem 2: apparently there is a role term R of O s.t. β =
Dis(fa(R), fa(~R)). Since complement of roles are not supported in SROIQ TBox,
either fa(R) or fa(~R) is a fresh role name that do not appear in TO. Hence Tfa ∪ {β}
is still a CE of TO;

10. β is generated by Step-4 in Theorem 2: apparently there is a concept term C =≥ nR.D in
O s.t. β = fa(C) ≡≥ nfa(R).fa(D). Given that Tfa ⊆ Ti, we have T |= β and hence
Ti ∪ {β} is still a CE of TO;

11. β is generated by Step-5 in Theorem 2: apparently there is a role term R in O s.t. β =
fa(R) ≡ Inv(()fa(Inv(R))). Given that {R ≡ fa(R), fa(Inv(R)) ≡ riR} ⊆ Tfa ⊆
Ti, we have Ti |= β and hence Ti ∪ {β} is still a CE of TO;

Together we can show that TO ∪ Tfa ∪ T ′ is a CE of TO.
We can show that TO∪Tfa∪T ′ is a CE of T ′ by showing that T ′ |= Tfa and T ′∪Tfa |= TO.
For every axiom β = fa(P ) ≡ P ∈ Tfa, we perform structural induction on P . Note that P

is in negation normal form hence P may contain constructors such as t, ∀, ≤:

1. If P ∈ CNO ∪RNO, according to Def. 3 β is a tautology and obviously T ′ |= β;
2. If P is of form ¬C, β = fa(¬C) ≡ ¬C. Since C is also a term, by structural induction

we have T ′ |= fa(C) ≡ C. We also have (C,¬C) ∈ CT , hence by Step-2 of Theorem 2
we have fa(C) ≡ ¬fa(¬C) ∈ T ′. Together we have T ′ |= β;

3. If P is of form C u D, β = fa(C u D) ≡ C u D. Since C and D are also terms, by
structural induction we have T ′ |= fa(C) ≡ C and T ′ |= fa(D) ≡ D. By Step-5.(a) of
Def. 4 we have fa(C uD) ≡ fa(C) u fa(D) ∈ T ′. Together we have T ′ |= β;

4. If P is of formCtD, β = fa(CtD) ≡ CtD. Since ~C and ~D are terms, by structural
induction we have T ′ |= {fa(~C) ≡ ¬C, fa(~D) ≡ ¬D}. Since ~Cu~D is also a term,
by Def. 4 we also have fa(~Cu~D) ≡ fa(~C) u fa(~D). By Step-2 of Theorem 2 we
also have fa(C tD) ≡ ¬fa(~Cu~D) ∈ T ′. Together we can infer that T ′ |= β;
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5. If P is of form ∃R.C, β = fa(∃R.C) ≡ ∃R.C. Both R and C are terms. By structural
induction we have T ′ |= fa(R) ≡ R and fa(C) ≡ C. We also have fa(∃R.C) ≡
∃fa(R).fa(C) ∈ T ′. Together we have T ′ |= β;

6. If P is of form ∀R.C, β = fa(∀R.C) ≡ ∀R.C. R and ~C are terms hence we have T ′ |=
{fa(R) ≡ R, fa(~C) ≡ ¬C}. ∃R.~C is also a term, by Def. 4 we have fa(∃R.~C) ≡
∃fa(R).fa(~C) ∈ T ′. By Step-2 of Theorem 2 we also have fa(∀R.C) ≡ ¬fa(∃R.~C) ∈
T ′. Together we have T ′ |= β;

7. If P is of form ≥ nS.C, β = fa(≥ nS.C) ≡≥ nS.C. S and C are terms hence we have
T ′ |= {fa(R) ≡ R, fa(C) ≡ C}. By Def. 4 we have (fa(≥ nS.C), fa(C), fa(S), n) ∈
QT . From Step-4 of Theorem 2 we also have fa(≥ nS.C) ≡≥ nfa(S).fa(C) ∈ T ′.
Together we have T ′ |= β;

8. If P is of form ≤ nS.C, β = fa(≤ nS.C) ≡≤ nS.C. S and C are terms hence we
have T ′ |= {fa(R) ≡ R, fa(C) ≡ C}. ≥ n + 1S.C is also a term. By Def. 4 we have
(fa(≥ n + 1S.C), fa(C), fa(S), n + 1) ∈ QT . From Step-4 of Theorem 2 we further
have fa(≥ n+ 1S.C) ≡≥ n+ 1fa(S).fa(C) ∈ T ′. From Step-2 of Theorem 2 we also
have fa(≤ nS.C) ≡ ¬fa(≥ n+ 1S.C). Together we have T ′ |= β;

9. If P is of form R−, β = fa(R−) ≡ R−. R is term hence we have T ′ |= fa(R) ≡ R.
By Def. 4 we have (fa(R), fa(R−)) ∈ IT . Together with Step-5 of Theorem 2 we have
fa(R−) ≡ fa(R)−. Together we have T ′ |= β.

By induction we can show that T ′ |= Tfa.
For every axiom β ∈ TO, β can be either a GCI, or an RI, or a role disjointness axiom:

1. If β is a GCI or an RI, then it is obvious that T ′ ∪ Tfa |= β because T ′ contains β with
expressions replaced by names and Tfa contains the equivalence between expressions and
corresponding names;

2. If β is of form Dis(R,S). From Step-4 of Def. 4 we have fa(R) v fa(¬S) ∈ T ′. From
Step-3 of Theorem 2 we have Dis(fa(S), fa(¬S)) ∈ T ′. We also have fa(R) ≡ R and
fa(S) ≡ S ∈ Tfa. By semantics of role disjointness we have T ′ ∪ Tfa |= β.

Together we have T ′ ∪ Tfa |= TO. Since we also have T ′ |= Tfa we have T ′ |= Tfa ∪ TO.
Hence we know that T ′ ∪ Tfa ∪ TO is a CE of T ′.

Note that ΣTO ⊆ ΣT ′ . Together with the conclusion that T ′ ∪ Tfa ∪ TO is also a CE of TO,
we can infer that for any GCI α with Σα ⊆ ΣTO , we have TO |= α iff T ′ ∪ Tfa ∪ TO |= α iff
T ′ |= α. �

Proposition 3 (TBox Approximation) For an ontologyO, let TAfa(O) be (T , CT,QT, IT ) as
defined in Def. 4, then T is an EL++ TBox such that for any axiom α with Σα ⊆ ΣO, we have
T |= α only if O |= α.

Proof It is obvious that T only contains EL++ TBox axioms.
The soundness of T w.r.t. O is an apparent corollary of Theorem 2 since T ⊆ T ′, which

preserves all semantics of TO, the TBox of O. �

Theorem 4 (TBox Approximate Reasoning Complexity) For an ontology O, its TBox Approx-
imate Reasoning Closure ST (TAfa(O)) can be computed in polynomial time w.r.t. the size of
O.
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Proof Assume TAfa = (T , CT,QT, IT ), from Proposition 1 we know that T , CT , QT and
IT are all in linear size, and can be generated in linear time w.r.t. the size of O. Also, the
normalisation of T can be performed in linear time.

It is sufficient to prove this theorem by showing that ST (TAfa(O)) can be computed in
polynomial time w.r.t. |CN T | + |RN T |: First of all, it is easy to implement an algorithm that
initialises ST (TAfa(O)) as specified by Step-1 in Def. 5. Then the algorithm repeatedly applies
all rules until no more changes can be made on ST (TAfa(O)).

Due to the following facts that:

1. there are at most |CN T | × |CN T | atomic concept subsumptions of the form A v B;
2. there are at most |CN T | × |RN T | × |CN T | concept inclusions of the form A v ∃r.B;
3. there are at most |RN T | × |RN T | role inclusions of the form r v s;
4. there are at most |RN T |3 role inclusions of the form r1 ◦ r2 v∗ r3;
5. each rule application generates one axiom of one of the above forms, and once an axiom

is inferred it will not be removed.

It is obvious that the application of rules will be performed in polynomial times w.r.t. |CN T | +
|RN T |. The theorem can thus be proved. �

Theorem 5 (TBox Approximation Reasoning Soundness) For an ontologyO, letα be an axiom
such that Σα ⊆ ΣO, then α ∈ ST (TAfa(O)) only if O |= α.

Proof This theorem directly follows from the facts:

1. As Theorem 2 shows, the transformation in Def.4 is a syntactic variant of the original
TBox that replaces each concept expression with a atomic concept, each role expression
with an atomic role. Additional axioms are essentially tautologies.

2. The normalisation of the transformed TBox is also a conservative rewriting that does not
affect soundness of entailments constructed using ΣO.

3. All the R rules preserve the correctness of the results. �

Theorem 6 (Syntactic Nominal-safety Under Approximate Reasoning) For an ontology O, let
TAfa(O) = (T , CT,QT, IT ), thenO is semantic nominal-safe under approximate reasoning if
T satisfies the following syntactic properties, where A is a concept such that A, fc(A) ∈ CN T ,
B(i) is an arbitrary concept, a and b are individuals and r is a named role:

1. T is a nominal-safe EL++ TBox;
2. fc({a}) v A /∈ T ;
3. fc({a}) v {b} /∈ T ;
4. B1 u · · · u fc({a}) u · · · uBn v ⊥ /∈ T ;
5. fc({a}) v ∃r.A /∈ T ;
6. fc({a}) v ∃r.{b} /∈ T ;
7. fc({a}) v ∃r.fc({b}) /∈ T ;

Proof We use TA to denote TAfa(O) = (T , CT,QT, IT ) and we use ST to denote ST (TAfa(O)).
Assuming ST is obtained by applying R rules for n times, we use STi to denote the state of ST
after i application of R rules. Obviously, ST0 = T and STn = ST .
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This theorem can be proved by showing that when the conditions in theorem are satisfied, the
following stronger claims hold:

A v {a} /∈ STn;

fc({a}) v A /∈ STn;

fc({a}) v {b} /∈ STn;

fc({a}) v ∃r.A /∈ STn;

fc({a}) v ∃r.{b} /∈ STn;

fc({a}) v ∃r.fc({b}) /∈ STn;

We prove the above claims by induction on the number of reasoning steps. First of all,
all claims hold in ST0. Now we assume all claims hold in STk, e.g. A v {a} /∈ STk, and
investigate the inclusion of these entailments in STk+1 via different rules.

A v {a} can be derived by R1, 2, 4, 10, 11, 12:

1. R1 is not applicable due to the hypothesis on A v {a} and fc({a}) v {a};
2. R2, 4 are not applicable due to the condition that T is a nominal-safe EL++ TBox hence

GCIs with {a} as the right-hand side do not appear in T ;
3. R10 is not applicable due to the hypothesis on fc({a}) v A;
4. R11 is not applicable due to the condition that B1 u · · · u fc({a}) u · · · uBn v ⊥ /∈ T ;
5. R12 is not applicable due to the hypothesis on fc({a}) v ∃r.{b};

Together we know that A v {a} /∈ STk+1.
fc({a}) v A can be derived by R1, 2, 4, 10, 11, 12:

1. R1 is not applicable due to the hypothesis on fc({a}) v A and fc({a}) v {b};
2. R2 is not applicable due to the same reason as above, except the situation that

dn
i=1 fc({bi}) v

A ∈ T and fc({a}) v fc({bi}) ∈ STk for i = 1, . . . , n. In this case, we essentially have
a
.
= bi and fc({a}) v A ∈ STk, which is against the hypothesis;

3. R4 is not applicable due to the hypothesis on fc({a}) v ∃r.A, fc({a}) v ∃r.{b} and
fc({a}) v ∃r.fc({b});

4. R10 is not applicable due to the hypothesis on A v {a};
5. R11 is not applicable due to the condition that thatB1u· · ·ufc({a})u· · ·uBn v ⊥ /∈ T

and the hypothesis on fc({a}) v A and fc({a}) v {b};
6. R12 is not applicable due to the hypothesis on fc({a}) v ∃r..{b};

Together we know that fc({a}) v A /∈ STk+1.
fc({a}) v {b} can be derived by R1, 2, 4, 10, 11, 12:

1. R1 is not applicable due to the hypothesis on fc({a}) v A and fc({a}) v {b};
2. R2, 4 are not applicable due to the condition that T is a nominal-safe EL++ TBox.
3. R10 is not applicable due to the hypothesis on fc({a}) v {b};
4. R11 is not applicable due to the condition that B1 u · · · u fc({a}) u · · · uBn v ⊥ /∈ T ;
5. R12 is not applicable due to the hypothesis on fc({a}) v ∃r.{b};

Together we know that fc({a}) v {b} /∈ STk+1.
fc({a}) v ∃r.A can be derived by R3, 7, 8:
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1. R3 is not applicable due to the hypothesis on fc({a}) v A, fc({a}) v {b} and fc({a}) v
∃r.A;

2. R7 is not applicable due to the hypothesis on fc({a}) v ∃r.A;
3. R8 is not applicable due to the hypothesis on fc({a}) v ∃r.A, fc({a}) v ∃r.{b} and
fc({a}) v ∃r.fc({b}).

Together we know that fc({a}) v ∃r.A /∈ STk+1.
fc({a}) v ∃r.{b} /∈ STk+1 and fc({a}) v ∃r.fc({b}) /∈ STk+1 can be proved in a similar

manner as above.
Now we have proved that all the claims hold in STk+1 if they hold in STk. Combined with

the fact that they hold in ST0, by induction we know that they all hold in STn = ST . Hence we
haveA v {a} /∈ ST . This shows thatO is a semantic nominal-safe ontology under approximate
reasoning and proves the theorem. �

Proposition 7 (Linear Transformation) In Def. 8, the transformation fromO toAfa(O) can be
done in linear time.

Proof We prove the proposition by showing that for any ontology O = (TO,AO) and its trans-
formation (T ,A, CT,QT, IT ), if O contains nO number of terms, then we have:

1. |T | ≤ nO + |TO|;
2. |A| = |AO|;
3. |CT | = nO;
4. |QT | ≤ nO;
5. |IT | = 4× |RNO|.

where |T |(|A|, |TO|, |AO|) is the number of axioms in T (A, TO,AO) and |CT | (|QT |, |IT |, |RNO|)
is the number of elements in CT (QT, IT,RNO).

The size of T , CT , QT and IT directly follow from proposition 1.
Regarding the size of A, for each axiom in AO, at most one axiom is added into A (Step-2

to 6). �

Theorem 8 (Ontology Reasoning Preservation) For any ontology O and its transformation
(T ,A, CT,QT, IT ), let O′ = (T ′,A′) be an ontology constructed as follows:

1. T ′ is constructed in the same way as in Theorem 2;
2. A′ = A;

then for any axiom α with Σα ⊆ ΣO, we have O |= α iff O′ |= α:

Proof Similar as Theorem 2, this theorem can be proved by showing that O ∪ O′ ∪ Tfa con-
servatively extends both O and O′ on ΣO, where Tfa is the set of definition fa(P ) ≡ P for all
term P of O except complement of roles. Here we slightly extend the notion of conservation
extension (CE) to the entire ontology, i.e. an ontology O1 is a Σ-CE of another ontology O2 for
Σ ⊆ ΣO2 iff O2 ⊆ O1 and for any axiom α with Σα ⊆ Σ, O1 |= α implies O2 |= α.

The proof is also similar to the proof of Theorem 2. We first show that O∪Tfa ∪O′ is a CE
ofO by induction. ApparentlyO ⊆ O∪O′∪Tfa andO∪Tfa is a CE ofO since it only extends
with definitions of fresh names. Assuming some Oi with O ∪ Tfa ⊆ Oi ⊆ O ∪ Tfa ∪ T ′ is a
CE of O, and axiom β ∈ O′ \ Oi can either be a TBox axiom or an ABox axiom. When β is a
TBox axiom, it can be shown similar as in the proof of Theorem 2 that Oi ∪ {β} is still a CE of
O. When β is an ABox axiom, we consider the following situations:
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1. If β is a concept assertion axiom, it is apparent that Oi |= β because β is an ABox axiom
in O with the predicate replaced by its name, which is defined in Tfa. Hence Oi ∪ {β} is
still a CE of O;

2. If β is a role assertion axiom (a, b) : r ∈ O′. There are two possibilities:
(a) r = fa(R), then there is some (a, b) : R ∈ O and r ≡ R ∈ Tfa. Together we have
Oi |= β and hence Oi ∪ {β} is still a CE of O;

(b) r = fa(¬R), then there is some (a, b) : ¬R ∈ O and possibly Dis(R, r) ∈ Oi.
Since r is a name that do not appear in O, we know that O′ ∪ β is still a CE of O.

Note that it is impossible for β to be an individual equality or inequality axiom because all such
axioms are in O ⊆ Oi. Together we can show that O ∪ Tfa ∪ O′ is a CE of O.

We can also show thatO∪Tfa∪O′ is a CE ofO′ by showing thatO′ |= Tfa andO′∪Tfa |=
O. The former can be proved in the same way as in the proof of Theorem 2. To prove the latter,
let β ∈ O, β can be either a TBox axiom or an ABox axiom. When β is a TBox axiom, we can
still show in the same way as in the proof of Theorem 2 that O′ ∪ Tfa |= β. When β is an ABox
axiom:

1. If β is an individual equality or inequality axiom, then β ∈ O′ and it’s apparentO′∪Tfa |=
β.

2. If β is a concept assertion or role assertion axiom, it is apparent that O′ ∪ Tfa |= β be-
causeO′ contains β with expressions replaced by names and Tfa contains the equivalence
between expressions and corresponding names;

3. If β is a negative role assertion (a, b) : ¬R, by Step-4 of Def. 8 we have (a, b) : fa(¬R) ∈
O′. By Def. 4 we also have (fa(R), fa(¬R)) ∈ CT . Combined with Step-3 of Theorem 2
we have Dis(fa(R), fa(¬R)) ∈ O′. We also have fa(R) ≡ R ∈ Tfa. Together we have
O′ ∪ Tfa |= β.

From the above we have O′ ∪ Tfa |= O. Since we also have O′ |= Tfa we have O′ |= Tfa ∪O.
Hence we know that O′ ∪ Tfa ∪ O is a CE of O′.

Note that ΣO ⊆ ΣO′ . Together with the conclusion that O′ ∪ Tfa ∪O is also a CE of O, we
can infer hat for any axiom α with Σα ⊆ ΣO, we haveO |= α iffO′∪Tfa∪O |= α iffO′ |= α.

�

Proposition 9 (Approximation) For an Ontology O, let its transformation results Afa(O) be
(T ,A, CT,QT, IT ) as specified in Def. 8, then (T ,A) is an EL++ ontology such that for any
axiom α with Σα ⊆ ΣO, we have (T ,A) |= α only if O |= α.

Proof It is obvious that T only contains EL++ TBox axioms and A only contains EL++ ABox
axioms.

The soundness of (T ,A) w.r.t. O is an apparent corollary of Theorem 8 since (T ,A) ⊆ O′,
which preserves all semantics of O. �

Theorem 10 (Complexity) Given an ontology O, its approximate reasoning closure via inter-
nalisation SIfa(O) can be computed in polynomial time w.r.t. the size of O.

Proof According to Def. 10, we have SIfa(O) = ST (AI(Afa(O))). AssumingAI(Afa(O)) =
(T , CT,QT, IT ), from the proof of Theorem 4 we know that SIfa(O) can be computed in poly-
nomial time w.r.t. |CN T |+ |RN T |. Thus it is sufficient to prove that:
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1. AI(Afa(O)) can be computed in polynomial time w.r.t. the size of O;
2. |CN T |+ |RN T | is polynomial w.r.t. the size of O.

These two propositions are quite obvious because Afa(O) can be computed in linear time w.r.t.
the size of O and its size is also linear w.r.t. the size of O (Proposition 7), and from Def. 9 we
know that AI(Afa(O)) can be computed in linear time w.r.t. the size of Afa(O) and the size of
the former is also linear w.r.t. the size of the later. The theorem can thus be proved. �

Theorem 11 (Approximate Reasoning via Internalisation Soundness) For an ontology O, let
α be an axiom with Σα ⊆ ΣO, then α ∈ SIfa(O) only if O |= α.

Proof Let O = (T ,A), where T and A are TBox and ABox of O, respectively. We construct a
new ontology O′ = (T ′, ∅) as follows:

1. T is initialised as T ;
2. For each a ∈ INO, T ′ = T ′ ∪ {{a} v {a},¬{a} v ¬{a}, {a} v >,¬{a} v >}
3. For each a : C ∈ A, T ′ = T ′ ∪ {{a} v C};
4. For each (a, b) : R ∈ A, T ′ = T ′ ∪ {{a} v ∃R.{b}};
5. For each (a, b) : ¬R ∈ A, T ′ = T ′ ∪ {{a} v ∃fa(¬R).{b}, Dis(R, fa(¬R))};
6. For each a .

= b ∈ A, T ′ = T ′ ∪ {{a} ≡ {b}};
7. For each a 6 .= b ∈ A, T ′ = T ′ ∪ {{a} v~{b}};

ApparentlyO′ is semantically equivalent toO w.r.t. entailment of any axiom α constructed with
ΣO. In other words, O′ |= α iff O |= α.

From Def. 4, Def. 8 and Def. 9 it is obvious thatAI(Afa(O)) = TAfa(O′). Thus SIfa(O) =
ST (AI(Afa(O))) = ST (TAfa(O′)). According to Theorem 5 we know that ST (TAfa(O′))
is soundness-preserving, thus SIfa(O) should also be soundness-preserving. This proves the
theorem. �

Theorem 12 (Concept Subsumption Checking) For a nominal-free ontologyO, let a, b ∈ INO
be two individuals, A,B ∈ CNO be two concepts, and r ∈ RNO be a role, then the following
holds:

1. A v B ∈ SIfa(O) iff A v B ∈ SNFfa(O);
2. {a} v A ∈ SIfa(O) iff a : A ∈ SNFfa(O);
3. {a} v ∃r.{b} ∈ SIfa(O) iff (a, b) : r ∈ SNFfa(O);

Proof The← direction is obvious because the AR rules are special cases of the corresponding
R rules where certain atomic concepts are restricted to nominals. If we rewrite the ABox axioms
into corresponding nominal form TBox axioms, the AR rules are the same as or can be reduced
to combinations of R rules. Some rules require further explanations:

1. The premises of AR1c rule are reduced to {x} v A and {y} v fc(A), which can derive
their consequence {x} v fc({y}) by combination of R1 and R10.

2. The AR1e rule seems unnecessary but it is to derive {a} v {b} from {a} v ⊥ and
⊥ v {b}, which does not have an ABox counterpart form.

3. When ] =
.
=, the AR10 rule is an apparent tautology, due to internalisation of individual

equality in Step-5 of Def. 9;
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4. When ] = 6 .=, the AR10 rule is reduced to R10 due to the internalisation of individual
inequality in Step-6 of Def. 9;

Let Afa(O) = (T ,A, CT,QT, IT ) and AI(Afa(O)) = {T ′, CT,QT, IT}. In the follow-
ing, we use SI to denote SIfa(O), ST to denote ST ((T , CT,QT, IT )), and SNF to denote
SNFfa(O). Note that when the ontology O is nominal free, T does not contain any nominal or
names for complement of nominal. Hence CN T also does not include names for complement of
nominal.

Before we prove the→ direction, we analyse the forms of axioms in SI . Because the ontol-
ogy is nominal-free, all axioms in the initial T ′ should not have fc({a}) as the LHS unless the
RHS is > or also some fc({b}), and should not have {a} as the RHS unless the LHS is ⊥ or
also some nominal.

Also, most of the R rules that are applicable on nominal-free ontology have the following
features: if the rule derives a consequence of form A v B, where A and B are either atomic
concepts or nominals, then there is a premise axiom with B as the RHS, and a premise axiom
with A as the LHS. The only exceptions are the R10 which derive consequence with LHS and
RHS not appearing in premises, and the R11, where the consequence has RHS not appearing in
premise. However, to derive {a} as the RHS of consequence by R10, it is required to have a
premise with fc({a}) as the LHS, and vice versa. The same applies to deriving {a} as the RHS
of consequence by R11. Thus by induction, we know that for a nominal-free ontology O, SI
have the following properties, where A,B are named concepts or >, ⊥, and a, b are individuals:

1. A v {a} /∈ SI unless A v ⊥ ∈ SI;
2. fc({a}) v B /∈ SI unless > v B ∈ SI;
3. fc({a}) v {b} /∈ SI;

Similarly, we know that SI have the following properties when the ontology is nominal-free:

1. A v ∃r.{a} /∈ SI unless A v ⊥ ∈ SI;
2. A v ∃r.fc({a}) /∈ SI unless A v ⊥ ∈ SI;
3. {a} v ∃r.fc({a}) /∈ SI;
4. fc({a}) v ∃r.A /∈ SI;
5. fc({a}) v ∃r.{b} /∈ SI;
6. fc({a}) v ∃r.fc({b}) /∈ SI;

Furthermore, because ontology is nominal-free, rule R18 is no longer applicable. Thus all
RIs in SI are independent to GCIs and ABox assertions. So for any RI β, we have β ∈ SI iff
β ∈ ST .

Similarly, because we have A v > ∈ T for all A ∈ CN T , we also have A v > ∈ ST and
⊥ v A ∈ ST .

Thus we only need to consider the other kind of entailments that contains nominals in SI .
We prove the→ directions of the theorem by proving the following stronger lemma:

Lemma 13 For a nominal-free ontologyO, letAfa(O) = (T ,A, CT,QT, IT ) andAI(Afa(O))
be (T ′, CT,QT, IT ). If we use SI to denote SIfa(O), ST to denote ST ((T , CT,QT, IT )),
and SNF to denote SNFfa(O), then the following invariants hold in each step of computation
of SI , where a, b ∈ INO are two individuals, A,B ∈ CN T ∪ {>,⊥} are two concepts, and
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r ∈ RNO is a role:

A v B ∈ SI only if A v B ∈ ST (36)

A v fc({a}) ∈ SI only if a : fc(A) ∈ SNF (37)

{a} v B ∈ SI only if a : B ∈ SNF (38)

{a} v {b} ∈ SI only if a .
= b ∈ SNF (39)

{a} v fc({b}) ∈ SI only if a 6 .= b ∈ SNF (40)

fc({a}) v fc({b}) ∈ SI only if a .
= b ∈ SNF (41)

A v ⊥ /∈ SI and A v ∃r.B ∈ SI only if A v ∃r.B ∈ ST (42)

{a} v ⊥ /∈ SI and {a} v ∃r.B ∈ SI only if a : ∃r.B ∈ SNF (43)

{a} v ∃r.{b} ∈ SI only if (a, b) : r ∈ SNF (44)

Apparently the→ directions of the theorem hold if the above lemma holds.
To prove the above invariants, we perform induction of the application of rules. First of all, it

is obvious that the invariants are satisfied by all initial elements of SI , i.e. all axioms in T ′ and
corresponding tautologies added into SI = ST ((T ′, CT,QT, IT )) in Step-1 of Def. 5.

Then we show that, the above invariants hold for each of the corresponding axioms derived
by each of the corresponding rules.

Invariant 36: A v B ∈ SI can be derived by R1, 2, 4, 5, 9, 10, 11, 13. Note that R12
can not derive A v B ∈ SI when the original ontology O is nominal-free. We make a case
distinction as follows:

1. If it is derived by R1. Then there is a concept X s.t. A v X and X v B in SI . We make
a case distinction on the form of X:

(a) If X ∈ CN T , by induction of invariant 36 we know that A v X,X v B ∈ ST .
Thus by non-applicability of rule R1 we have A v B ∈ ST .

(b) If X is a nominal {a}, then we have A v {a} ∈ SI , which is contradictory to the
form of axioms appearing in SI unless A v ⊥ ∈ SI . By induction of invariant 36
we have A v ⊥ ∈ ST . Together with ⊥ v B ∈ ST we directly have A v B ∈ ST .

(c) If X is of form fc({b}), then we have fc({b}) v B ∈ SI , which is contradictory
to the form of axioms in appearing in SI unless > v B ∈ SI . By induction of
invariant 36 we have > v B ∈ ST . Together with A v > ∈ ST we directly have
A v B ∈ ST .

2. If it is derived by R2, then there are concepts A1, . . . , An s.t. A v Ai ∈ SI and A1 u
· · · u An v B ∈ T ′. Given the form of the later, it should also be in T . And also
Ai ∈ CN T . In this case, by induction of invariant 36 and the non-applicability of R2 we
have A v B ∈ ST .

3. If it is derived by R4, then there is r ∈ RN ′T and two concepts X and X ′ such that
A v ∃r.X ∈ SI , X v X ′ ∈ SI and ∃r.X ′ v B ∈ T ′. Given the form of ∃r.X ′ v B, it
should also be in T and X ′ must be in CN T . We make a case distinction on the form of
X:

(a) If X ∈ CN T , when A v ⊥ ∈ SI , then by induction of invariant 36 we have
A v ⊥ ∈ ST and hence A v B ∈ ST . Otherwise, by induction of invariant 42
we know that A v ∃r.X ∈ ST . By induction of invariant 36 we also know that
X v X ′ ∈ ST . Thus by non-applicability of rule R4 we have A v B ∈ ST .
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(b) If x is a nominal {b}, the we have A v ∃r.{b} ∈ SI , which contradicts the possible
forms of axioms appearing in SI except A v ⊥ ∈ SI . By induction of invariant 36
we have A v ⊥ ∈ ST . Hence we will have A v B ∈ ST .

(c) If X is of form fc({b}), we skip this situation as it is similar as the above.
4. If it is derived by R5, then B = ⊥ and there is concept X and r ∈ RN T s.t. A v ∃r.X ∈
SI and X v ⊥ ∈ SI . We make a case distinction on the form of X:

(a) If X ∈ CN T . When A v ⊥ ∈ SI we trivially have A v B ∈ ST as before.
Otherwise by invariant 42 we have A v ∃r.X ∈ ST and X v ⊥ ∈ ST . Due to the
non-applicability of R5 we have A v B ∈ ST .

(b) If X is a nominal {a}, then we have A v ∃r.{a} ∈ SI . Given the possible forms of
axioms in SI , we have A v ⊥ ∈ SI . Hence by induction of invariant 36 we have
A v B ∈ ST .

(c) If X is of form fc({a}), then we have fc({a}) v ⊥ ∈ SI , which is contradictory
to the possible forms of axioms in SI thus we omit this situation.

Considering the form of A v ∃r.X , we know that
5. If it is derived by R9, then B = ⊥ and there is a concept X s.t. A v X and A v fc(X).

We make a case distinction on form of X:
(a) If X ∈ CN T , thus by invariant 36 we have A v X,A v fc(X) ∈ ST . Due to the

non-applicability of R9 we have A v ⊥ ∈ ST .
(b) If X is a nominal {a}, then we have A v {a} ∈ SI . Given the possible form of

axioms in SI , we have A v ⊥ ∈ SI . By induction of invariant 36 we directly have
A v B ∈ ST .

(c) If X is of form fc({a}), then we have A v fc(fc({a})) ∈ SI , i.e. A v {a} ∈ SI .
Then we skip this situation as it is the same as above.

6. If it is derived by R10, then we have fc(B) v fc(A) ∈ SI . BecauseA,B ∈ CN T , fc(A)
and fc(B) are also in CN T . By induction on invariant 36 we have fc(B) v fc(A) ∈ ST .
Due to the non-applicability of rule R10 we have A v B ∈ ST .

7. If it is derived by R11, then we have A1, . . . , An s.t. B = fc(Ai) and A v Aj ∈ SI(1 ≤
j ≤ n, j 6= i) and A1 u · · · u An v ⊥ ∈ T . Given the possible forms of axioms in SI ,
we know that A1, . . . , An ∈ CN T . Due to invariant 36 we have A v Aj ∈ ST (1 ≤ j ≤
n, j 6= i). Thus by non-applicability of rule R11 we have A v B ∈ ST .

8. If it is derived by R13, then by induction of invariant 36 it is obvious that A v B ∈ ST
because the internalisation does not change QT .

Thus the induction of invariant 36 is proved.
Invariant 37: A v fc({a}) ∈ SI can be derived by R1, 10. Note that R2 can not derive

A v fc({a}) because in T ′ there is no GCI with fc({a}) as the RHS and a conjunction as the
LHS. Similarly, R4 can not derive A v fc({a}).

We skip the obvious situation where A = ⊥ and make a case distinction as follows:

1. If it is derived by R1, then there is a concept X s.t. A v X ∈ SI and X v fc({a}) ∈ SI .
We make a case distinction on the form of X:

(a) If X ∈ CN T , then by induction of invariant 36 we have A v X ∈ ST . Due to the
non-applicability of R10 we have fc(X) v fc(A) ∈ ST ⊆ SNF . By induction of
invariant 37 we have a : fc(X) ∈ SNF . Due to the non-applicability of AR1a we
have a : fc(A) ∈ SNF .
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(b) If X is a nominal {b}, then we have A v {b} ∈ SI , which is contradictory to
the possible forms of axioms in SI unless we have A v ⊥ ∈ SI . By induction of
invariant 36 we haveA v ⊥ ∈ ST . Due to the non-applicability of R10 we also have
> v fc(A) ∈ ST ⊆ SNF . Given that a : > ∈ SNF , due to the non-applicability
of AR1a we have a : fc(A) ∈ SNF .

(c) If X is of form fc({b}), then by induction of invariant 37, we have b : fc(A) ∈
SNF . By induction of invariant 41 we have a .

= b ∈ SNF . Due to the non-
applicability of AR1b we have a : fc(A) ∈ SNF .

2. If it is derived by R10, then there is {a} v fc(A) ∈ SI . By induction of invariant 38 we
have a : fc(A) ∈ SNF .

Thus the induction of invariant 37 is proved.
Invariant 38: {a} v B ∈ SI can be derived by R1, 2, 4, 5, 9, 10, 11.
We skip the obvious situation where B = > and make a case distinction as follows:

1. If it is derived by R1. Then there is a concept X s.t. {a} v X and X v B. We make a
case distinction on the form of X:

(a) IfX ∈ CN T , by induction of invariant 38 we know that a : X ∈ SNF . By induction
of invariant 36 we also know that X v B ∈ ST ⊆ SNF . Thus by non-applicability
of rule AR1a we have a : B ∈ SNF .

(b) If X is a nominal {b}, by induction of invariant 39 we have a .
= b ∈ SNF . By

induction of invariant 38 we have b : B ∈ SNF . Together by non-applicability of
rule AR1b we have a : B ∈ SNF .

(c) If X is of form fc({b}), then we have fc({b}) v B ∈ SI , which is contradictory to
the form of axioms appearing in SI unless we have > v B ∈ SI . By induction of
invariant 36 we have > v B ∈ ST ⊆ SNF . Given that a : > ∈ SNF , due to the
non-applicability of AR1a we have a : B ∈ SNF .

2. If it is derived by R2, then there are concepts A1, . . . , An s.t. {a} v Ai ∈ SI and
A1 u · · · u An v B ∈ T ′. Given the form of the later, it should also be in T . And also
Ai ∈ CN T . In this case, by induction of invariant 38 and the non-applicability of AR2 we
have x : B ∈ SNF .

3. If it is derived by R4, then there is r ∈ RN T and two concepts X and X ′ such that
{a} v ∃r.X ∈ SI , X v X ′ ∈ SI and ∃r.X ′ v B ∈ T ′. Given the form of ∃r.X ′ v B,
it should also be in T and X ′ must be in CN T . We skip the obvious situation where
{a} v ⊥ ∈ SI before R4 is applied. We make a case distinction on the form of X:

(a) If X ∈ CN T , by induction of invariant 43 we know that a : ∃r.X ∈ SNF . By
induction of invariant 36 we also know that X v X ′ ∈ ST ⊆ SNF . Thus by
non-applicability of rule AR4a we have a : B ∈ SNF .

(b) If x is a nominal {b}, by induction of invariant 44 we have (a, b) : r ∈ SNF . By
induction of invariant 38 we have b : X ′ ∈ SNF . Thus by non-applicability of rule
AR4b we have a : B ∈ SNF .

(c) If X is of form fc({b}), then we have {a} v ∃r.fc({b}) ∈ SI , which is contradic-
tory to the form of axioms appearing in SI thus we omit this situation.

4. If it is derived by R5, then B = ⊥ and there are concept X and r ∈ RN T s.t. {a} v
∃r.X ∈ SI and X v ⊥ ∈ SI . Similar as above, we skip the obvious situation where
{a} v ⊥ ∈ SI before R5 is applied. We make a case distinction on the form of X:
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(a) If X ∈ CN T , then by induction of invariant 43 we have {a} v ∃r.X ∈ SNF .
By induction of invariant 36 we have X v ⊥ ∈ ST ⊆ SNF . Due to the non-
applicability of rule AR5a we have a : ⊥ ∈ SNF .

(b) If X is a nominal {b}, they by induction of invariant 44 we have (a, b) : r ∈ SNF .
By induction of invariant 38 we also have b : ⊥ ∈ SNF . Due to the non-applicability
of rule AR5b we have a : ⊥ ∈ SNF .

(c) If X is of form fc({b}), it is contradictory to the possible forms of axioms in SI
thus we omit this situation.

5. If it is derived by R9, then B = ⊥ and there is a concept X s.t. {a} v X ∈ SI and
{a} v fc(X) ∈ SI . We make a case distinction on the form of X:

(a) If X ∈ CN T , then by induction of invariant 38 we have a : X ∈ SNF . Similarly
we have a : fc(X) ∈ SNF . Due to the non-applicability of AR9a we have a : ⊥ ∈
SNF .

(b) If X is a nominal {b}, then by induction of invariant 39 we have a .
= b ∈ SNF . By

induction of invariant 40 we also have a 6 .= b ∈ SNF . Due to the non-applicability
of AR9b we have a : ⊥ ∈ SNF .

(c) If X is of form fc({b}), then similar as the above situation, we have a : ⊥ ∈ SNF .
6. If it is derived by R10, then we have fc(B) v fc({a}) ∈ SI . By induction of invariant 37

we have a : B ∈ SNF .
7. If it is derived by R11, then we have A1, . . . , An s.t. B = fc(Ai) and {a} v Aj ∈
SI (2 ≤ j ≤ n, j 6= i) and A1 u · · · u An v ⊥ ∈ T . Given the possible forms of
axioms in SI , we know that A1, . . . , An ∈ CN T . By induction of invariant 38 we have
a : Aj ∈ SNF (1 ≤ j ≤ n, j 6= i). Due to the non-applicability of AR11 we have
a : B ∈ SNF .

Thus the induction of invariant 38 is proved.
Invariant 39: {a} v {b} can be derived by R1, 6, 10. For the similar reason as of A v

fc({a}), R2 and R4 can not derive {a} v {b}.

1. If it is derived by R1, then there is a concept X s.t. {a} v X ∈ SI and X v {b} ∈ SI .
We make a case distinction on the form of X:

(a) If X ∈ CN T , given the possible forms of axioms in SI , we have X v ⊥ ∈ SI .
By induction of invariant 38 we have a : X ∈ SNF . By induction of invariant 36
we have X v ⊥ ∈ ST ⊆ SNF . Due to the non-applicability of AR1a we have
a : ⊥ ∈ SNF . Due to the non-applicability of AR1e we have a .

= b ∈ SNF .
(b) If X is a nominal {c}. Thus by induction of invariant 39 we have a .

= c ∈ SNF and
c
.
= b ∈ SNF . By non-applicability of AR1d we have a .

= b ∈ SNF .
(c) If X is of form fc({c}), then we have fc({c}) v {b} ∈ SI , which is contradictory

to the possible forms of axioms in SI thus we omit this situation.
2. If it is derived by R6, then there is {b} v {a} ∈ SI . As we explained earlier in the proof, if
{b} v {a} is an initial element of SI without any inference, then we have b .= a ∈ SNF .
This is because the original ontology is nominal free so that {b} v {a} ∈ SI can only
be included due to either Step-4 or Step-7 of Def. 9, which both leads to b .

= a ∈ SNF .
Alternatively, if {b} v {a} ∈ SI is derived, then by induction of invariant 39 we have
b
.
= a ∈ SNF . In either case, by non-applicability of AR10 we have a .

= b ∈ SNF .
3. If it is derived by R10, then there is fc({b}) v fc({a}) ∈ SI . By induction of invariant 41

we have b .= a ∈ SNF . Due to the non-applicability of AR10 we have a .
= b ∈ SNF .
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Thus the induction of invariant 39 is proved.
Invariant 40: Similar as above, {a} v fc({b}) can be derived by R1, 10, 12, 20. In the fol-

lowing, we skip the obvious situation where {a} v ⊥ ∈ SI is derived before the corresponding
rule is applied, in which case we have a : ⊥ ∈ SNF by induction of invariant 38. Then due
to the non-applicability of AR1e we can derive a 6 .= b ∈ SNF . We make a case distinction as
follows:

1. If it is derived by R1, then there is a concept X s.t. {a} v X ∈ SI and X v fc({b}) ∈
SI . We make a case distinction on the form of X:

(a) IfX ∈ CN T , then by induction of invariant 38 we have a : X ∈ SNF . By induction
of invariant 37 we have b : fc(X) ∈ SNF . Due to non-applicability of AR1c we
have a 6 .= b ∈ SNF .

(b) If X is a nominal {c}, then by induction of invariant 39 we have a .
= c ∈ SNF . By

induction of invariant 40 we have c 6 .= b ∈ SNF . By non-applicability of AR1d we
have a 6 .= b ∈ SNF .

(c) If X is of form fc({c}), by induction of invariant 40 we have a 6 .= c ∈ SNF . By
induction of invariant 41 we have c .

= b ∈ SNF . Due to non-applicability of AR10
and AR1d we eventually have a 6 .= b ∈ SNF .

2. If it is derived by R10, then there is {b} v fc({a}) ∈ SI . By induction of invariant 40
we have b 6 .= a ∈ SNF . Due to the non-applicability of AR10 we have a 6 .= b ∈ SNF .

3. If it is derived by R12, then there is r ∈ RN T and c ∈ IN T s.t. {a} v ∃r.{c}, {b} v
∃fc(r).{c} ∈ SI . By induction of invariant 44 we have (a, c) : r ∈ SNF and (b, c) :
fc(r) ∈ SNF . Due to the non-applicability of AR12 we have x 6 .= y.

4. If it is derived by R20, then there is concept X s.t. {a} v ∃r.X,X v ∃fi(fc(r)).{b} ∈
SI . We make a case distinction on the form of X:

(a) If X ∈ CN T , given the possible forms of axioms in SI , we have X v ⊥ ∈ SI . By
induction of invariant 43 we have a : ∃r.X ∈ SNF . By induction of invariant 36
we have X v ⊥ ∈ ST ⊆ SNF . Together due to the non-applicability of AR5a we
have a : ⊥ ∈ SNF . Given that we have b : > ∈ SNF , due to the non-applicability
of AR1c we have a 6 .= b ∈ SNF .

(b) If X is a nominal {c}, by induction of invariant 44 we have (a, c) : r ∈ SNF
and (c, b) : fi(fc(r)) ∈ SNF . Due to the non-applicability of AR19 we have
(c, a) : fi(r) ∈ SNF . Because fi(fc(r)) = fc(fi(r)), due to the non-applicability
of AR12 we have a 6 .= b ∈ SNF .

(c) If X is of form fc({c}), then we have {a} v ∃r.fc({c}) ∈ SI , which contradicts
with the possible forms of axioms in SI thus we omit this situation.

Thus the induction of invariant 40 is proved.
Invariant 41: Similar as above again, fc({a}) v fc({b}) can be derived by R1, 10.

1. If it is derived by R1, then there is a concept X s.t. fc({a}) v X ∈ SI and X v
fc({b}) ∈ SI . We make a case distinction on form of X:

(a) If X ∈ CN T , given the possible form of axioms in SI , we have > v X ∈ SI .
By induction of invariant 36 we have > v X ∈ ST . Due to the non-applicability
of R10 we have fc(X) v ⊥ ∈ ST ⊆ SNF . By induction of invariant 37 we
have b : fc(X) ∈ SNF . Together due to the non-applicability of AR1a we have
b : ⊥ ∈ SNF . Due to the non-applicability of AR1e and AR10 we eventually have
a
.
= b ∈ SNF .
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(b) If X is a nominal {c}, then we have fc({a}) v {c} ∈ SI , which contradicts with
the possible forms of axioms in SI thus we omit this situation.

(c) If X is of form fc({c}). Thus by induction of invariant 41 we have a .
= c ∈ SNF

and c .= b ∈ SNF . By non-applicability of AR1d we have a .
= c ∈ SNF .

2. If it is derived by R10, then there is {b} v {a} ∈ SI . By induction of invariant 39 we
have b .= a ∈ SNF . Due to the non-applicability of AR10 we have a .

= b ∈ SNF .

Thus the induction of invariant 41 is proved.
Invariant 42: A v ∃r.B ∈ SI can be derived by R3, 7, 8. Note that A v ⊥ /∈ SI . We

make a case distinction as follows:

1. If it is derived by R3, then there is a concept X s.t. A v X,X v ∃r.B ∈ SI . Given
the possible forms of axioms in SI , we only have X ∈ CN T . Then by induction of
invariant 36 we have A v X ∈ ST . By induction of invariant 42 we have X v ∃r.B ∈
ST . Due to the non-applicability of rule R3 we have A v ∃r.B ∈ ST .

2. If it is derived by R7, there is s ∈ RN T s.t. A v ∃s.B ∈ SI and s v r ∈ SI which
should also be in ST . By induction of invariant 42 we have A v ∃s.B ∈ ST . Due to
non-applicability of R7 we have A v ∃r.B ∈ ST .

3. If it is derived by R8, there are concept X and roles r1, r2 ∈ RN T s.t. A v ∃r1.X,X v
∃r2.B, r1 ◦ r2 v R ∈ SI . Given the possible forms of axioms in SI , we have X ∈ CN T .
By induction of invariant 42 we have A v ∃r1.X,X v ∃r2.B ∈ ST . Due to the non-
applicability of R8 we have A v ∃r.B ∈ ST .

Thus the induction of invariant 42 is proved.
Invariant 43: Similarly as above, {a} v ∃r.B ∈ SI can be derived by R3, 7, 8. Note that

{a} v ⊥ /∈ SI . We make a case distinction as follows:

1. If it is derived by R3, then there is a concept X s.t. {a} v X,X v ∃r.B ∈ SI . We make
a case distinction on form of X:

(a) IfX ∈ CN T , then by induction of invariant 38 we have a : X ∈ SNF . By induction
of invariant 42 we have X v ∃r.B ∈ ST ⊆ SNF . Due to the non-applicability of
rule AR3a we have a : ∃r.B ∈ SNF .

(b) If X is a nominal {b}, then by induction of invariant 44 we have a .
= b ∈ SNF . By

induction of invariant 43 we have b : ∃r.B ∈ SI . Due to the non-applicability of
AR3b we have a : ∃r.B ∈ SI .

(c) If X is of form fc({b}), then we have fc({b}) v ∃r.B ∈ SI , which is contradictory
to possible forms of axioms in SI thus we omit this situation.

2. If it is derived by R7, there is s ∈ RN T s.t. {a} v ∃s.B ∈ SI and s v r ∈ SI which
should also be in ST . By induction of invariant 43 we have a : ∃s.B ∈ SNF . Due to
non-applicability of AR7a we have a : ∃r.B ∈ SNF .

3. If it is derived by R8, there are conceptX and roles r1, r2 ∈ RN T s.t. {a} v ∃r1.X,X v
∃r2.B, r1 ◦ r2 v R ∈ SI . We make a case distinction on form of X:

(a) If X ∈ CN T , by induction of invariant 43 we have a : ∃r1.X . By induction of
invariant 42 we have X v ∃r2.B ∈ ST ⊆ SNF . Due to the non-applicability of
AR8a we have a : ∃r.B ∈ SNF .

(b) If X is a nominal {b}, by induction of invariant 44 we have (a, b) : r1 ∈ SNF . By
induction of invariant 43 we have b : ∃r2.B ∈ SNF . Due to the non-applicability of
AR8b we have a : ∃r.B ∈ SNF .
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(c) If X is of form fc({b}), then we have {a} v ∃r1.fc({b}) ∈ SI and fc({b}) v
∃r2.B ∈ SI , which are both contradictory to the possible form of axioms in SI .
Hence we omit this situation.

Thus the induction of invariant 43 is proved.
Invariant 44: {a}∃r.{b} ∈ SI can be derived by R3, 7, 8, 19. We make a case distinction

as follows:

1. If it is derived by R3, then there is concept X s.t. {a} v X,X v ∃r.{b} ∈ SI . Given
the possible form of axioms in SI , X can only be a nominal {c}. Thus by induction of
invariant 39 we have a .

= c ∈ SNF . By induction of invariant 44 we have (c, b) : r ∈
SNF . Due to the non-applicability of AR3c we have (a, b) : r ∈ SNF .

2. If it is derived by R7, then there is s ∈ RN T s.t. {a} v ∃s.{b}, s v r ∈ SI . By induction
of invariant 44 we have (a, b) : s ∈ SNF . Due to the non-applicability of AR7b we have
(a, b) : r ∈ SNF .

3. If it is derived by R8, then there are a concept X and roles r1, r2 ∈ RN T s.t. {a} v
∃r1.X,X v ∃r2.{b}, r1 ◦ r2 v r ∈ SI . Given the possible forms of axioms in SI , X can
only be a nominal {c}. By induction of invariant 44 we have (a, c) : r1, (c, b) : r2 ∈ SNF .
Due to the non-applicability of AR8c we have (a, b) : r ∈ SNF .

4. If it is derived by R19, then we have {b} v ∃fi(r).{a} ∈ SI . By induction of invariant 44
we have (b, a) : fi(r) ∈ SNF . Due to the non-applicability of AR19 we have (a, b) : r.

Thus the induction of invariant 44 is proved.
With inductions of all invariants proved for each of the corresponding rules, we proved

Lemma 13.
This further proves the→ directions of the Theorem and hence the Theorem 12. �

Theorem 14 For a nominal-free ontology O, let a, b ∈ INO be two individuals, A,B ∈ CNO
be two concepts, and r ∈ RNO be a role, if for any r1 ◦ . . . rn v s ∈ O, we have n = 2 and
r1 = · · · = rn = s, then the following holds:

1. A v B ∈ SNFfa(O) iff A v B ∈ STNFfa(O);
2. {a} v A ∈ SNFfa(O) iff a : A ∈ STNFfa(O);
3. {a} v ∃r.{b} ∈ SNFfa(O) iff (a, b) : r ∈ STNFfa(O);

Proof Similar as in the proof of Theorem 12, we use SNF to denote SNFfa(O) and use
STNF to denote STNFfa(O).

The first claim of the theorem is quite obvious because:

1. Both SNF and STNF include ST ((T , CT,QT, IT )),
2. Neither the AR rules nor the TR rules infer any new axioms that do not involve any indi-

vidual.

Thus we have A v B ∈ SNF iff A v B ∈ ST ((T , CT,QT, IT )), which holds iff
A v B ∈ STNF . For the same reason, we have A v ∃r.B ∈ SNF iff A v ∃r.B ∈ STNF .

The third claim of the theorem is also obvious because:

1. Both SNF and STNF contain the same original ABox axioms from A.
2. All entailments of form (x, y) : r are either original or derived by rules AR3c, 7b, 8c and

19.
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3. All of the above rules are in both AR rules and TR rules.
4. Their premises are of forms (x, y) : r, x .

= y, r v s, and r1 ◦ r2 v s.
5. No axiom of the any of above forms is derived by the different rules between AR and TR.

Thus we know that replacing the AR rules with the TR rules will not affect the derivation
of role assertion axioms. Therefore any (x, y) : r ∈ SNF , no matter being original or derived,
should also be in STNF .

Similarly, we can also show that x .
= y ∈ SNF iff x .

= y ∈ STNF because all rules that
derive it or any of their premises are included in both AR and R.

The← direction of the second claim is also obvious. The rule TR4a is a combination of the
rules AR3a and AR4a. The rule TR4b is a combination of the rules AR3, AR4a, AR7a and
AR8b. Thus any entailment derived by any of these two rules can be derived by the AR rules.

The→ direction of the second claim can be proved by showing that the following invariants
hold:

a : B ∈ SNF only if a : B ∈ STNF (109)
a 6 .= b ∈ SNF only if a 6 .= b ∈ STNF (110)

a : ∃r.B ∈ SNF only if a : A,A v ∃r.B ∈ STNF
or (a, b) : r, b : B ∈ STNF
or (a, b) : s, b : A,A v ∃s.B, s ◦ s v s, s v r ∈ STNF (111)

These invariants can also be proved with inductions. Initially, before applying either AR
rules or TR rules, SNF and STNF contain the same axioms thus satisfy the invariants. We
prove the invariants for each of the corresponding rules.

Invariant 109: a : B ∈ SNF can be derived by AR1a, 1b, 2, 4a, 4b, 5a, 5b, 9a, 9b, 11. We
skip the cases of AR1a, 1b, 2, 4b, 5b, 9a, 9b, 11, as they can all be easily proved by induction
of the above invariants and the non-applicability of rules shared by AR and TR. We consider the
rest of the rules:

1. If it is derived by AR4a, then there are A, A′ ∈ CN T and r ∈ RN T s.t. a : ∃r.A,
A v A′, ∃r.A′ v B ∈ SNF . Apparently we haveA v A′,∃r.A′ v B ∈ STNF as well.
By induction of invariant 111 we have one of the following three situations:

(a) There is X ∈ CN T s.t. a : X , X v ∃r.A ∈ STNF . Then we have X v B ∈
STNF due to the non-applicability of R4. Eventually, due to the non-applicability
of AR1a we have a : B ∈ STNF .

(b) There is b ∈ INA s.t. (a, b) : r, b : A ∈ STNF . Due to the non-applicability of
AR1a we have b : A′ ∈ STNF . Due to the non-applicability of TR4a we have
a : B ∈ STNF .

(c) There areC ∈ CN T , b ∈ INA, s ∈ RN T s.t. (a, b) : s, b : C, C v ∃s.A, s◦s v s,
s v r ∈ STNF . Due to the non-applicability of TR4b we have a : B ∈ STNF .

2. If it is derived by AR5a, then B = ⊥, and there are A ∈ CN T and r ∈ RN T s.t.
a : ∃r.A, A v ⊥ ∈ SNF . Apparently we have A v ⊥ ∈ STNF as well. By induction
of invariant 111 we have one of the following three situations:

(a) There is X ∈ CN T s.t. a : X , X v ∃r.A ∈ STNF . Due to the non-applicability
of R5 we have X v ⊥ ∈ STNF . Eventually, due to the non-applicability of AR1a
we have a : B ∈ STNF .
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(b) There is b ∈ INA s.t. (a, b) : r, b : A ∈ STNF . Due to the non-applicability
of AR1a we have b : ⊥ ∈ STNF . Due to the non-applicability of AR5b we have
a : B ∈ STNF .

(c) There areC ∈ CN T , b ∈ INA, s ∈ RN T s.t. (a, b) : s, b : C, C v ∃s.A, s◦s v s,
s v r ∈ STNF . Due to the non-applicability of R5 we will have C v ⊥ ∈ STNF .
By induction of invariant 109 we have b : C ∈ STNF . Due to the non-applicability
of AR1a we will have b : ⊥ ∈ STNF . Then same as the above situation, we have
a : B ∈ STNF .

Thus the induction of invariant 109 is proved.
Invariant 110: a 6 .= b ∈ SNF can be derived by AR1c, 1d, 10, 12. The proof of all these

situations is quite straightforward, simply making directly use of the induction of the above
invariants.

Invariant 111: a : ∃r.B ∈ SNF can be derived by AR3a, 3b, 7a, 8a, 8b. We make a case
distinction:

1. If it is derived by AR3a then there is A ∈ CN T s.t. x : A, A v ∃r.B ∈ SNF . The later
is also in STNF . By induction of invariant 109 we have x : A ∈ STNF . Together they
satisfy the first possibility of the invariant.

2. If it is derived by AR3b then there is b ∈ INA s.t. a .
= b, b : ∃r.B ∈ SNF . By induction

of invariant 110 we have a .
= b ∈ STNF . The later indicates one of the following three

situations by induction of invariant 111:
(a) There is X ∈ CN T s.t. b : X , X v ∃r.B ∈ STNF . Due to the non-applicability of

AR10 and AR1b we have a : X ∈ STNF . Together they satisfy the first possibility
of the invariant.

(b) There is c ∈ INA s.t. (b, c) : r, c : B ∈ STNF . Thus due to the non-applicability
of AR3c we have (a, c) : r ∈ STNF . Together they satisfy the second possibility
of the invariant.

(c) There are C ∈ CN T , c ∈ INA, s ∈ RN T s.t. (b, c) : s, c : C, C v ∃s.B,
s ◦ s v s, s v r ∈ STNF . Similar as above we have (a, c) : s ∈ STNF . Together
they satisfy the third possibility of the invariant.

3. If it is derived by AR7a then there is s ∈ RN T s.t. a : ∃s.B, s v r ∈ SNF . Apparently
we have s v r ∈ STNF . The former is in one of the following three situations:

(a) There is X ∈ CN T s.t. a : X , X v ∃s.B ∈ STNF . Due to the non-applicability
of R7 we have X v ∃r.B ∈ STNF . Together they satisfy the first possibility of the
invariant.

(b) There is b ∈ INA s.t. (a, b) : s, b : B ∈ STNF . Thus due to the non-applicability
of AR7b we have (a, b) : r ∈ STNF . Together they satisfy the second possibility
of the invariant.

(c) There are C ∈ CN T , b ∈ INA, t ∈ RN T s.t. (a, b) : t, b : C, C v ∃t.B, t ◦ t v t,
t v s ∈ STNF . Due to the non-applicability of R14 we also have t v r ∈ STNF .
Together they satisfy the third possibility of the invariant.

4. If it is derived by AR8a then there isA ∈ CN T s.t. a : ∃r.A,A v ∃r.B, r◦r v r ∈ SNF .
Apparently we have the later two in STNF . The former is in one of the following three
situations:

(a) There is X ∈ CN T s.t. a : X , X v ∃r.A ∈ STNF . Due to the non-applicability
of R8 we have X v ∃r.B ∈ STNF . Together they satisfy the first possibility of the
invariant.
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(b) There is b ∈ INA s.t. (a, b) : r, b : A ∈ STNF . Together they satisfy the third
possibility of the invariant, as a special case where r = s.

(c) There areC ∈ CN T , b ∈ INA, s ∈ RN T s.t. (a, b) : s, b : C, C v ∃s.A, s◦s v s,
s v r ∈ STNF . Due to the non-applicability of R8 we have C v ∃s.B ∈ STNF .
Together they satisfy the third possibility of the invariant.

5. If it is derived by AR8b then there is b ∈ INA s.t. (a, b) : r, b : ∃r.B, r ◦ r v r ∈ SNF .
Apparently we have (a, b) : r, r ◦ r v r ∈ STNF . The b : ∃r.B is in one of the following
three situations:

(a) There is X ∈ CN T s.t. b : X , X v ∃r.B ∈ STNF . Together they satisfy the third
possibility of the invariant, as a special case where r = s.

(b) There is c ∈ INA s.t. (b, c) : r, c : B ∈ STNF . Thus due to the non-applicability
of AR8c we have (a, c) : r ∈ STNF . Together they satisfy the third possibility of
the invariant, as a special case where r = s.

(c) There areC ∈ CN T , c ∈ INA, s ∈ RN T s.t. (b, c) : s, c : C, C v ∃s.B, s◦s v s,
s v r ∈ STNF . Due to the non-applicability of AR7b we have (b, c) : r ∈ STNF .
Due to the non-applicability of AR8c we have (a, c) : r ∈ STNF . Due to the non-
applicability of R7 we have C v ∃r.B ∈ STNF . Together they satisfy the third
possibility of the invariant.

Thus the induction of invariant 111 is proved. Thus we prove the→ direction of the second claim
of the theorem and hence prove the theorem. �

Theorem 15 For a nominal-safe ontology O under approximate reasoning, let a, b ∈ INO be
two individuals, A,B ∈ CNO be two concepts, and r ∈ RNO be a role, then the following
holds:

1. A v B ∈ SIfa(O) iff A v B ∈ SCfa(O);
2. {a} v A ∈ SIfa(O) iff a : A ∈ SCfa(O);
3. {a} v ∃r.{b} ∈ SIfa(O) iff (a, b) : r ∈ SCfa(O);

Proof The theorem is similar to Theorem 12 hence we follow a similar proof.
The ← direction is obvious because the additional CR rules are special cases of the cor-

responding R rules where certain concepts are restricted to nominals. If we rewrite the ABox
axioms into corresponding nominal form TBox axioms, the CR rules are the same as or can be
reduced to combinations of R rules.

Let Afa(O) = (T ,A, CT,QT, IT ) and AI(Afa(O)) = {T ′, CT,QT, IT}. In the follow-
ing, we use SI to denote SIfa(O), and SC to denote SCfa(O).

Before we prove the→ direction, we analyse the forms of axioms in SI . Because the ontol-
ogy is nominal-safe, all axioms in the initial T ′ should not have fc({a}) as the LHS if its RHS
is not of the same form, or {a} as the RHS if its LHS is not a nominal.

Hence, as a consequence of Theorem 6, we know that for a nominal-safe ontology O, SI
have the following properties, where A, B, fc(A), fc(B) ∈ CN T and a, b are individuals:

1. A v {a} /∈ SI unless A v ⊥ ∈ SI;
2. fc({a}) v B /∈ SI unless > v B ∈ SI;
3. fc({a}) v {b};
4. fc({a}) v ∃r.A /∈ SI unless > v ∃r.A ∈ SI;
5. fc({a}) v ∃r.{b} /∈ SI unless > v ∃r.{b} ∈ SI;
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6. fc({a}) v ∃r.fc({b}) /∈ SI unless > v ∃r.fc({b}) ∈ SI;
7. C1 u · · · u Cn v {a} /∈ SI where Ci is a named concept, nominal, > or ⊥;

Furthermore, because the R rules do not infer axioms of form C1 u · · · u Cn v Cn+1 or
∃r.C1 v C2, we know that for any axiom α of one of these two forms, we have α ∈ SI iff
α ∈ SC.

Thus we only need to consider the other kind of entailments in SI .
We prove the→ directions of the theorem by proving the following stronger lemma:

Lemma 16 For an ontology O, let Afa(O) = (T ,A, CT,QT, IT ) and AI(Afa(O)) be
(T ′, CT,QT, IT ). If we use SI to denote SIfa(O), and SC to denote SCfa(O), then the fol-
lowing invariants hold in each step of computation of SI , where a, b ∈ INO are two individuals,
A,B ∈ CN T are two concepts, and r ∈ RNO is a role:

fc(A), fc(B) ∈ CN T and A v B ∈ SI only if A v B ∈ SC (57)

fc(A) ∈ CN T and A v fc({a}) ∈ SI only if a : fc(A) ∈ SC (58)

A v ⊥ /∈ SI and A v ∃r.B ∈ SI only if A v ∃r.B ∈ SC (59)

A v ∃r.{a} only if A v ∃r.{a} ∈ SC (60)

{a} v B ∈ SI only if a : B ∈ SC (61)

{a} v {b} ∈ SI only if a .
= b ∈ SC (62)

fc({a}) v fc({b}) ∈ SI only if a .
= b ∈ SC (63)

r v s ∈ SI only if r v s ∈ SC (64)

{a} v fc({b}) ∈ SI only if a 6 .= b ∈ SC (65)

{a} v ∃r.{b} ∈ SI only if (a, b) : r ∈ SC (66)

r1 ◦ r2 v s ∈ SI only if r1 ◦ r2 v s ∈ SC (67)

{a} v ⊥ /∈ SI and {a} v ∃r.B ∈ SI only if a : ∃r.B ∈ SC (68)

Apparently the→ directions of the theorem hold if the above lemma holds.
To prove the above invariants, we perform induction of the application of rules. First of all, it

is obvious that the invariants are satisfied by all initial elements of SI , i.e. all axioms in T ′ and
corresponding tautologies added into SI = ST ((T ′, CT,QT, IT )) in Step-1 of Def. 5.

Then we show that, the above invariants hold for each of the corresponding axioms derived
by each of the corresponding rules.

Invariant 57: A v B ∈ SI can be derived by R1, 2, 4, 5, 9, 10, 11, 12, 13. Note that R6
can not derive A v B ∈ SI when the O is nominal-safe. We make a case distinction as follows:

1. If it is derived by R1. Then there is a concept X s.t. A v X and X v B. We make a case
distinction on the form of X:

(a) If X, fc(X) ∈ CN T , by induction of invariant 57 we know that A v X , X v B ∈
SC. Thus by non-applicability of rule R1 we have A v B ∈ SC.

(b) If X is a nominal {a}, then we have A v {a} ∈ SI , which is contradictory to the
form of axioms appearing in SI unless A v ⊥ ∈ SI . By induction of invariant 57
we haveA v ⊥ ∈ SC. Together with⊥ v B ∈ SC we directly haveA v B ∈ SC.

(c) If X is of form fc({b}), then we have fc({b}) v B ∈ SI , which is contradictory
to the form of axioms appearing in SI unless > v B ∈ SI . By induction of
invariant 57 we have > v B ∈ SC. Together with A v > ∈ SC we directly have
A v B ∈ SC.
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2. If it is derived by R2, then there are concepts A1, . . . , An s.t. A v Ai ∈ SI and A1 u
· · · u An v B ∈ T ′. Given the form of the later, it should also be in T . We make a case
distinction on the form of Ai as follows:

(a) If Ai, fc(Ai) ∈ CN T , then by induction of invariant 57 we have A v Ai ∈ SC.
(b) If Ai is a nominal {a}, then we have A v {a} ∈ SI , which is contradictory to the

form of axioms appearing in SI unless A v ⊥ ∈ SI , in which case by induction of
invariant 57 we have A v ⊥ ∈ SC and hence A v B ∈ SC.

(c) If Ai is of form fc({a}), they by induction of invariant 58 we have a : fc(A) ∈ SC.
Given that fc({a}) is in A1 u · · · u An v B, {a} is native and introduced. Thus
due to the non-applicability of IR1 we have {a} v fc(A) ∈ SC. Due to the non-
applicability of R10 we have A v fc({a}) ∈ SC.

Together, due to the non-applicability of R2 we have A v B ∈ SC.
3. If it is derived by R4, then there is r ∈ RN T ′ and two concepts X and X ′ such that
A v ∃r.X ∈ SI , X v X ′ ∈ SI and ∃r.X ′ v B ∈ T ′. Given the form of ∃r.X ′ v B, it
should also be in T . We make a case distinction on the form of X and X ′:

(a) If X, fc(X) ∈ CN T , when A v ⊥ ∈ SI , then by induction of invariant 57 we have
A v ⊥ ∈ SC and hence A v B ∈ SC. Otherwise, by induction of invariant 59 we
know that A v ∃r.X ∈ SC:

i. If X ′, fc(X ′) ∈ CN T , by induction of invariant 57 we also know that X v
X ′ ∈ SC. Thus by non-applicability of rule R4 we have A v B ∈ SC.

ii. If X ′ is a nominal {a}, then we have X v {a} ∈ SI , which is contradictory
to the possible forms of axioms in SI unless X v ⊥ ∈ SI . In this case, we
will have X v ⊥ ∈ SC by induction of invariant 57. Together due to the
non-applicability of R5 we also have A v ⊥ ∈ SC and hence A v B ∈ SC.

iii. IfX ′ is of form fc({a}), then by induction of invariant 58 we have a : fc(X) ∈
SC. Because ∃r.fc({a}) v B ∈ T ′, {a} is native. Hence due to the non-
applicability of IR1 and R10 we have X v fc({a}) ∈ SC. Due to the non-
applicability of R4 we have A v B ∈ SC.

(b) If X is a nominal {a}, then we have A v ∃r.{a} ∈ SI . By induction of invari-
ant 60 we have A v ∃r.{a} ∈ SC. This further indicates that {a} has already been
introduced:

i. If X ′, fc(X ′) ∈ CN T , by induction of invariant 61 we have a : X ′ ∈ SC.
Given that {a} is introduced, due to the non-applicability of IR1 we have {a} v
X ′ ∈ SC.

ii. If X ′ is another nominal {b}, then we have {a} v {b} ∈ SI . By induction
of invariant 62 we have a .

= b ∈ SC. Because ∃r.{b} v B ∈ T , {b} is also
introduced. Hence due to the non-applicability of IR3 we have {a} v {b} ∈
SC.

iii. If X ′ is of form fc({b}), it is similar as the above situation that eventually we
have {a} v fc({b}) ∈ SC.

In any case, due to the non-applicability of R4 we have A v B ∈ SC.
(c) If X is of form fc({a}), then we have A v ∃r.fc({a}) ∈ SI . By induction of

invariant 59 we have A v ∃r.fc({a}) ∈ SC. This further indicates that fc({a}) is
native:

i. If X ′, fc(X ′) ∈ CN T , then we have fc({a}) v X ′ ∈ SI , which is contra-
dictory to the possible forms of axioms in SI unless we have > v X ′ ∈ SI .
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By induction of invariant 57 we have > v X ′ ∈ SC. Because fc({a}) is
native, we have fc({a}) v > ∈ SC. Due to the non-applicability of R1
we have fc({a}) v X ′ ∈ SC. Due to the non-applicability of R4 we have
A v B ∈ SC.

ii. If X ′ is another nominal {b}, then we have fc({a}) v {b} ∈ SI , which is
contradictory to the possible forms of axioms in SI thus we omit this situation.

iii. If X ′ is of form fc({b}), then we have fc({a}) v fc({b}) ∈ SI . By induction
of invariant 63 we have a .

= b ∈ SC. Because ∃r.fc({b}) v B ∈ T we
know that fc({b}) is native. Due to non-applicability of IR3 and R10 we have
fc({a}) v fc({b}) ∈ SC. Due to non-applicability of R4 we have A v B ∈
SC.

4. If it is derived by R5, then B = ⊥ and there is concept X and r ∈ RN T s.t. A v ∃r.X ∈
SI and X v ⊥ ∈ SI . We make a case distinction on the form of X:

(a) If X, fc(X) ∈ CN T . When A v ⊥ ∈ SI we trivially have A v B ∈ SC as before.
Otherwise by invariant 59 we have A v ∃r.X ∈ SC and X v ⊥ ∈ SC. Due to the
non-applicability of R5 we have A v B ∈ SC.

(b) If X is a nominal {a}, then we have A v ∃r.{a} ∈ SI . By induction of invariant 60
we have A v ∃r.{a} ∈ SC. This also indicates that {a} is introduced. We also have
{a} v ⊥ ∈ SI . By induction of invariant 61 we have a : ⊥ ∈ SC. Due to the non-
applicability of IR1 we have {a} v ⊥ ∈ SC. Together due to the non-applicability
of R5 we have A v ⊥ ∈ SC.

(c) If X is of form fc({a}), then we have fc({a}) v ⊥ ∈ SI , which is contradictory
to the possible forms of axioms in SI thus we omit this situation.

5. If it is derived by R9, then B = ⊥ and there is a concept X s.t. A v X and A v fc(X).
We make a case distinction on form of X:

(a) If X , fc(X) ∈ CN T , thus by invariant 57 we have A v X,A v fc(X) ∈ SC. Due
to the non-applicability of R9 we have A v ⊥ ∈ SC.

(b) If X is a nominal {a}, then we have A v {a} ∈ SI . Given the possible form of
axioms in SI , we have A v ⊥ ∈ SI . By induction of invariant 57 we directly have
A v B ∈ SC.

(c) If X is of form fc({a}), then we have A v fc(fc({a})) ∈ SI , i.e. A v {a} ∈ SI .
Then we skip this situation as it is the same as above.

6. If it is derived by R10, then we have fc(B) v fc(A) ∈ SI . We also have fc(A),
fc(B) ∈ CN T , by induction on invariant 57 we have fc(B) v fc(A) ∈ SC. Due to the
non-applicability of rule R10 we have A v B ∈ SC.

7. If it is derived by R11, then we have A1, . . . , An s.t. B = fc(Ai) and A v Aj ∈ SI(1 ≤
j ≤ n, j 6= i) and A1 u · · · uAn v ⊥ ∈ T . We make a case distinction on the form of Aj
as follows:

(a) If Aj , fc(Aj) ∈ CN T , then by induction of invariant 57 we have A v Aj ∈ SC.
(b) If Aj is a nominal {a}, then we have A v {a} ∈ SI , which is contradictory to the

form of axioms appearing in SI unless A v ⊥ ∈ SI , in which case by induction of
invariant 57 we have A v ⊥ ∈ SC and hence A v B ∈ SC.

(c) If Aj is of form fc({a}), they by induction of invariant 58 we have a : fc(A) ∈ SC.
Given that fc({a}) is in A1 u · · · u An v ⊥ ∈ T , {a} is native. Thus due to the
non-applicability of IR1 we have {a} v fc(A) ∈ SC. Due to the non-applicability
of R10 we have A v fc({a}) ∈ SC.
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Together, due to the non-applicability of R11 we have A v B ∈ SC.
8. If it is derived by R12, then there is individual a ∈ INA and role r ∈ RN T s.t. A v
∃r.{a} ∈ SI and fc(B) v ∃fc(r).{a} ∈ SI . By induction of invariant 60 we have
A v ∃r.{a} ∈ SC and fc(B) v ∃fc(r).{a} ∈ SC. Due to the non-applicability of R12
we have A v B ∈ SC.

9. If it is derived by R13, then there are concepts X and Y , roles r, s ∈ RN T and integers
i and j s.t. X v Y ∈ SI , (A,X, r, i) ∈ QT , (B, Y, s, j) ∈ QT , r v s ∈ SI and i ≥ j.
By induction of invariant 64 we have r v s ∈ SC. (A,X, r, i), (B, Y, s, j) ∈ QT should
also remain as QT is the same in computation of SI and SC. And it’s apparent that i ≥ j
remains the same. We make a case distinction on the form of X and Y as follows:

(a) If X, fc(X) ∈ CN T :
i. If Y, fc(Y ) ∈ CN T , then by induction of invariant 57 we have X v Y ∈ SC.

ii. If Y is a nominal {a}, then we have X v {a}, which is contradictory to the
possible forms of axioms in SI unless X v ⊥ ∈ SI . In the later case, by
induction of invariant 57 we also have X v ⊥ ∈ SC. According to step-6 of
Def. 4 we have A v ∃r.X ∈ T ⊆ SC. Due to non-applicability of R5 we have
A v ⊥ ∈ SC hence A v B ∈ SC.

iii. If Y is of form fc({a}), then by induction of invariant 58 we have a : fc(X) ∈
SC. Meanwhile, (B, fc({a}), s, j) ∈ QT indicates that fc({a}) is native.
Hence due to non-applicability of IR1 and R10 we still have X v fc({a}) =
X v Y ∈ SC.

(b) If X is a nominal {a}, because (A, {a}, r, i) ∈ QT we know that {a} is native:
i. If Y, fc(Y ) ∈ CN T , then by induction of invariant 61 we have a : Y ∈ SC.

Due to the non-applicability of IR1 we have X v Y = {a} v Y ∈ SC.
ii. If Y is also a nominal {b}, then by induction of invariant 62 we have a .

= b ∈
SC. We also know that {b} is a native nominal. Due to the non-applicability of
IR3 we have X v Y = {a} v {b} ∈ SC.

iii. If Y is of form fc({b}), then by induction of invariant 65 we have a 6 .= b ∈ SC.
We also know that fc({b}) is native. Due to the non-applicability of IR4 we
have X v Y = {a} v fc({b}) ∈ SC.

(c) If X is of form fc({a}), we know that fc({a}) is native:
i. If Y, fc(Y ) ∈ CN T , then we have fc({a}) v Y ∈ SI , which is contradictory

to the possible forms of axioms in SI unless > v Y ∈ SI . In the later case,
by induction of invariant 57 we have > v Y ∈ SC. Because we also have
fc({a}) v > ∈ SC we can derive fc({a}) v Y ∈ SC.

ii. If Y is also a nominal {b}, then we have fc({a}) v {b} ∈ SI , which is contra-
dictory to the possible forms of axioms in SI .

iii. If Y is of form fc({b}), by induction of invariant 63 we have a .
= b ∈ SC

and hence b .
= a ∈ SC. Because {b} is also a native nominal, due to non-

applicability of IR3 we have {b} v {a} ∈ SC. Due to non-applicability of R10
we have X v Y = fc({a}) v fc({b}) ∈ SC.

In all the above situations where X is satisfiable, we have X v Y ∈ SC. Hence due to
the non-applicability of R13 we have A v B ∈ SC.

Thus the induction of invariant 57 is proved.
Invariant 58: A v fc({a}) ∈ SI can be derived by R1, 2, 4, 10, 11, 12. We skip the

obvious situation where A = ⊥ and make a case distinction as follows:
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1. If it is derived by R1, then there is a concept X s.t. A v X ∈ SI and X v fc({a}) ∈ SI .
We make a case distinction on the form of X:

(a) If X, fc(X) ∈ CN T , then by induction of invariant 57 we have A v X ∈ SC. Due
to the non-applicability of R10 we have fc(X) v fc(A) ∈ SC. By induction of
invariant 58 we have a : fc(X) ∈ SC. Due to the non-applicability of AR1a we
have a : fc(A) ∈ SC.

(b) If X is a nominal {b}, then we have A v {b} ∈ SI , which is contradictory to the
possible forms of axioms in SI unless we have A v ⊥ ∈ SI . By induction of
invariant 57 we have A v ⊥ ∈ SC. Due to the non-applicability of R10 we also
have > v fc(A) ∈ SC. Given that a : > ∈ SC, due to the non-applicability of
AR1a we have a : fc(A) ∈ SC.

(c) If X is of form fc({b}), then by induction of invariant 58, we have b : fc(A) ∈ SC.
By induction of invariant 63 we have a .

= b ∈ SC. Due to the non-applicability of
AR1b we have a : fc(A) ∈ SC.

2. If it is derived by R2, then there are conceptsA1, . . . , An s.t. A v Ai ∈ SI andA1u· · ·u
An v fc({a}) ∈ T . Hence {a} is a native nominal. In this case, A v fc({a}) ∈ SC can
be proved in the same way as A v B ∈ SC. Due to the non-applicability of R10 we have
{a} v fc(A) ∈ SC. Due to the non-applicability of IR1 we have a : fc(A) ∈ SC.

3. If it is derived by R4, then there is r ∈ RN T and two concepts X and X ′ such that
A v ∃r.X ∈ SI , X v X ′ ∈ SI and ∃r.X ′ v fc({a}) ∈ T ′. Given the form of
∃r.X ′ v fc({a}), it should also be in T . This indicates that {a} is a native nominal. In
this case, A v fc({a}) ∈ SC can be proved in the same way as A v B ∈ SC. Then
similar as the above situation we have a : fc(A) ∈ SC.

4. If it is derived by R10, then there is {a} v fc(A) ∈ SI . By induction of invariant 61 we
have a : fc(A) ∈ SC.

5. If it is derived by R11, then we have A1, . . . , An s.t. Ai = {a} and A v Aj ∈ SI (1 ≤
j ≤ n, j 6= i) and A1 u · · · uAn v ⊥ ∈ T . Given that Ai is in an original axiom in T , we
know that {a} is a native nominal. In this case, A v fc({a}) ∈ SC can be proved in the
same way as A v B ∈ SC. Then similar as the R4 situation we have a : fc(A) ∈ SC.

6. If it is derived by R12, then there is individual b ∈ INA and role r ∈ RN T s.t. A v
∃r.{b} ∈ SI and {a} v ∃fc(r).{b} ∈ SI . By induction of invariant 60 we have A v
∃r.{b} ∈ SC. By induction of invariant 66 we have (a, b) : fc(r) ∈ SC. Due to the
non-applicability of CR12 we have a : fc(A) ∈ SC.

Thus the induction of invariant 58 is proved.
Invariant 59: A v ∃r.B ∈ SI can be derived by R3, 7, 8. Note that A v ⊥ /∈ SI . The

situations where it is derived by R3 or R7 can be proved in the same way as invariant 42 in the
proof of Theorem 12 so we skip them.

If it is derived by R8, there are concept X and roles r1, r2 ∈ RN T s.t. A v ∃r1.X,X v
∃r2.B, r1 ◦ r2 v R ∈ SI . By induction of invariant 67 we have r1 ◦ r2 v R ∈ SC. We make a
case distinction on the form of X as follows:

1. If X, fc(X) ∈ CN T . By induction of invariant 59 we have A v ∃r1.X,X v ∃r2.B ∈
SC. Due to the non-applicability of R8 we have A v ∃r.B ∈ SC.

2. If X is a nominal {a}, then we have A v ∃r1.{a} ∈ SI and {a} v ∃r2.B ∈ SI . By
induction of invariant 60 we have A v ∃r1.{a} ∈ SC, implying that {a} is an intro-
duced nominal. By induction of invariant 68 we have a : ∃r2.B ∈ SC. Because {a} is
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introduced, due to the non-applicability of IR5 we have {a} v ∃r2.B ∈ SC. Due to the
non-applicability of R8 we have A v ∃r.B ∈ SC.

3. IfX is of form fc({a}), then we have fc({a}) v ∃r2.B ∈ SI . This occurs only when we
have > v ∃r.2B ∈ SI . By induction of invariant 59 we have > v ∃r.2B ∈ SC. Since
we have fc({a}) introduced, we know that it is also native. Hence we have fc({a}) v
> ∈ SC. Due to the non-applicability of R3 we have fc({a}) v ∃r.2B ∈ SC. Together
due to the non-applicability of R8 we have A v ∃r.B ∈ SC.

Thus the induction of invariant 59 is proved.
Invariant 60: A v ∃r.{a} ∈ SI can be derived by R3, 7, 8. Note that A v ⊥ /∈ SI . We

make a case distinction as follows:

1. If it is derived by R3, then there is concept X s.t. A v X ∈ SI and X v ∃r.{a} ∈ SI .
Given the possible forms of axioms in SI we haveX ∈ CN T . By induction of invariant 57
we have A v X ∈ SC. By induction of invariant 60 we have X v ∃r.{a} ∈ SC. Due to
the non-applicability of R3 we have A v ∃r.{a} ∈ SC.

2. If it is derived by R7, then simply by induction of invariant 60 and invariant 64, and due
to the non-applicability of R7 we have A v ∃r.{a} ∈ SC.

3. If it is derived by R8, there are concept X and roles r1, r2 ∈ RN T s.t. A v ∃r1.X,X v
∃r2.{a}, r1 ◦ r2 v r ∈ SI . By induction of invariant 67 we have r1 ◦ r2 v r ∈ SC. We
make a case distinction on the form of X as follows:

(a) If X, fc(X) ∈ CN T . By induction of invariant 59 we have A v ∃r1.X . By induc-
tion of invariant 60, we have X v ∃r2.{a} ∈ SC. Due to the non-applicability of
R8 we have A v ∃r.{a} ∈ SC.

(b) If X is a nominal {b}, then we have A v ∃r1.{b} ∈ SI , and {b} v ∃r2.{a} ∈
SI . By induction of invariant 60 we have A v ∃r1.{a} ∈ SC. By induction of
invariant 66 we have (b, a) : r2 ∈ SC. Due to the non-applicability of CR8 we have
A v ∃r.{a} ∈ SC. This is also where {a} is introduced in SC.

(c) If X is of form fc({b}), then we have fc({b}) v ∃r2.{a} ∈ SI , which is contradic-
tory to the possible forms of axioms in SI unless there is> v ∃r2.{a} ∈ SI . In this
case, because fc({b}) is native, eventually we will have fc({b}) v ∃r2.{a} ∈ SC.
Due to the non-applicability of R8 we have A v ∃r.{a} ∈ SC.

Thus the induction of invariant 60 is proved.
Invariant 61: {a} v B ∈ SI can be derived by R1, 2, 4, 5, 9, 10, 11, 12. The situations

where it is derived by R1, 5, 9, 10 can be proved in the same way as invariant 38 in the proof of
Theorem 12 so we skip them.

We make a case distinction on the other rules as follows:

1. If it is derived by R2, then there are concepts A1, . . . , An s.t. {a} v Ai ∈ SI and
A1 u · · · u An v B ∈ T ′. Given the form of the later, it should also be in T . We make a
case distinction on the form of Ai as follows:

(a) If Ai, fc(Ai) ∈ CN T , then by induction of invariant 61 we have a : Ai ∈ SC.
(b) If Ai is a nominal {b}, then by induction of invariant 62 we have a .

= b ∈ SC.
Given that {b} is native and introduced, due to the non-applicability of IR6 we have
a : {b} ∈ SC.

(c) If Ai is of form fc({b}), they by induction of invariant 65 we have a 6 .= b ∈ SC.
Given that fc({b}) is native an introduced, due to the non-applicability of IR7 we
have a : fc({b}) ∈ SC.
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Together, due to the non-applicability of AR2 we have x : B ∈ SNF .
2. If it is derived by R4, then there is r ∈ RN T and two concepts X and X ′ such that
{a} v ∃r.X ∈ SI , X v X ′ ∈ SI and ∃r.X ′ v B ∈ T ′. Given the form of ∃r.X ′ v B,
it should also be in T . We skip the obvious situation where {a} v ⊥ ∈ SI before R4 is
applied. We make a case distinction on the form of X and X ′:

(a) If X, fc(X) ∈ CN T , by induction of invariant 68 we know that a : ∃r.X ∈ SC:
i. If X ′, fc(X ′) ∈ CN T , by induction of invariant 57 we also know that X v
X ′ ∈ SC. Thus by non-applicability of rule AR4a we have a : B ∈ SC.

ii. If X ′ is a nominal {b}, then we have X v {b} ∈ SI , which is contradictory to
the possible forms of axioms in SI except that X v ⊥ ∈ SI . In the later case,
it is apparent that we can derive a : ⊥ ∈ SC hence a : B ∈ SC.

iii. If X ′ is of form fc({b}), then by induction of invariant 58 we have b : fc(X) ∈
SC. Because ∃r.fc({b}) v B ∈ T , {b} and fc({b}) are native. hence due to
the non-applicability of IR1 and R10 we have X v fc({b}) ∈ SC. Due to the
non-applicability of AR4a we have a : B ∈ SC.

(b) If x is a nominal {b}, by induction of invariant 66 we have (a, b) : r ∈ SC:
i. If X ′.fc(X ′) ∈ CN T , by induction of invariant 61 we have b : X ′ ∈ SC.

ii. If X ′ is a nominal {c}, by induction of invariant 62 we have b .
= c ∈ SC.

Because ∃r.fc({c}) ∈ T we know that {c} is native and introduced. Hence due
to the non-applicability of IR6 we have b : {c} ∈ SC.

iii. If X ′ is of form fc({c}), then similar as the above situation, due to the non-
applicability of IR7 we have b : fc({c}) ∈ SC.

In all above situations, by non-applicability of rule AR4b we have a : B ∈ SC.
(c) If X is of form fc({b}), then we have {a} v ∃r.fc({b}) ∈ SI . By induction of

invariant 68 we have a : ∃r.fc({b}) ∈ SC, which further suggests that {b} is native:
i. If X ′, fc(X ′) ∈ CN T , then we have fc({b}) v X ′ ∈ SI , which is contradic-

tory to the possible forms of axioms in SI unless T v X ′ ∈ SI . Then similar
as the proof of situation R4 of invariant 57 we have fc({b}) v X ′ ∈ SC. Due
to the non-applicability of AR4a we have a : B ∈ SC.

ii. If X ′ is a nominal {c}, then we have fc({b}) v {c} ∈ SI , which is contradic-
tory and should be omitted.

iii. If X ′ is of form fc({c}), then similar as the proof form situation R4 of invari-
ant 57 we have fc({b}) v fc({c}) ∈ SC. Due to the non-applicability of
AR4a we have a : B ∈ SC.

3. If it is derived by R11, then we have A1, . . . , An s.t. B = fc(Ai) and {a} v Aj ∈
SI (2 ≤ j ≤ n, j 6= i) and A1 u · · · uAn v ⊥ ∈ T . Given the form of the later, it should
also be in T . Similar as the proof for situation R2, due to the non-applicability of AR11
we have a : B ∈ SC.

4. If it is derived by R12, then there is individual b ∈ INA and role r ∈ RN T s.t. {a} v
∃r.{b} ∈ SI and fc(B) v ∃fc(r).{b} ∈ SI . By induction of invariant 66 we have
(a, b) : r ∈ SC. By induction of invariant 60 we have fc(B) v ∃fc(r).{b} ∈ SC. Due
to the non-applicability of CR12 we have a : B ∈ SC.

Thus the induction of invariant 61 is proved.
Invariant 62: {a} v {b} can be derived by R1, 6, 10, 11, 12. Note that R2 and R4 can not

derive {a} v {b} because {b} should not appear as the RHS in T .
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1. If it is derived by R1, then there is a concept X s.t. {a} v X ∈ SI and X v {b} ∈ SI .
We make a case distinction on the form of X:

(a) If X, fc(X) ∈ CN T , given the possible forms of axioms in SI , we have X v ⊥ ∈
SI . By induction of invariant 61 we have a : X ∈ SC. By induction of invariant 57
we have X v ⊥ ∈ ST ⊆ SC. Due to the non-applicability of AR1a we have
a : ⊥ ∈ SC. Due to the non-applicability of AR1e we have a .

= b ∈ SC.
(b) If X is a nominal {c}. Thus by induction of invariant 62 we have a .

= c ∈ SC and
c
.
= b ∈ SC. By non-applicability of AR1d we have a .

= b ∈ SC.
(c) If X is of form fc({c}), then we have fc({c}) v {b} ∈ SI , which is contradictory

to the possible forms of axioms in SI thus we omit this situation.
2. If it is derived by R6, then there is {b} v {a} ∈ SI . As we explained earlier in the proof,

if {b} v {a} is an initial element of SI without any inference, then we have b .= a ∈ SC,
due to the non-applicability of IR3. Alternatively, if {b} v {a} ∈ SI is derived, then by
induction of invariant 62 we have b .

= a ∈ SC. In either case, by non-applicability of
AR10 we have a .

= b ∈ SC.
3. If it is derived by R10, then there is fc({b}) v fc({a}) ∈ SI . By induction of invariant 63

we have b .= a ∈ SC. Due to the non-applicability of AR10 we have a .
= b ∈ SC.

4. If it is derived by R11, then we have A1, . . . , An s.t. {b} = fc(Ai) and {a} v Aj ∈
SI(1 ≤ j ≤ n, j 6= i) and A1 u · · · uAn v ⊥ ∈ T . Similar as the proof for situation R11
of invariant 61, due to the non-applicability of AR11 we have a : {b} ∈ SC. Due to the
non-applicability of IR6 we have a .

= b ∈ SC.
5. If it is derived by R12, then there is individual c ∈ INA and role r ∈ RN T s.t. {a} v
∃r.{c} ∈ SI and fc({b}) v ∃fc(r).{c} ∈ SI . By induction of invariant 66 we have
(a, c) : r ∈ SC. fc({b}) v ∃fc(r).{c} ∈ SI is contradictory to the possible forms of
axioms in SI unless we have > v ∃fc(r).{c} ∈ SI . By induction of invariant 60 we
have > v ∃fc(r).{c} ∈ SC. Because we have a : > ∈ SC, due to the non-applicability
of AR3a we have a : ∃fc(r).{c} ∈ SC. Due to the non-applicability of IR8 we have
(a, c) : fc(r) ∈ SC. Due to the non-applicability of AR12 we have a 6 .= a ∈ SC. Because
we also have a .

= a ∈ SC, due to the non-applicability of AR9b we have a : ⊥ ∈ SC.
Finally, due to the non-applicability of AR1e we have a .

= b ∈ SC.

Thus the induction of invariant 62 is proved.
Invariant 63: Similar as invariant 58, fc({a}) v fc({b}) can be derived by R1, 2, 4, 10,

11, 12. We make a case distinction as follows:

1. If it is derived by R1, then there is a concept X s.t. fc({a}) v X ∈ SI and X v
fc({b}) ∈ SI . We make a case distinction on form of X:

(a) If X, fc(X) ∈ CN T , given the possible form of axioms in SI , we have > v X ∈
SI . By induction of invariant 36 we have> v X ∈ SC. Due to the non-applicability
of R10 we have fc(X) v ⊥ ∈ SC. By induction of invariant 37 we have b :
fc(X) ∈ SC. Together due to the non-applicability of AR1a we have b : ⊥ ∈ SNF .
Due to the non-applicability of AR1e and AR10 we eventually have a .

= b ∈ SC.
(b) If X is a nominal {c}, then we have fc({a}) v {c} ∈ SI , which contradicts with

the possible forms of axioms in SI thus we omit this situation.
(c) If X is of form fc({c}). Thus by induction of invariant 41 we have a .

= c ∈ SC and
c
.
= b ∈ SC. By non-applicability of AR1d we have a .

= c ∈ SC.
2. If it is derived by R2, then we have A1, . . . , An s.t. fc({a}) v Ai ∈ SI and A1 u · · · u
An v fc({b}) ∈ T . We make a case distinction on the form of Ai:
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(a) IfAi, fc(Ai) ∈ CN T , given the form of axiom we have> v Ai ∈ SI . By induction
of invariant 57 we have > v Ai ∈ SC.

(b) If Ai is a nominal {c} then we have fc({a}) v {c} ∈ SI which is contradictory to
the possible forms of axioms in SI thus we omit this situation.

(c) If Ai is of form fc({c}), then by induction of invariant 63 we have a .
= c ∈ SC.

Combining the above possibilities, due to the non-applicability of CR2 we have a .
= b ∈

SC.
3. If it is derived by R4, then there is r ∈ RN T and two concepts X and X ′ s.t. fa({a}) v
∃r.X ∈ SI , X v X ′ ∈ SI and ∃r.X ′ v fc({b}) ∈ T ′. Given the form of ∃r.X ′ v
fc({b}), it should also be in T . Regardless the form of X , given the possible forms of
axioms in SI , we always have > v ∃r.X ∈ SI . Regardless the form of X ′ is, we can
always prove that b : ⊥ ∈ SC as in the proof for situation R4 of invariant 58. Hence due
to the non-applicability of AR1e we have a .

= b ∈ SC.
4. If it is derived by R10, then there is {b} v {a} ∈ SI . By induction of invariant 62 we

have b .= a ∈ C. Due to the non-applicability of AR10 we have a .
= b ∈ SC.

5. If it is derived by R11, then we have A1, . . . , An s.t. Ai = {b} and fc({a}) v Aj ∈
SI (1 ≤ j ≤ n, j 6= i) and A1 u · · · u An v ⊥ ∈ T . We make a case distinction on the
form of Aj as follows:

(a) If Aj , fc(Aj) ∈ CN T , then fc({a}) v Aj is contradictory to the possible forms of
axioms in SI unless we have T v Aj .

(b) If Aj is a nominal {c}, then it is contradictory to the possible forms of axioms in SI
so we omit this situation.

(c) If Aj is of form fc({c}), then by induction of invariant 63 we have a .
= c ∈ SC.

Together, due to the non-applicability of CR11 we have a : {b} ∈ SC. Note that, here we
don’t introduce new nominal because {b} is native. Due to the non-applicability of IR6
we have a .

= b ∈ SC.
6. If it is derived by R12, then there is individual c ∈ INA and role r ∈ RN T s.t. fc({a}) v
∃r.{c} ∈ SI and {b} v ∃fc(r).{c} ∈ SI . Then follow a similar proof for situation R12
of invariant 62 we can prove that a .

= b ∈ SC.

Thus the induction of invariant 63 is proved.
Invariant 64: r v s ∈ SI can be derived by R14, 15, 16, 18. The situation of R14, 15 and

18 so we skip them.
When it is derived by R18, then we have ∃r.> v X , ∃fi(r).> v Y ,

d
1≤i≤n fc({ai}) v

fc(A) and
d

1≤j≤m fc({bj}) v fc(B) ∈ T ′. Given the form of these axioms, they should
also be in T . We also have X v A, Y v B, fc(A) v fc({ai}) (1 ≤ i ≤ n), fc(B) v
fc({bj}) (1 ≤ j ≤ m) and {ai} v ∃s.{bj} ∈ SI (1 ≤ i ≤ n, 1 ≤ j ≤ m). By induction of
invariant 66 we should have (ai, bj) : s ∈ SC (1 ≤ i ≤ n, 1 ≤ j ≤ m). Note that all the {ai}
and {bj} are native. Hence we should have {ai} v ∃s.{bj} ∈ SC (1 ≤ i ≤ n, 1 ≤ j ≤ m).
Now we make a case distinction on the form of X and A:

1. If A, fc(A) ∈ CN T , by induction of invariant 58 we have ai : A ∈ SC. Given that {ai}
and fc({ai}) are native, due to the non-applicability of IR1 and R10 we have fc(A) v
fc({ai}) ∈ SC (1 ≤ i ≤ n):

(a) If X, fc(X) ∈ CN T , by induction of invariant 57 we have X v A ∈ SC.
(b) If X is a nominal {c}, then we have ∃r.> v {c} ∈ SI , which is contradictory to the

possible forms of axioms in SI so we omit this situation.
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(c) If X is of form fc({c}), then we have fc({c}) v A ∈ SI , which is contradictory
to the possible forms of axioms in SI unless we have > v A ∈ SI . By induction
of invariant 57 we have > v A ∈ SC. Given that fc({c}) is native, we have
fc({c}) v > ∈ SC. Together due to non-applicability of R1 we haveX v A ∈ SC.

2. If A is a nominal {c}, by induction of invariant 63 we have c .
= ai ∈ SC. Given the

{ai}, fc({ai}), {c} and fc({c}) are all native. We should have fc({c}) v fc({ai}) ∈
SC (1 ≤ i ≤ n):

(a) If X, fc(X) ∈ CN T , then we have X v {c} ∈ SI , which is contradictory to
the possible forms of axioms in SI unless we have X v ⊥ ∈ SI . In this case, by
induction of invariant 57 we haveX v ⊥ ∈ SC. Due to the non-applicability of R10
we have > v fc(X) ∈ SC. Given than fc({c}) is native, we have fc({c}) v > ∈
SC. Together we have fc({c}) v fc(X) ∈ SC and furthermore X v {c} ∈ SC.

(b) If X is a nominal {d}, then by induction we have d .
= c ∈ SC. Given that both {d}

and {c} are native, we have X v A = {d} v {c} ∈ SC.
(c) If X is of form fc({d}), then we have fc({d}) v {c} ∈ SI , which is contradictory

to the possible forms of axioms in SI thus we omit this situation.
3. If A is of form fc({c}), by induction of invariant 65 we have c 6 .= ai ∈ SC (1 ≤ i ≤
n). Given that {c} = fc(A) is native, and {ai} is native, eventually we have {c} v
fc({ai}) ∈ SC (1 ≤ i ≤ n):

(a) If X, fc(X) ∈ CN T , we have X v fc({c}) ∈ SI . By induction of invariant 58 we
have c : fc(X) ∈ SC. Given that {c} is native we should have X v fc({c}) ∈ SC.

(b) If X is a nominal {d}, by induction of invariant 65 we have d 6 .= c ∈ SC. Given that
{d} is also native, eventually we should have {d} v fc({c}) ∈ SC.

(c) If X is of form fc({d}), by induction of invariant 63 we have d .
= c ∈ SC. Given

that fc({d}) and fc({c}) are both native, eventually we should have fc({d}) v
fc({c}) ∈ SC.

Hence in all the above situations we have X v A ∈ SC and fc(A) v fc({ai}) ∈ SC (1 ≤
i ≤ n). Similarly, we can also prove that we always have Y v B ∈ SC and fc(B) v
fc({bj}) ∈ SC (1 ≤ j ≤ m). Together, due to the non-applicability of R18 we have r v
s ∈ SC.

Thus the induction of invariant 64 is proved.
Invariant 65: {a} v fc({b}) can be derived by R1, 2, 4, 10, 11, 12, 20.
Situations R1, 10, 12 can be proved in a similar way as in proof of invariant 40 so we skip

them.
If it is derived by R2, R4 or R11, we can prove in a similar manner as situations R2, 4, 11 of

invariant 61, that a : fc({b}) ∈ SC. Due to the non-applicability of IR7 we have a 6 .= b ∈ SC.
We also skip the obvious situation where {a} v ⊥ ∈ SI is derived before the corresponding

rule is applied, in which case we have a : ⊥ ∈ SC by induction of invariant 61. Then due to the
non-applicability of AR1e we can derive a 6 .= b ∈ SC.

If it is derived by R20, then there is concept X s.t. {a} v ∃r.X,X v ∃fi(fc(r)).{b} ∈ SI .
We make a case distinction on the form of X:

1. If X, fc(X) ∈ CN T , by induction of invariant 68 we have a : ∃r.X ∈ SC. By in-
duction of invariant 60 we have X vv ∃fi(fc(r)).{b} ∈ SC. Together due to the
non-applicability of CR20 we have a 6 .= b ∈ SC.
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2. If X is a nominal {c}, by induction of invariant 44 we have (a, c) : r ∈ SC and (c, b) :
fi(fc(r)) ∈ SC. Due to the non-applicability of AR19 we have (c, a) : fi(r) ∈ SC.
Because fi(fc(r)) = fc(fi(r)), due to the non-applicability of AR12 we have a 6 .= b ∈
SC.

3. IfX is of form fc({c}), by induction of invariant 66 we have a : ∃r.fc({c}) ∈ SC, which
also implies that fc({c}) is native. We also have fc({c}) v ∃fi(fc(r)).{b} ∈ SI , which
is contradictory to the possible forms of axioms in SI unless > v ∃fi(fc(r)).{b} ∈ SI .
By induction of invariant 60 we have > v ∃fi(fc(r)).{b} ∈ SC. Because fc({c})
is native, we have fc({c}) v > ∈ SC. Due to the non-applicability of R3 we have
fc({c}) v ∃fi(fc(r)).{b} ∈ SC. Due to the non-applicability of CR20 we have a 6 .= b ∈
SC.

Thus the induction of invariant 65 is proved.
Invariant 66: {a}∃r.{b} ∈ SI can be derived by R3, 7, 8, 19. We make a case distinction

as follows:

1. If it is derived by R3, then there is concept X s.t. {a} v X,X v ∃r.{b} ∈ SI . We make
a case distinction on the form of X:

(a) If X, fc(X) ∈ CN T , by induction of invariant 61 we have a : X ∈ SC. By
induction of invariant 60 we have X v ∃r.{b} ∈ SC. Due to the non-applicability
of AR3a we have a : ∃r.{b} ∈ SC. Due to the non-applicability of IR8 we have
(a, b) : r ∈ SC.

(b) If X is a nominal {c}, by induction of invariant 62 we have a .
= c ∈ SC. By

induction of invariant 66 we have (c, b) : r ∈ SC. Due to the non-applicability of
AR3c we have (a, b) : r ∈ SC.

(c) If X is of form fc({c}), then we have fc({c}) v ∃r.{b} ∈ SI , which is contradic-
tory to the possible forms of axioms in SI unless we have > v ∃r.{b} ∈ SI . In this
situation we can easily derive that a : ∃r.{b} ∈ SC and hence (a, b) : r ∈ SC.

2. If it is derived by R7, then there is s ∈ RN T s.t. {a} v ∃s.{b}, s v r ∈ SI . By
induction of invariant 66 we have (a, b) : s ∈ SC. By induction of invariant 64 we have
s v r ∈ SC. Due to the non-applicability of AR7b we have (a, b) : r ∈ SC.

3. If it is derived by R8, then there are a concept X and roles r1, r2 ∈ RN T s.t. {a} v
∃r1.X,X v ∃r2.{b}, r1 ◦ r2 v r ∈ SI . We make a case distinction on the form of X:

(a) IfX, fc(X) ∈ CN T , then by induction of invariant 68 we have a : ∃r1.X ∈ SC. By
induction of invariant 60 we have X v ∃r2.{b} ∈ SC. Due to the non-applicability
of CR8b we have (a, b) : r ∈ SC.

(b) If X is a nominal {c}. By induction of invariant 66 we have (a, c) : r1, (c, b) : r2 ∈
SC. Due to the non-applicability of AR8c we have (a, b) : r ∈ SC.

(c) IfX is of form fc({c}), then by induction of invariant 68 we have a : ∃r1.fc({c}) ∈
SC, which also indicates that fc({c}) is native. Hence we have fc({c}) v > ∈ SC.
We also have fc({c}) v ∃r2.{b} ∈ SI , which is contradictory to the possible forms
of axioms in SI unless we have > v ∃r2.{b} ∈ SI . In this case by induction
of invariant 60 we have > v ∃r.{b} ∈ SC. Due to the non-applicability of R3
we have fc({c}) v ∃r.{b} ∈ SC. Due to the non-applicability of AR8a we have
a : ∃r.{b} ∈ SC. Due to the non-applicability of IR8 we have (a, b) : r ∈ SC.

4. If it is derived by R19, then we have {b} v ∃fi(r).{a} ∈ SI . By induction of invariant 66
we have (b, a) : fi(r) ∈ SC. Due to the non-applicability of AR19 we have (a, b) : r ∈
SC.
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Thus the induction of invariant 66 is proved.
Invariant 67: r1 ◦ r2 v s ∈ SI can only be derived by R17. It is easy to show that by

induction of invariant 67 itself and the non-applicability of R17 we have r1 ◦r2 v s ∈ SC. Thus
the induction of invariant 67 is proved.

Invariant 68: {a} v ∃r.B ∈ SI can be derived by R3, 7, 8. Note that {a} v ⊥ /∈ SI . We
make a case distinction as follows:

1. If it is derived by R3, then there is a concept X s.t. {a} v X,X v ∃r.B ∈ SI . We make
a case distinction on form of X:

(a) If X, fc(X) ∈ CN T , then by induction of invariant 61 we have a : X ∈ SC. By
induction of invariant 42 we have X v ∃r.B ∈ SC. Due to the non-applicability of
rule AR3a we have a : ∃r.B ∈ SC.

(b) If X is a nominal {b}, then by induction of invariant 44 we have a .
= b ∈ SC. By

induction of invariant 43 we have b : ∃r.B ∈ SC. Due to the non-applicability of
AR3b we have a : ∃r.B ∈ SC.

(c) If X is of form fc({b}), then we have fc({b}) v ∃r.B ∈ SI , which is contradictory
to possible forms of axioms in SI unless we have > v ∃r.B ∈ SI . In this case by
induction of invariant 59 we have > v ∃r.B ∈ SC. Because we have a : > ∈ SC.
Due to the non-applicability of AR3a we have a : ∃r.B ∈ SC.

2. If it is derived by R7, there is s ∈ RN T s.t. {a} v ∃s.B ∈ SI and s v r ∈ SI . By
induction of invariant 68 we have a : ∃s.B ∈ SC. By induction of invariant 64 we have
s v r ∈ SC. Due to non-applicability of AR7a we have a : ∃r.B ∈ SC.

3. If it is derived by R8, there are conceptX and roles r1, r2 ∈ RN T s.t. {a} v ∃r1.X,X v
∃r2.B, r1 ◦ r2 v r ∈ SI . By induction of invariant 67 we have r1 ◦ r2 v r ∈ SC. We
make a case distinction on form of X:

(a) If X, fc(X) ∈ CN T , by induction of invariant 68 we have a : ∃r1.X ∈ SC. By
induction of invariant 59 we have X v ∃r2.B ∈ SC. Due to the non-applicability
of AR8a we have a : ∃r.B ∈ SC.

(b) If X is a nominal {b}, by induction of invariant 66 we have (a, b) : r1 ∈ SC. By
induction of invariant 68 we have b : ∃r2.B ∈ SC. Due to the non-applicability of
AR8b we have a : ∃r.B ∈ SC.

(c) IfX is of form fc({b}), then following a similar proof for situation R8 of invariant 66
we have a : ∃r.B ∈ SC.

Thus the induction of invariant 68 is proved.
With inductions of all invariants proved for each of the corresponding rules, we proved

Lemma 16.
This further proves the→ directions of the Theorem and hence the Theorem 15. �

Theorem 17 Let O be an ELHI TBox with only safe roles and TAfa(O) its TBox transfor-
mation with name assignment fa(�), then for any A,B ∈ CNO, O |= A v B iff A v B ∈
ST (TAfa(O)) or A v ⊥ ∈ ST (TAfa(O)).

Proof The← direction immediately follows from the soundness of our approach (Theorem 5)
therefore we will only need to prove the completeness.

The→ direction can be proved with model construction and contrapositive. For the sake of
conciseness, in this proof we use ST to abbreviate ST (TAfa(O)). Particularly, assuming there
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are X,Y ∈ CNO s.t. O |= X v Y , X v Y /∈ ST and X v ⊥ /∈ ST , we want to show that a
model I of O can be constructed such that I 6|= X v Y .

In order to construct such a model, we define a relation ≈ on ST s.t. A ≈ B iff A ≡ B ∈
ST (or A v B ∈ ST when B = ⊥). Obviously ≈ is an equivalence relation. We use ≈ to
partition the CN ST and use [A] to denote the set {B|A ≈ B}. Obviously, the following holds:

1. If A v B ∈ ST , then for any A′ ∈ [A], we have A′ v B ∈ ST . And for any B′ ∈ [B],
we have A v B′ ∈ ST .

2. If A v ∃r.B ∈ ST , then for any A′ ∈ [A], we have A′ v ∃r.B ∈ ST .

These two properties will ensure the well-definition of the model. Simply, we also use [⊥] to
denote all the unsatisfiable concepts in ST .

We also show that for roles R,S that occur in O, we have R 4∗ S if we have fa(R) v
fa(S) ∈ ST . This can be shown by induction:

1. For each original RIA fa(R) v fa(S) in the transformed TBox, we know that there is
R v S ∈ O. Hence R 4∗ S.

2. For each tautology RIA fa(R) v fa(R) in the initialisation of ST , we haveR = R hence
R 4∗ R.

3. If fa(R) v fa(S) is derived by rule R14, then there is some fa(T ) s.t. fa(R) v fa(T ) ∈
ST and fa(T ) v fa(S) ∈ ST . Inductively, we know that R 4∗ T and T 4∗ S. Hence
R 4∗ S.

4. If fa(R) v fa(S) is derived by rule R15, then there is fi(fa(R)) v fi(fa(S)) ∈ ST .
Note that fi(fa(R)) = fa(inv(R)) and fi(fa(S)) = fa(inv(S)), we have fa(inv(R)) v
fa(inv(S)) ∈ ST . Inductively, there is inv(R) 4∗ inv(S). According to the definition
of safe role we have R 4∗ S.

Now assume there are X,Y ∈ CNO s.t. O |= X v Y , X v Y /∈ ST and X v ⊥ /∈ ST .
We know that X must be satisfiable in ST . This implies that a model I = 〈∆I , �I〉 constructed
as follows should exist with a non-empty ∆I :

1. ∆I = {[A]|A /∈ [⊥]};
2. AI = {[B]|B v A ∈ ST} \ [⊥];
3. rI = direct(r) ∪ inverse(r), where:

(a) direct(r) = {〈[A], [B]〉|A v ∃s.B ∈ ST, s v r ∈ ST};
(b) inverse(r) = {〈[A], [B]〉|〈[B], [A]〉 ∈ direct(fi(r))};

Apparently, since X v X ∈ ST , we have [X] ∈ XI . Also, X v Y /∈ ST , therefore
[X] /∈ Y I . Hence, I 6|= X v Y .

Now we show that I is indeed a model of O. This can be done by analysing each axiom
α ∈ O in a case by case manner:

1. If α is of formA v B, then obviously such an axiom will be preserved after transformation
and be included in ST . For any [C] ∈ AI , we know that C v A ∈ ST as well. Due to
the non-applicability of rule R1, we have X v A ∈ ST , which implies that [X] ∈ BI .
Hence, I |= α.

2. If α is of form A1 u · · · uAn v B, then this axiom will be transformed into the following
two axioms during TBox transformation:

fa(A1 u · · · uAn) v B (112)
fa(A1 u · · · uAn) ≡ A1 u · · · uAn (113)
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Obviously, both of these axioms will be included in ST as well. For any [C] ∈ (A1 u
· · ·uAn)I , by the semantics of conjunction we know that [C] ∈ AIi for each i = 1, . . . , n.
Hence, we have C v Ai ∈ ST . Due to the non-applicability of rule R2 and axiom (113),
we have C v fa(A1 u · · · uAn) ∈ ST . Further with axiom (112) we have C v B ∈ ST .
This implies that [C] ∈ BI and I |= α.

3. If α is of form A v ∃R.B, then the following axioms will be created in the TBox trans-
formation:

A v fa(∃R.B) (114)
fa(∃R.B) ≡ ∃fa(R).B (115)

Similar as before, these two axioms will also be included in ST . For any [C] ∈ AI , we
have C v A ∈ ST . Due to the non-applicability of rule R3 and the above two axioms
in ST , we will have C v ∃fa(R).B ∈ ST . Since [C] ∈ ∆I we know that C /∈ [⊥].
Consequently we know that B /∈ [⊥]. Hence, [B] ∈ BI . Also, C v ∃fa(R).B ∈ ST
suggests that 〈[C], [B]〉 ∈ direct(fa(R)) ⊆ fa(R)I . Now we make a case distinction on
R:

(a) WhenR ∈ RNO, we know that fa(R) = R. Hence, [B] ∈ BI and 〈[C], [B]〉 ∈ RI
implies that [C] ∈ (∃R.B)I .

(b) When R /∈ RNO, we know that R is the inverse role of some named role in RNO.
Without lose of generality, assuming R = r−, we know that fa(R) = fi(r) and
r = fi(fa(R)) in ST . Given that 〈[C], [B]〉 ∈ direct(fa(R)), we know that
〈[B], [C]〉 ∈ inverse(r) ⊆ rI . Hence, 〈[C], [B]〉 ∈ RI . Together with [B] ∈ BI ,
we know that [C] ∈ (∃R.B)I .

This shows that I |= α in all possible cases.
4. If α is of form ∃R.A v B, then the following axioms will be created in the TBox trans-

formation:

fa(∃R.A) v B (116)
fa(∃R.A) ≡ ∃fa(R).A (117)

These two axioms will also be included in ST . For any [C] ∈ fa(∃R.A)I , by definition
of DL semantics, we know that there is some [D] ∈ AI s.t. 〈[C], [D]〉 ∈ RI . From the
former we have D v A ∈ ST . For the latter we make a case distinction on R:

(a) When R ∈ RNO, we have fa(R) = R. We can make a further case distinction on
〈[C], [D]〉RI :

i. If 〈[C], [D]〉 ∈ direct(R), then we have C v ∃s.D ∈ ST and s v R ∈ ST .
Combining withD v A ∈ ST , axiom (117), due to the non-applicability of rule
R4, we have C v fa(∃R.A) ∈ ST and furthermore C v B ∈ ST . The latter
implies that [C] ∈ BI .

ii. If 〈[C], [D]〉 ∈ inverse(R), then we have 〈[D], [C]〉 ∈ direct(fi(R)). This
suggests that there is some role s s.t. D v ∃s.C ∈ ST and s v fi(R) ∈ ST .
Note that s v fi(R) ∈ ST indicates that s 4 inv(R). This suggests that s
is not a safe role and is against the condition in the theorem. Hence, such a
situation should not occur.
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(b) When R /∈ RNO, we know that R is the inverse of some named role in O. Without
lose of generality, we assume R = r−. Then we have fa(R) = fi(r) and r =
fi(fa(R)) in ST . This also suggests that 〈[D], [C]〉 ∈ rI . We can make a further
case distinction:

i. If 〈[D], [C]〉 ∈ direct(r), then there should be some s in ST s.t. D v ∃s.C ∈
ST and s v r ∈ ST . The later suggests that s 4 r. In other words, s 4 inv(r−)
and ∃r−.A v B ∈ O. This implies that s is not a safe role and it is against the
condition in the theorem. Hence, such a situation should not occur.

ii. If 〈[D], [C]〉 ∈ inverse(r), then by definition of I we have 〈[C], [D]〉 ∈ direct(fa(R)).
This suggests that there is some role s s.t. C v ∃s.D ∈ ST and s v fa(R) ∈
ST . Similar as before we have C v B ∈ ST and [C] ∈ BI .

To sum up, in all possible situations we have [C] ∈ BI . This indicates that I |= α.
5. If α is of form R v S, then we will have fa(R) v fa(S) in the transformed TBox and

also ST . For any 〈[C], [D]〉 ∈ RI , we make the following case distinction:
(a) If R ∈ RNO and S ∈ RNO, then fa(R) = R and fa(S) = S. We make a further

case distinction as follows:
i. If 〈[C], [D]〉 ∈ direct(fa(R)), then there is some s s.t. C v ∃s.D ∈ ST

and s v fa(R) ∈ ST . Together with fa(R) v fa(S) ∈ ST and the non-
applicability of R14, we have s v fa(S) ∈ ST . This suggests that 〈[C], [D]〉 ∈
direct(fa(S)) ⊆ fa(S)I = SI .

ii. If 〈[C], [D]〉 ∈ inverse(fa(R)), then we know that 〈[D], [C]〉 ∈ direct(fi(R)).
This implies that there is some role s s.t. D v ∃s.C ∈ ST and s v fi(R) ∈
ST . Given that R v S ∈ ST , due to the non-applicability of rule R15,
we have fi(R) v fi(S) ∈ ST . Hence, we have s v fi(S) ∈ ST . To-
gether this suggests that 〈[D], [C]〉 ∈ direct(fi(S)). Consequently we have
〈[C], [D]〉 ∈ inverse(S) ⊆ SI .

(b) If R /∈ RNO and S /∈ RNO, then R and S are both inverse of some atomic roles
in O. Without lose of generality, we assume R = r− and S = s−. We have
fa(R) = fi(r) and fa(S) = fi(s). We also know that 〈[D], [C]〉 ∈ rI . Now we
make a further case distinction as follows:

i. If 〈[D], [C]〉 ∈ direct(r), then there is some t s.t. D v ∃t.C ∈ ST and
t v r ∈ ST . From fa(R) v fa(S) ∈ ST and the non-applicability of rule
R15, we have r v s ∈ ST and furthermore t v s ∈ ST . This suggests that
〈[D], [C]〉 ∈ direct(s) ⊆ sI .

ii. If 〈[D], [C]〉 ∈ inverse(r), then we have 〈[C], [D]〉 ∈ direct(fa(R)). Similar
as before, this leads to 〈[C], [D]〉 ∈ direct(fa(S)) and 〈[D], [C]〉 ∈ inverse(s) ⊆
sI .

In both cases, we have 〈[C], [D]〉 ∈ (s−)I = SI .
(c) If R ∈ RNO and S /∈ RNO, then fa(R) = R and S is an inverse role of some

atomic role in O. Without lose of generality, we assume S = s−. Then we have
fa(S) = fi(s). Now we make a case distinction as follows:

i. If 〈[C], [D]〉 ∈ direct(R), then there is some t s.t. C v ∃t.D ∈ ST and t v
R ∈ ST . This leads to t v fa(S) ∈ ST and hence 〈[C], [D]〉 ∈ direct(fa(S)).
According to the construction of I, we have 〈[D], [C]〉 ∈ inverse(s) ⊆ sI .

ii. If 〈[C], [D]〉 ∈ inverse(R), then we have 〈[D], [C]〉 ∈ direct(fi(R)). This
happens when there is some t s.t. D v ∃t.C ∈ ST and t v fi(R) ∈ ST . Since
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fa(R) v fa(S) ∈ ST , we have fi(R) v s ∈ ST . Hence we have t v s ∈ ST .
This indicates that 〈[D], [C]〉direct(s) ⊆ sI .

In both cases, 〈[C], [D]〉 ∈ (s−)I = SI .
(d) If R /∈ RNO and S ∈ RNO, then fa(S) = S and R is an inverse role of some

atomic role in O. Without lose of generality, we assume R = r−. Then we have
fa(R) = fi(r) and 〈[D], [C]〉 ∈ rI . Now we make a case distinction as follows:

i. If 〈[D], [C]〉 ∈ direct(r), then there is some t s.t. D v ∃t.C ∈ ST and
t v r ∈ ST . Since fa(R) v fa(S) ∈ ST , we have r v fi(S) ∈ ST . Hence
t v fi(S) ∈ ST and 〈[D], [C]〉 ∈ direct(fi(S)). This leads to 〈[C], [D]〉 ∈
inverse(S) ⊆ SI .

ii. If 〈[D], [C]〉 ∈ inverse(r), then we have 〈[C], [D]〉 ∈ direct(fa(R)). Similar
as before, this eventually leads to 〈[C], [D]〉 ∈ direct(fa(S)) = direct(S) ⊆
SI .

The above case by case analysis shows that I |= α when α is an RIA.

Together, we can conclude that I satisfies each axiom in O. This means that I is a model of O.
Given that I 6|= X v Y , we know that O 6|= X v Y . This is contradictory to the assumption
thatO |= X v Y , which means that it is not possible to find X,Y ∈ CNO s.t. O |= X v Y but
X v Y /∈ ST . This proves the→ direction and the theorem. �
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