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Abstract

The Semantic Web movement has led to the publication of thousands of ontologies online. These

ontologies present and mediate information and knowledge on the Semantic Web. How to provide

tractable reasoning services for fuzzy and crisp ontologies has been a pressing research problem over

the last five years. In this paper, we present a reusable semantic infrastructure that comprises a tractable

reasoning system TrOWL, an ontological search engine ONTOSEARCH2 and a folksonomy extension

component Taggr. We show that such an infrastructure can be used to support different ontology

applications with tractable reasoning services by making use of tractable profiles in OWL 2 and some

of their fuzzy extension.

I. INTRODUCTION

Ontologies play a key role in the Semantic Web, where the W3C recommendation OWL1 and

its successor OWL 22 have become the de facto standards for publishing and sharing ontologies

online. Increasingly these ontologies are being used by a variety of organisations, covering the

definitions of a very wide range of subjects. Fuzzy ontologies are envisioned to be useful in

the Semantic Web. On the one hand, ontologies serve as a semantic infrastructure, providing

shared understanding of certain domain across different applications, so as to facilitate machine

understanding of Web resources. On the other hand, being able to handle fuzzy and imprecise

information is crucial to the Web.

1http://www.w3.org/2004/OWL/
2http://www.w3.org/TR/owl2-overview/
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Providing tractable reasoning services for OWL ontologies is not a trivial problem — OWL 1 DL

has a worst-case computational complexity of NExpTime, while 2NExpTime for OWL 2 DL.

This means that increasingly large ontologies require exponentially more computing resources

to reason over them. Because of this, OWL 2 includes a number of tractable profiles which

have combined complexity of PTIME-complete or better; including OWL 2 EL, OWL 2 QL and

OWL 2 RL. However, these profiles all greatly restrict the expressive power of the language.

As tool support for these profiles is still limited, it is also very easy for an ontology developer

to accidentally exceed the complexity of their target profile by using a construct that is beyond

the capability of that language fragment. Approximation ([1], [2], [3], [4], [5], [6], [7]) has

been identified as a potential way to reduce the complexity of reasoning over ontologies in very

expressive languages such as OWL 1 DL and OWL 2 DL.

On the front of fuzzy ontology reasoners, there are similar observations. There exists no fuzzy

OWL 1 DL ontology reasoners that could be efficient and/or scalable enough to handle the scale

of data that the Web provides. Interestingly, there currently exist two fuzzy ontology reasoners,

namely the tableaux based fuzzy reasoner FiRE3 ([8], [9]), which supports a nominal and

datatype-free subset of fuzzy-OWL 1 DL, i.e. fuzzy-SHIN , and the mixed integer programming

fuzzy reasoner fuzzyDL4, which supports fuzzy-OWL Lite, namely fuzzy-SHIf (D) [10]. Like

their crisp counterparts, fuzzy-SHIN and fuzzy-SHIf (D) come with (at least) EXPTIME

computational complexity but the reasoners are not as highly optimised as crisp DL reasoners,

thus the scalability of the above systems is doubtful. Another approach to reason with fuzzy

ontologies is to reduce to crisp ontologies, as implemented in DeLorean [11]5. However this

approach does not reduce the complexity but increases the number of axioms. Following current

research developments in crisp DLs, there is an effort on lightweight fuzzy ontology languages.

In particular, Straccia [12] extended the DL-Lite ontology language [13] to fuzzy DL-Lite.

In this paper, we present a reusable semantic infrastructure based on tractable OWL 2 profiles.

On the one hand, the infrastructure supports a general framework [14] of query languages for

fuzzy OWL 2 QL, including the support for threshold queries and general fuzzy queries. On the

3http://www.image.ece.ntua.gr/∼nsimou
4http://gaia.isti.cnr.it/∼straccia
5http://webdiis.unizar.es/∼fbobillo/delorean
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other hand, the infrastructure supports faithful approximate reasoning ([6], [7]) for OWL 2 DL,

based on OWL 2 EL and OWL 2 QL. The rest of the article is organised as follows: In Sec. II

we present some use cases of reasoning in fuzzy and crisp ontologies. In Sec. III we present the

reusable reasoning infrastructure. In Sec. IV we present a scenario of using the infrastructure in

one of the presented use cases in details. Finally in Sec. V we present some evaluation results

on the usefulness of the infrastructure on the presented use cases.

II. USE CASES

Our reusable semantic infrastructure supports a variety of reasoning and search services for

different real-world application scenarios. Before we go into the details of the technologies

developed for our infrastructure, we first illustrate their necessity and versatility by briefly

introducing some motivating applications.

A. Mashup

A mashup is a kind of data-integration application, where information regarding input queries

is collected from different sources, in different medias, and presented to users in a coherent

manner. MusicMash26 is an ontology-based semantic mashup application, that is intended to

integrate music related content from various folksonomy based tagging systems, linked open

data7, and music metadata Web services. MusicMash2 provides the functionality for users to

search for tagged images and videos that are related to artists, albums, and songs.

An application of this nature presents two main problems. The first problem lies with the

availability of populated domain ontologies on the Web. The Music Ontology (http://www.

musicontology.com/) provides classes and properties for describing music on the Web; however,

to instantiate the ontology, MusicMash2 must integrate music meta-data from various sources.

The resulting populated ontology may be very large, so a suitable mechanism for reasoning over

this ontology must be used – this mechanism must be scalable and efficient enough to handle

queries on this ontology with an acceptable response time for users.

The second problem is that searching both within and across folksonomy based systems is an

open problem. A naive approach to folksonomy search, such as those provided in most tagging

6http://www.musicmash.org/
7http://linkeddata.org/
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systems8, results in unacceptable precision for domain specific searches. The lack of search

precision is due to the limitations of tagging systems themselves [16]. MusicMash2 addresses

this problem by making use of the fuzzy reasoning services, keyword-plus-entailment search (cf.

Sec. III-A) and the folksonomy search expansion service (cf. Sec. III-B) of our infrastructure.

B. Process Refinements Validation

During software development, processes are frequently modelled and refined with more and

more detailed knowledge of the workflow and business logic of the system. During refinements,

the activities in the abstract process are decomposed, and re-organised in the specific process.

For example, the following Figure 1 (taken from [17]) shows two models of a hiring process in

the standard language BPMN (Business Process Modelling Notation), where the Specific model

refines the Abstract model. The original two activities SelectApplicant and HireApplicant are

decomposed during the procedure of refinement into more fine-grained activities. And the flow

structure becomes more complex with the parallel and/or exclusive gateways.

Fig. 1. A refinement step

Due to the potentially complex decomposition and re-structuring of activities, it is usually

difficult to tell if the refined processes properly capture the intended behaviour of the original

processes. In [17], an ontology based approach has been developed to reduce a process refinement

problem to an ontology concept satisfiability/subsumption checking problem by encoding the

relations between activities with ontology axioms.

This application raises an important challenge. The process refinement ontologies use the

ontology language OWL 1 DL, and contain general concept inclusions (GCIs) of particular

8E.g. YouTube API: http://www.youtube.com/dev/
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patterns. Due to the EXPTIME complexity, at the time of developing this ontological solution,

mainstream reasoners such as Pellet and FaCT++ failed to provide complete classification results

in a short period of time. It is crucial to develop new reasoning techniques to handle these

GCIs in an efficient and quality-guaranteed manner. This requirement is fulfilled by the faithful

approximate reasoning services (cf. Sec. III-C) of our tractable semantic infrastructure.

C. Software Engineering Guidance

The case study of physical device configuration of the MOST project 9 uses ontologies to

validate the consistency of configurations of network devices. A typical configuration can be

seen in Figure 2 (taken from [18]). As we can see, a configuration usually involves multiple

Fig. 2. A Cisco7603 Configuration

slots, and every slot can host certain types of cards. The types of cards in a same configuration

also have certain dependencies and restrictions. All these constraints are encoded as axioms in

ontologies as expressive as OWL 2 DL [19].

These ontologies can sometimes be inconsistent, reflecting an invalid configuration of a phys-

ical device. To understand how this is manifested in the physical device and provide guidance on

how it may be resolved, it is necessary to perform reasoning efficiently in modelling time, and to

find justifications for the inconsistency. Furthermore, in order to provide suggestions to engineers,

some of the concepts or properties in the ontology need to be closed. Traditional ontology

reasoning imposes the Open World Assumption and does not support such services. Closed

domain reasoning services are required to address this issue. This requirement is eventually

9www.most-project.eu/
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fulfilled by the support of NBox (Negation as failure Box [20]) and approximate reasoning

services (cf. Sec. III-C) in our tractable semantic infrastructure.

To conclude this section, we summarise the challenges to existing reasoning technologies that

are raised by the above use cases:

1) The scalability and efficiency of querying on large scale populated domain ontologies.

2) The precision of folksonomy search, especially for vague and/or ambiguous terms.

3) The efficiency of reasoning in expressive and very expressive ontology languages.

4) The availability of local closed world reasoning services.

In the rest of the article, we will present our proposed solutions to these challenges.

III. A TRACTABLE SEMANTIC INFRASTRUCTURE

In this section, we present a tractable semantic infrastructure. Our architecture consists of

three layers of semantic tools and they can all be accessed by external applications via APIs.

The system and its interaction with the use cases are illustrated in the Figure 3.

Fig. 3. Semantic infrastructure and its interaction with use cases

TrOWL10 [21] is a tractable reasoning infrastructure of OWL 2. It includes a built-in OWL 2

QL reasoner Quill and a built-in OWL 2 EL reasoner REL. It has been continuously extended

with new reasoning services, such as approximation ([6], [7]), forgetting [22], justification, local

closed world reasoning (NBox) [20] and stream reasoning ([23], [24]). It can directly support

the process refinement validation and physical device configuration use cases.

10http://trowl.eu/
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ONTOSEARCH211 ([25], [26]) is an ontological search engine that is based on the TrOWL

ontology infrastructure. It supports keyword-plus-entailment search by making use of fuzzy and

crisp reasoning services from TrOWL.

Taggr [27] is a folksonomy extension component which has been built on ONTOSEARCH2.

MusicMash2 uses both the ONTOSEARCH2 and Taggr.

The architecture includes an ontology repository (as part of TrOWL), where users can submit

and share ontologies and a query rewriter that rewrites user queries submitted in SPARQL so that

they can be executed on the repository. A useful feature of the repository is that it automatically

associates keywords (in values of annotation properties as well as implicit metadata in target

ontologies) with concepts, properties and individuals in the ontologies. Default annotation prop-

erties include the rdfs:label, rdfs:comment, rdfs:seeAlso, rdfs:isDefinedBy,

and owl:versionInfo properties; we also define the dc:title, dc:description, and

foaf:name properties (from Dublin Core12 and FOAF13) as annotation properties. Implicit

metadata is drawn from the namespace and ID of each artefact in the ontology.

These keywords are weighted based on ranking factors similar to those used by major search

engines14. The system uses these scores to calculate the tf · idf [28] for each keyword found

within the ontology, and normalises them using a sigmoid function such as the one shown in

(1) to a degree between 0 and 1.

w(n) =
2

1.2−n + 1
− 1 (1)

In Sec. III-A, we first introduce how the knowledge and their degree values can be used to

provide fuzzy reasoning services with ONTOSEARCH2. Then in Sec. III-B we show how to use

Taggr to extend the search services to folksonomies. Finally we present the details of TrOWL

in Sec. III-C to show how the underlying crisp reasoning services are accomplished.

A. Fuzzy Reasoning Services

Being able to handle fuzzy and imprecise information is crucial to the Web. TrOWL also

consists of a query engine for fuzzy OWL 2 QL [14]. The query engine supports threshold

11http://www.ontosearch.org/
12http://dublincore.org/
13http://www.foaf-project.org/
14http://www.seomoz.org/article/search-ranking-factors
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queries and general fuzzy queries over fuzzy OWL 2 QL ontologies. Users of the query engine

can submit fuzzy OWL 2 QL ontologies via the Web interface of ONTOSEARCH26, and then

submit f-SPARQL [14] queries, such as the following one, against their target ontologies.

#TQ#

PREFIX music: <http://musicmash.org/NS/>

SELECT ?x WHERE {

?x a music:MusicArtist .

?x a music:Popular . #TH# 0.7

?x a music:Active . #TH# 0.8

}

where #TQ# declares a threshold query, while #TH# is used to specify thresholds for atoms in

the query. Therefore this query searches for an instance of MusicArtist which is a member

of the class Popular with degree 0.7, and a member of the class Active with degree 0.8.

Preliminary evaluations show that performance of the fuzzy OWL 2 QL query engine is in

most cases close to the performance of the crisp OWL 2 QL query engine [14].

ONTOSEARCH2 is an ontological search engine that allows users to search its repository

with keyword-plus-entailment searches, such as searching for ontologies in which class X is a

sub-class of class Y, and class X is associated with the keywords “Jazz” and “Rock”, while class

Y is associated with the keyword “Album”. The search could be represented as the following

threshold query:

#TQ#

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX os: <http://www.ontosearch.org/NS/>

PREFIX kw: <http://www.ontosearch.org/KW/>

SELECT ?x WHERE {

?x os:hasKeyword kw:jazz . #TH# 0.5

?x os:hasKeyword kw:rock . #TH# 0.7

?x rdfs:subClassOf ?y .

?y os:hasKeyword kw:album . #TH# 0.8}



9

Fig. 4. ONTOSEARCH2 Screenshot

where kw:jazz, kw:rock, and kw:album are representative individuals for keywords “jazz”, “rock”,

and “album”, respectively. The thresholds 0.5, 0.7, and 0.8 can be specified by users. The

keyword-plus-entailment searches are enabled by the fuzzy DL-Lite query engine as well as

the semantic approximation components. Such services allow both TBox and ABox queries.

B. Relating Folksonomies to Ontologies

The Taggr system provides a simplified interface to ONTOSEARCH2 to perform useful

operations that are related to folksonomy based systems. It stores a basic ontology (which we

refer to as the “tagging database”) in the TrOWL repository, capturing the relationships between

users, tags and resources in the folksonomy based systems it supports15.

Taggr allows users to provide a set of arbitrary resources and related tags to be added to the

tagging database in the TrOWL repository. A Web service and a traditional Web interface are

provided so that users can interact with the tagging database without having to understand the

internal representation used by the system.

Taggr also provides an ontology-enabled common interface for folksonomy based systems.

It provides the functionality to gather resources and their related tags from the systems that it

supports, and populate them to its tagging database from time to time. In case an application

15Taggr currently supports the YouTube and Flickr tagging systems.
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Fig. 5. Taggr Beta Screenshot

requests some resources that Taggr does not know about, it can simply make a call to Taggr to

request that it updates its tagging database with resources related to the search.

Furthermore, Taggr allows users to specify which search expansion method(s) [27] and which

reference ontology(-ies) to use for the expansion. The extended search will first be evaluated

against its tagging database. As the ontological constraints needed for the search expansions

require only the expressive power of OWL 2 QL, Taggr can make use of the semantic approxi-

mation(s) of the reference OWL DL ontology(-ies) for all entailment checking. Due to the logical

properties of semantic approximation, TrOWL can provide sound and complete results for all

the needed entailment checking. Details of the search expansion methods go beyond the scope

of this paper.

C. Crisp Reasoning Services

TrOWL is a tractable reasoning infrastructure for OWL 2. A syntax checker front-end will

briefly examine the syntax of the loaded ontology and decide which built-in reasoners should

be used, based on the configuration of the system. There are two major built-in reasoners. Quill

provides reasoning services over RDF-DL and OWL 2 QL and REL provides reasoning over

OWL 2 EL. Besides, TrOWL also supports full OWL 2 DL reasoning using a plug-in reasoner

such as Pellet or FaCT++. The OWL 2 DL reasoning will have the same quality as the plug-in

reasoner. Alternatively, TrOWL can also use the approximation facilities provided by REL to
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deliver sound and practically complete reasoning for OWL 2 DL. Such separation of reasoners

make it possible to provide tailored and optimised services, instead of a “one-size-fit-all” reasoner.

1) Language Transformations: The transformation from OWL 2 DL to OWL 2 QL is based

around the Semantic Approximation technology from OWL DL to DL-Lite [6]. This technology

can be easily applied on OWL 2 DL as well. Semantic Approximation adopts the idea of

knowledge compilation to pre-compute the materialisation of an OWL 2 DL ontology into OWL

2 QL axioms, by using a heavyweight reasoner. Because the semantics of OWL 2 QL are a

subset of, and are hence compatible with, the direct semantics OWL 2 DL, any reasoning results

against the approximated OWL 2 QL ontology are always sound with regards to the original

OWL 2 DL ontology. Furthermore, it has been shown that for conjunctive query answering,

which is the strength of the QL language, results against the semantic approximation are also

complete for queries with no non-distinguished variables, or with non-distinguished variables

only in leaf nodes of the query. This already covers a majority of conjunctive queries, including

the queries supported by the new SPARQL specification.

The transformation from OWL 2 DL to OWL 2 EL is based on the soundness preserving

approximate reasoning approach [7], [29]. This approach represents non-OWL 2 EL concept

expressions with fresh named concepts, non-OWL 2 EL role expressions with fresh named roles,

and then maintaining their semantics, such as complementary relations, inverse relations, cardi-

nality restrictions, etc. in separate data structures. In the reasoning stage, additional completion

rules have been devised to restore such semantics. With this approach, the overall complexity for

OWL 2 DL ontologies can be reduced to PTime. Although known to be incomplete, evaluation

shows that, such transformation can classify existing benchmarks very efficiently with high recall

(over 95%) [7], [29].

Except for the improved performance of standard reasoning services, the language transforma-

tions also enable many other non-standard reasoning services. For example, the support of local

closed world reasoning can be reduced to incremental reasoning by restricting the extensions of

concepts, and the domains and ranges of properties, which can be further realised more efficiently

by transformation to OWL 2 EL as OWL 2 EL has PTIME incremental reasoning capacity. In

TrOWL, such closed world reasoning is realised by first specifying an NBox (Negation As

Failure Box) in the ontology [20]. An NBox is a set of concept and property expressions. Any

predicate (concept or property) in the NBox will be closed.
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2) Lightweight Reasoners: The Quill reasoner implements a novel and unique database schema

for storing normalised representations of OWL 2 QL ontologies. Any conjunctive query can be

rewritten into a single, simple SQL query over the underlying database, using the database

itself to perform the transitive completion of class and property subsumption with an innovative

exploitation of the highly optimised database mechanisms. To support this, new query rewriting

and ontology normalisation algorithms have been developed. In its initial testing across large

knowledge bases with deep concept hierarchies, such as the DBPedia dataset and the Yago

ontology, a significant performance improvement over other DL-Lite query engines is observed.

In an extreme case, using the standard query rewriting algorithm PerfectRef over a deep class

or property hierarchy can result in a set of hundreds or thousands of conjunctive queries, where

the new method only ever results in a single query. Quill supports all reasoning tasks for OWL

2 QL, including consistency and satisfiability checking, and query answering, and by using an

OWL 2 DL reasoner it can perform semantic approximation of more expressive ontologies.

The REL reasoner [7] is a Java implementation of an OWL 2 EL reasoner. It extends the EL+

algorithm [30] with the completion rules for OWL 2 EL [31] and further optimises them. On

top of that, the syntactic approximation and reasoning rules are also implemented. This allows

REL to provide tractable reasoning for OWL 2 EL ontologies and make up the core component

of the soundness-preserving syntactic approximation for OWL 2 DL ontologies. REL is an

approximate OWL 2 DL reasoner with high general recall; it is complete for all the HermiT

benchmark ontologies. In additional, REL also consists of an OWL 2 EL conjunctive query

engine [32], which allows queries over OWL 2 EL ontologies to be answered more efficiently

without semantic approximation. Non-standard reasoning services such as local closed world

reasoning is also supported by REL. By integrating the idea of truth maintenance systems, REL

also supports justification and ontology stream reasoning.

IV. SCENARIO: MASHING LINKED MUSIC DATA

In this section, we describe a concrete scenario illustrating how the semantic infrastructure

(presented in the previous section) could enhance a typical Web 2.0 application. Let us consider

the story of “Sarah”, a keen Web developer with an interest in Web 2.0 and new Web technologies

in general.
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Fig. 6. Fig. 6. MusicMash 1.0 Screenshot: The original version of MusicMash which does not use any Semantic Web

components.

A. A Web 2.0 Application

Sarah’s interest in Web 2.0 had grown from her interest in music. She enjoys using Web 2.0

websites to find multimedia content about her favourite artists. However, she found that it was

inconvenient to have to browse many different websites to find content related to a single artist.

Meanwhile, she had been reading about Web Services and Mashup as part of her interest in Web

development. After reading a few articles on the Web, Sarah decided that she could address this

inconvenience by building her own mashup application. The objective of this application is to

combine music-related resources – videos, images, biographies and discographies – into a single

website. Sarah also decided that if her application were to be of use, it would have to provide

accurate search results in a timely fashion. Sarah named her new web application “MusicMash”

and began work on the project.

B. Searching Folksonomies

To retrieve video and image content for her new site, Sarah made use of the public Web

Service APIs provided by YouTube and Flickr. She quickly developed the first prototype. This

version allowed users to perform searches based on an artist’s name. MusicMash used the artist’s

name when making calls to the YouTube and Flickr APIs to retrieve videos tagged with the each

word from the artist’s name.

Sarah soon found that this early version of MusicMash suffered from a major drawback – that

artists’ names are often ambiguous search terms in YouTube and Flickr. For example, when she

searched for Focus (the Dutch Progressive Rock band), only 5 out of the top 20 results returned
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by YouTube were relevant to that artist. Sarah noticed that users on YouTube often tagged music

videos with both the artist’s name and song title. She soon realised that including a song title

with the artist’s name generated more relevant search results.

Sarah then extended MusicMash to populate a database of music metadata retrieved from the

MusicBrainz16 web service. Using this metadata, Sarah could extend MusicMash to automatically

expand a simple artist’s name search, to an artist’s name plus song title search, for each song by

that artist. This search expansion technique resulted in an impressive increase in the precision of

the search results. However, the volume of API calls needed for the search expansion resulted

in an unacceptable amount of time required to return search results..

C. The Switch to Taggr

The performance issues in MusicMash were due to the large number of HTTP requests to

Web Service APIs generated by Sarah’s search expansion technique. The solution to these issues

is to ensure that the APIs perform the search expansion internally hence needing only one

HTTP request. Sarah learned of a system called Taggr that provides the same search expansion

functionality as MusicMash via a Web Service API. Sarah decided to redevelop MusicMash

using the Taggr API, rather than accessing YouTube and Flickr directly.

The Taggr API allows Sarah to input the original search term(s) from the user and some extra

parameters to specify how the search expansion should be performed. More specifically, the

parameters indicate whether video or image resources results should be returned; what the input

search term(s) should identify, S (a music artist in this case); where to find the extra keywords for

the search expansion, T (a song title in this case); and how S and T are related, P (a music artist

is the creator of a song). Taggr uses OWL DL ontologies to represent its metadata internally. The

parameters S and T should be specified as OWL classes and P as an OWL property. However,

Sarah did not know which OWL class was used to identify music artists and song titles on

the Web. She follow a link from the Taggr website to ONTOSEARCH2. She then made use

of ONTOSEARCH2’s ontology search engine to find out which ontologies contained resources

relating to music. Sarah typed “music” into the ONTOSEARCH2 search engine and one of the

first results returned was from the Music Ontology17. After further investigation Sarah found

16http://www.musicbrainz.org/
17http://purl.org/ontology/mo/
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that the Music Ontology was exactly what she needed to describe the classes and properties for

music artists, albums and songs.

Sarah then set about trying some searches on Taggr using the concepts mo:MusicArtist

and mo:Track, related via the property mo:foaf:made; allowing her to replicate the search

expansion from MusicMash. She first used Taggr to check for new keywords that were generated

by its search expansion. Sarah tried the keyword “Coldplay” and was surprised to see that Taggr

did not provide any new keywords. She then searched ONTOSEARCH2 directly for “Coldplay”

and again, no results were returned. Sarah realised that she would have to provide the Music

Ontology individuals herself in order for the search expansion to work correctly.

D. From Relational Databases to Ontologies

Since ontology individuals are required by Taggr to replicate the MusicMash search expansion.

Sarah decided to drop her database of music metadata in favour of Music Ontology instances

stored in the ONTOSEARCH2 repository. ONTOSEARCH2’s submission and query engine

provided the tools that she needed to insert new individuals and query against them. Sarah decided

to populate her ontology using Web Services that can be easily linked. More specifically, using

MusicBrainz API for basic artist, album and song information, she could extend the metadata

with other sources that referred to MusicBrainz identifiers, such as Last.fm and DBpedia. This

new version of MusicMash was named MusicMash2.

Fig. 7. MusicMash2 Screenshot: The second version of MusicMash built using our infrastructure.

The final two problems left for Sarah to address are when there is no Music Ontology instances

relating to a user’s search or where there were insufficient resources returned by Taggr. She

decided that for any search for which MusicMash2 did not immediately return more than five
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results to the user, a request would be made to Taggr to populate its tagging database with more

resources from tagging systems in its library. Taggr would then send requests to its supported

tagging systems to retrieve the first 500 results based on the original search term(s). Similarly

when MusicMash2 returns no individuals in the Music Ontology relating to the search, it initiates

a background task to retrieve the required information from the Web services in its library. The

advantage of this method is that information relating to previously unknown artists can now be

added automatically to the Music Ontology in ONTOSEARCH2 and Tagging Database in Taggr.

Sarah decided that it was an acceptable trade-off that the first user wait for the information to

be retrieved, in order for future searches to be returned in a more acceptable amount of time.

V. USEFULNESS EVALUATION

1) Mashup: A typical scenario for MusicMash2 can be illustrated by a user searching for

information related to an artist. The user first enters the name of the artist into the search box.

On completion of a successful search, MusicMash2 displays the related artist information to

the user. This includes a short abstract from DBpedia, the artists discography and links to the

artist’s homepage and Wikipedia articles. The user can also select the Video Gallery tab to

display videos relating to the current artist. The Video Gallery makes use of Taggr to return

high precision search results for related videos. An example of an artist’s page can be viewed

at http://www.musicmash.org/artist/Metallica. In [27], a usefulness evaluation is conducted to

compare the YouTube search engine and MusicMash2. 15 artists’ names are used as search

terms (see Table I), and the presison of the top 20 results for each search term returned by the

two systems is illustrated in Figure 8.

Figure 8 shows that in all but one search, Taggr outperformed YouTube in terms of precision.

YouTube returned good results for less ambiguous artist names (searches #1 - 4) but poor results

for ambiguous names (searches #5 - 15); i.e., where the artist’s name can correspond to many

non-music related videos. In searches #13 and #14, Taggr loses some precision for the more

ambiguous artist’s names “Yes” and “Kiss”. In the final search, #15, Taggr performs slightly

worse than YouTube, by 15%. The reason for the loss of precision could be because there

were instances where the artist’s name and song title combinations are themselves ambiguous,

and in some cases less effective than YouTube’s built-in search facilities. A simple approach to

addressing this issue would be to attempt to rank the results by examining the complete set of
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TABLE I

ARTIST NAMES USED IN THE EVALUATION

Search # Search Term Search # Search Term

1 The Beatles 9 Thursday

2 Porcupine Tree 10 Pelican

3 Radiohead 11 Focus

4 Metallica 12 Isis

5 Eels 13 Yes

6 Doves 14 Kiss

7 Finch 15 Jet

8 Strung Out

tags for a resource and checking how many are actually matched by the keywords generated in

the search expansion.

Fig. 8. Result set precision for top k search.

2) Process Refinement Validation: The usefulness on process refinement validation can be

examined by comparing the utility of the ontological solution with other solutions, and also

comparing the performance of the optimisation of approximation with off-the-shelf reasoners. The

completeness and soundness of the solution by using approximation has been theoretically proved

in [17]. In [33] a comprehensive empirical study is conducted by SAP to test the usefulness and

performance of the validation methodology and reasoning facilities. The usefulness evaluation

shows that, with the overall solution, a process developer can become about 3 times faster than

before (productivity) and achieve 1.6 times their original correctness rate (quality). A further

performance comparison between REL and Pellet suggested that, when both using ontologies to
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validate process refinement, the syntactic approximation-based REL solution is significantly faster

than the off-the-shelf reasoner Pellet, and more scalable when increasing the length, branching

and parallelisms of process models. When compared to non-ontological solutions such as the

Petri Net, REL becomes less scalable and efficient when the parallelism of the processes are

increased, due to the factorial increase of possible executions of processes caused by parallelism.

However, Petri Net is only capable of identifying the 1st invalid activity while an ontology-based

solution can find all of them in one go.

3) Software Engineering Guidance: The technologies developed in the TrOWL have also

been used to support the ontological solution of the physical device configuration case study. Its

usefulness can be evaluated by comparing it to the pure model-based state-of-the-art approach

used in companies. In [34] COMARCH conducted an empirical evaluation and the results suggest

that by using the ontology-integrated solution, the development time is reduced by 76% and bug-

fixing time is reduced by 100%, meaning that no error was found in the modelling with the

ontological solution. This correctness result is also formally proved in [19], which shows that

despite the high expressive power and computational complexity of the physical device ontology,

the completeness and soundness of using syntactic approximation implemented in TrOWL can

be guaranteed for the considered types of tasks.

VI. CONCLUSION

In this paper, we have presented a novel tractable semantic infrastructure based on the OWL 2

profiles. The infrastructure provides tractable fuzzy and crisp ontology reasoning services, as

well as keyword-plus-entailment search services and tailored support for folksonomy systems,

validation services for business process refinement and guidance services for ontology driven

software development.

By combining open ontologies with information retrieved from proprietary knowledge bases,

we increased the access to this information through open interfaces. Since ONTOSEARCH2, a

front end of our infrastructure, is publicly accessible through a standardised interface (SPARQL),

it is possible for other applications to be built on top of the ontologies generated by existing

applications, such as MusicMash2. Hence, we provide an infrastructure that may stimulate further

development and/or population of domain ontologies.
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