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Synonyms

Logical reasoning, inference, semantic
computing, approximate reasoning

Definitions

Reasoning is the process of deriv-
ing conclusions in a logical way.
Automatic reasoning is concerned
with the construction of computing
systems that automate this process
over some knowledge bases.

Automated Reasoning is often
considered as a sub-field of Artificial
Intelligence. It is also studied in the
fields of theoretical computer science
and even philosophy.
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Overview

The development of formal logic
(Frege (1884)) played a big role in
the field of automated reasoning,
which itself led to the development
of artificial intelligence.

Historically, automated reason-
ing is largely related to theorem
proving, general problem solvers
and expert systems (cf. the sec-
tion of ‘A Bit of History’). In the
context of big data processing, au-
tomated reasoning is more relevant
to modern knowledge representation
languages, such as the W3C stan-
dard Web Ontology Language OWL
(https://www.w3.org/TR/owl2-
overview/), in which a knowledge
base consists of a schema compo-
nent (TBox) and a data component
(ABox).

From the application perspective,
perhaps the most well known modern
knowledge representation mechanism
is Knowledge Graph (Pan et al
(2016b, 2017)). In 2012, Google
popularised the term ‘Knowledge
Graph’ by using it for improving its
search engine. Knowledge graphs are
then adopted by most leading search
engines (such as Bing and Baidu) and
many leading IT companies (such
as IBM and Facebook). The basic
idea of Knowledge Graph is based
on the knowledge representation
formalism called Semantic Networks.
There is a modern W3C standard
for semantic networks called RDF
(Resource Description Framework,
https://www.w3.org/TR/rdf11-
concepts/). Thus RDF/OWL graphs
can be seen as exchangeable knowl-
edge graphs in the big data era.
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While this entry will be mainly
about automated reasoning tech-
niques in the big data era, their
classifications, key contributions,
typical systems, as well as their
applications, it starts with a brief
introduction of the history.

A Bit of History

Many consider the Cornell Summer
Meeting of 1957, which brought to-
gether many logicians and computer
scientists, as the origin of automated
reasoning.

The first automated reasoning sys-
tems were theorem provers, systems
that represent axioms and statements
in First Order Logic and then use
rules of logic, such as modus ponens,
to infer new statements. The first sys-
tem of this kind is the implementa-
tion of Presburger’s decision proce-
dure (which proved that the sum of
two even numbers is even) by Davis
(1957).

Another early type of automated
reasoning system were general prob-
lem solvers, which attemp to provide
a generic planning engine that
could represent and solve structured
problems, by decomposing problems
into smaller more manageable sub-
problems, solving each sub-problem
and assembling the partial answers
into one final answer. The first
system of this kind is Logic Theorist
from Newell et al (1957).

The first practical applications
of automated reasoning were expert
systems, which focused on much
more well-defined domains than
general problem solving, such as

medical diagnosis or analysing faults
in an aircraft, and on more limited
implementations of First Order
Logic, such as modus-ponens imple-
mented via IF-THEN rules. One of
the forerunners of these systems is
MYCIN by Shortliffe (1974).

Since 1980s, there have been pros-
perous studies of practical subsets of
First Order Logics as ontology lan-
guages, such as Description Logics
(Baader et al (2003)) and Answer
Set Programming (Lifschitz (2002)),
as well as the standardisation of on-
tology language OWL (version 1 in
2004 and version 2 in 2009). The wide
adoption of Ontology and Knowledge
Graph (Pan et al (2016b, 2017)), in-
cluding by Google and many other
leading IT companies, confirms the
status of ontology language in big
data era.

In the rest of the entry, we will fo-
cus on automated reasoning with on-
tology languages.

Classification

There can be different ways of clas-
sifying research problems related to
automated ontology reasoning.

From the purpose point of view,
automatic ontology reasoning can be
classified into (1) deductive ontology
reasoning (Levesque and Brachman
(1987)), which draws conclusions
from given premises, (2) abductive
ontology reasoning (Colucci et al
(2003)), which finds explanations
for observations that are not conse-
quences of given premises, as well as
(3) inductive ontology reasoning (Lisi
and Malerba (2003)), which con-
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cludes that all instances of a class has
a certain property if some instances
of the class has the property.

From the direction point of view,
automatic ontology reasoning can be
classified into (1) forward reasoning
(Baader et al (2005)), in which the
inference starts with the premises,
moves forward and ends with the
conclusions, (2) backward reasoning
(Grosof et al (2003)), in which the
inference starts with the conclusions,
moves backward and ends with the
premises, as well as (3) bi-directional
reasoning (MacGregor (1991)) in
which the inference starts with both
the premises and the conclusions,
moves forward and backward simul-
taneously or interactively, until the
intermediate conclusions obtained by
forward steps include all intermedi-
ate premises required by backward
steps.

From the monotonicity point of
view, automatic ontology reasoning
can be classified into (1) monotonic
ontology reasoning in which no
existing conclusions will be dropped
when new premises are added, as
well as (2) nonmonotonic ontology
reasoning (Quantz and Suska (1994))
in which some existing conclusions
can be dropped when new premises
are added.

From the scalability point of
view, automatic ontology reasoning
can be classified into (1) parallel
ontology reasoning (Bergmann and
Quantz (1995)), in which reasoning
algorithms can exploit multiple
computation cores in a computation
nodes and (2) distributed ontology
reasoning (Borgida and Serafini
(2003); L Serafini (2005)), in which
reasoning algorithms can exploit

a cluster of computation nodes.
Scalable ontology reasoning is also
often related to strategies of mod-
ularisation (Suntisrivaraporn et al
(2008)) and approximation (Pan and
Thomas (2007)).

From the mobility point of view,
automated ontology reasoning can
be classified into (1) reasoning
with temporal ontologies (Artale
and Franconi (1994)), in which the
target ontologies contain temporal
constructors for class and property
descriptions, and (2) stream ontology
reasoning (Stuckenschmidt et al
(2010); Ren and Pan (2011)), which,
given some continuous updates of the
ontology, requires updating reasoning
results without naively re-computing
all results.

From the certainty point of view,
automatic reasoning can be classified
into (1) ontology reasoning with
certainty in which both premises and
conclusions are certain and either
true or false, as well as (2) uncer-
tainty ontology reasoning (Koller
et al (1997)) in which either premises
or conclusions are uncertain and
often have truth values between 0/-1
and 1. There are different kind of un-
certainties within ontologies, such as
probabilistic ontologies (Koller et al
(1997)), fuzzy ontologies (Straccia
(2001)) and possibilistic ontologies
(Qi et al (2011)).

Key Contributions

The highlight on contributions of
automated ontology reasoning is the
standardisation of the Web Ontology
Language OWL.
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The first version of OWL (or OWL
1) was standardised in 2004. It is
based on the SHOIQ DL (Horrocks
and Sattler (2005)). However, there
are some limitations of OWL 1:

1. the datatype support is limited
(Pan and Horrocks (2006));

2. the only sub-language, OWL-Lite,
of OWL 1 is not tractable;

3. the semantics of OWL 1 and RDF
are not fully compatible (Pan and
Horrocks (2003)).

The second version of OWL (or
OWL 2) was standardised in 2009.
It is based on the SROIQ DL
(Horrocks et al (2006)). On the one
hand, OWL 2 has more expressive
power, such as the stronger support
of datatypes (Pan and Horrocks
(2006); Motik and Horrocks (2008))
and rules (Krtzsch et al (2008)). On
the other hand, OWL 2 has three
tractable sub-languages, including
OWL 2 EL (Baader et al (2005)),
OWL 2 QL (Calvanese et al (2007))
and OWL 2 RL (Grosof et al (2003)).

This two-layer architecture of
OWL 2 allows approximating OWL
2 ontologies to those in its tractable
sub-languages, such as approxima-
tions towards OWL 2 QL (Pan and
Thomas (2007)), towards OWL 2
EL (Ren et al (2010)) and towards
OWL 2 RL (Zhou et al (2013)), so
as to exploit efficient and scalable
reasoners of the sub-languages. The
motivation is based on the fact
that real-world knowledge and data
are hardly perfect or completely
digitalised.

Typical Reasoning Systems

Below are descriptions of some well
known OWL reasoners (in alphabeti-
cal order).

CEL

CEL (Baader et al (2006)) is a LISP-
based reasoner for EL+ (Baader et al
(2008)), which covers the core part
of OWL 2 EL. CEL is the first rea-
soner for the description logic EL+,
supporting as its main reasoning task
the computation of the subsumption
hierarchy induced by EL+ ontologies.

ELK

ELK (Kazakov et al (2012)) is an
OWL 2 EL reasoner. At its core, ELK
uses a highly optimised parallel algo-
rithm (Kazakov et al (2011)). It sup-
ports stream reasoning in OWL 2 EL
(Kazakov and Klinov (2013)).

FaCT

FaCT (Horrocks (1998)) is a rea-
soner for the description logic SHIF
(OWL-Lite). It is the first modern
reasoner that demonstrates the fea-
sibility of using optimised algorithms
for subsumption checking in realistic
applications.

FaCT++

FaCT++ (Tsarkov and Horrocks
(2006)) is a reasoner for (partially)
OWL 2. It is the new generation
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of the well-known FaCT reasoner
is implemented using C++, with a
different internal architecture and
some new optimisations.

HermiT

HermiT (Glimm et al (2014)) is a rea-
soner for OWL 2. It is the first pub-
licly available OWL 2 reasoner based
on a hypertableau calculus (Motik
et al (2009)), with a highly optimised
algorithm for ontology classification
(Glimm et al (2010)). HermiT can
handle DL Safe rules (Motik et al
(2005)) on top of OWL 2.

Konclude

Konclude (Steigmiller et al (2014b))
is a reasoner for OWL 2. It supports
almost all datatypes in OWL 2. Kon-
clude implements a highly optimised
version of tableau calculus enhanced
with tableau saturation (Steigmiller
and Glimm (2015)). It supports par-
allel reasoning and nominal schemas
(Steigmiller et al (2014a)) and DL-
safe rules.

Mastro

Mastro (Calvanese et al (2011)) is
an Ontology-Based Data Access
(OBDA) management system for
OWL 2 QL. It allows data to be
managed external relational data
management or data federation
systems. It uses the Presto algorithm
(Rosati and Almatelli (2010)) for
query rewriting.

Ontop

Ontop (Calvanese et al (2016)) is
an Ontology-Based Data Access
(OBDA) management system for
RDF and OWL 2 QL, as well
as SWRL with limited forms of
recursions. It also supports effi-
cient SPARQL-to-SQL mappings
via R2RML (Rodriguez-Muro and
Rezk (2015)). Ontop has some
optimisations on query rewriting
based on database dependencies
(Rodriguez-Muro et al (2013)).

Pellet

Pellet (Sirin et al (2007)) is a reasoner
for OWL 2. It also has dedicated sup-
port for OWL 2 EL. It incorporates
optimisations for nominals, conjunc-
tive query answering, and incremen-
tal reasoning.

Racer

Racer (Haarslev and Mller (2001)) is
a reasoner for OWL 1. It has a highly
optimised version of tableau calculus
for the description logic SHIQ(D)
(Horrocks and Patel-Schneider
(2003)).

RDFox

RDFox (Motik et al (2014)) is a
highly scalable in-memory RDF
triple store that supports shared
memory parallel datalog (Ceri et al
(1989)) reasoning. It supports stream
reasoning (Motik et al (2015b)) and
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has optimisations for owl:sameAs
(Motik et al (2015a)).

TrOWL

TrOWL (Thomas et al (2010)) is
a highly optimised approximate
reasoner (Pan et al (2016a)) for
OWL 2. TrOWL outperforms some
sound and complete reasoners in the
time-constrained ORE (Ontology
Reasoner Evaluation) competitions
designed for sound and complete
ontology reasoners. TrOWL has
stream reasoning capabilities for
both OWL 2 and OWL 2 EL (Ren
and Pan (2011); Ren et al (2016)). It
supports local closed world reasoning
in NBox, or closed predicates (Lutz
et al (2013)).

Applications

Automated ontology reasoning
has been widely used in Web
applications, such as for content
management (BBC), travel planning
and booking (Skyscanner), web
search (Google, Bing, Baidu).

It is also being applied in a grow-
ing number of vertical domains. One
typical example is life science. For in-
stance, OBO foundry includes more
than 100 biological and biomedical
ontologies. The SNOMED-CT (Clin-
ical Terminology) ontology is widely
used in healthcare systems of over 15
countries, including US, UK, Aus-
tralia, Canada, Denmark and Spain.
It is also used by major US providers,
such as Kaiser Permanete. Other
vertical domains include, but not

limited to, agriculture, astronomy,
oceanography, defence, education,
energy management, geography and
geoscience.

While ontologies are widely used
as structured vocabularies, providing
integrated and user-centric view of
heterogeneous data sources in the big
data era, benefits of using automated
ontology reasoning include:

1. Reasoning support is critical for
development and maintenance of
ontologies, in particular on deriva-
tion of taxonomy from class defini-
tions and descriptions.

2. Easy location of relevant terms
within large structured vocabu-
lary;

3. Query answers enhanced by ex-
ploiting schema and class hierar-
chy.

An example in the big data
context is the use of ontology and
automated ontology reasoning for
data access in Statoil, where about
900 geologists and geophysicists use
data from previous operations in
nearby locations to develop strati-
graphic models of unexplored areas,
involving diverse schemata and TBs
of relational data spread over 1000s
of tables and multiple databases.
Data analysis is the most important
factor for drilling success. 30-70% of
these geologists and geophysicists’
time is spent on data gathering. The
use of ontologies and automated on-
tology reasoning enable better use of
experts’ time, reducing turnaround
for new queries significantly.
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Outlook

Despite the current success of auto-
mated ontology reasoning, there are
still some pressing challenges in the
big data era, such as the following:

1. Declarative data analytics
(Kaminski et al (2017)) based
on automated ontology reasoning;

2. Effective approaches of producing
high quality (Ren et al (2014);
Konev et al (2014)) ontologies and
knowledge graphs;

3. Integration of automated ontology
reasoning with data mining (Lecue
and Pan. (2015)) and machine
learning (Chen et al (2017))
approaches.
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