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Abstract. Competitor identification tries to find competitors of some
entity in a given field, which is the key to the success of market intelli-
gence. Manually collecting competitors is labor-intensive and time con-
suming. So automatic approaches are proposed for this purpose. How-
ever, these approaches suffer from the following two main challenges.
Competitor information might not only be contained in semi-structured
sources like lists or tables, but also be mentioned in free texts. The di-
versity of its sources make competitor identification quite difficult. Also,
these competitors might not always occur in form of their full names. The
occurrences of name variants further increase the diversity, and make the
task more challenging. In this paper, we propose a novel unsupervised
approach to identify competitors from prospectuses based on a multi-
strategy learning algorithm. More precisely, we first extract competitors
from lists using some predefined heuristic rules. By leveraging redun-
dancies among competitor information in lists, tables, and texts, these
competitors are fed as seeds to distantly supervise the learning process to
find table columns and text patterns containing competitors. The whole
process is iteratively performed. In each iteration, the newly discovered
competitors of high confidence from various sources are treated as new
seeds for bootstrapping. The experimental results show the effectiveness
of our approach without human intentions and external knowledge bases.
Moreover, the approach significantly outperforms traditional named en-
tity recognition approaches.

Keywords: Competitor Mining, Unsupervised Learning, Distant Supervision,
Wrapper Induction

1 Introduction

Competitor mining tries to identify competitors of certain companies in a given
domain. It is quite important to the success of market intelligence. The infor-
mation of competitors is not only useful for individual companies, but also vital
for market analyzers and investors. In the new economic environment of China,
stockbroking companies and stock exchanges begin to have rights to recommend
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or approve companies to IPO (Initial Public Offering) in a brand new board.
These agencies are very active in looking for companies with great potentials.
Given that a competitor of a well-known company in a specific field is a good
candidate, the above mentioned company finding problem can be treated as a
competitor identification task.

Due to the large number of companies on markets and the emergence of new
companies, it is labor-intensive and time consuming to manually collect competi-
tors. Therefore, automatic approaches have been proposed for this purpose [?,?].
However, these approaches suffer from the following two main challenges. Com-
petitor information might not only be contained in semi-structured sources like
lists or tables, but also be mentioned in free texts. We call it the source diversity
challenge. Traditional information extraction methods only focus on a particular
type of data sources. For example, Ciravegna et al. [?], Milne et al. [?], and Li-
maye et al. [?] studied how to extract knowledge from lists, tables, or Semantic
Web. On the other hand, Web-based IE methods and systems like Snowball [?],
OpenIE/TextRunner [?], and KnowItAll [?] mainly extract data from texts.
While systems such as LODIE [?] extract information from both free texts and
structured data, how to fully utilize different kinds of data sources is not ful-
ly investigated especially for competitor identification. In addition, competitors
might not always be mentioned in form of their full names. The occurrences of
name variants further increase the diversity, and make the task more challenging.
We call it the expression diversity challenge.

In this paper, we focus on competitor identification in prospectuses. Each
prospectus contains competitors of a particular company occurring in tables, lists
or free texts with different name descriptions. In order to tackle both challenges,
we propose a novel unsupervised approach based on a multi-strategy learning
algorithm. More precisely, we first extract competitors from lists using some
predefined heuristic rules. By leveraging redundancies among competitor infor-
mation in lists, tables, and texts, these competitors are fed as seeds to distantly
supervise the learning process to find table columns and text patterns containing
competitors. The whole process is iteratively performed. We carried out experi-
ments on prospectuses of Chinese listed companies obtained from Shanghai Stock
Exchange. The experimental results show the effectiveness of our approach with-
out human interventions and external knowledge bases. Moreover, the approach
significantly outperforms traditional named entity recognition approaches.

The rest of the paper is organized as follows. Section 2 lists several aspects
of related work. Section ?? analyzes the structure as well as the competitor
occurrences of prospectus. It then gives a overview of multi-strategy learning for
the competitor identification task. Section ?? presents our approach in details.
Section ?? shows experiment results of our work. Finally, Section ?? concludes
the paper and points out the future direction of our work.
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2 Related Work

While our work is the first to identify competitors with combined strategies on
prospectuses, there exist several aspects of related work.

2.1 Competitor and Competitive Mining

Lappas et al. [?] defined a formal definition of competitiveness between prod-
ucts sold on B2C Web sites. They developed an algorithm called CMiner to
find top-k competitive items for a given product. They run their algorithm on
different datasets ranging from Amazon.com, Booking.com to TripAdvisor.com.
The results show that the algorithm is effective and can be applied to different
domains. Cominer [?] extracted competitors of an object (a company, a sports
team etc) from Web. Given the name of an object, it queried the search engine
with predefined linguistic patterns to gather its competitor name and rank these
competitors accordingly. Cominer also mined competitive domain and compet-
itive evidence. Since competitors are expressed in different ways on the Web,
the linguistic patterns cannot cover all situations, and thus Cominer can only
mine competitive relationship between well-known companies whose information
is very redundant on the Web.

2.2 Information Extraction

Competitor identification is an application of information extraction which com-
bines relation extraction with named entity recognition. Information extraction
has been studied intensively over the past few years. Wrapper induction is a
sort of information extraction, which extracts knowledge from semi-structured
data. Multi-view learner [?] and Vertex! [?] use supervised learning algorithms
to learn data extraction rules from manually labeled training examples. Oth-
er systems like SKES [?] and LODIE [?] use unsupervised methods. Moreover,
Dalvi et al. [?] presented a generic framework to learn wrappers across Web
sites. Another kind of information extraction is to extract structured informa-
tion from texts, which is called text mining. Snowball [?] and TextRunner [?]
are two typical examples. The input to Snowball is a corpus of text documents
and a small set of seeds. Extracted patterns can be learned by summarizing the
occurrence patterns of seeds in the corpus. TextRunner learns all relations in a
corpus without any predefined rules or hand-tagged seeds, thus the method is
called “Open Information Extraction”.

One trend of information extraction is to utilize various data published on
the Web including Web pages, Linked Open Data as well as lists and tables
on dynamic Web sites. Gentile et al. [?] proposed a methodology called multi-
strategy learning which combines text mining with wrapper induction to extract
knowledge from tables, lists and Web pages. While the method seems promising,
there are no clear evaluation results in their paper. On the other hand, distant
supervision is an effective mean to leverage redundancies among different sources,
which has been used in [?,?]. Mintz et al. [?] leveraged entity pairs of a certain
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Fig. 1. Observations of Competitor Information in Prospectuses

relation from Freebase as seeds and collected sentences containing these pairs
as weakly labeled data from a text corpus. Then they extracted syntactic and
semantic features of context words around entity pairs to train a multi-class
logistic classifier for relation extraction. As a result, 10,000 instances of 102
relations were extracted at a precision of 67.6%. Roth et al. [?] used distant
supervision in pattern learning and built a system called RelationFactory [?].
RelationFactory RelationFactory achieved top ranked F1-Score at 37.3% in TAC
KBP 2013 English Slot Filling evaluation. To the best of our knowledge, distant
supervision has not been used for competitor identification.

3 Approach Overview

3.1 Problem Analysis

After we analyze more than 800 prospectuses about companies in different fields
from the Chinese stock market, we have the following observations.

– Observation 1. Almost every prospectus has a specific section to describe
the competitors of a company. The section is called Competitor Description
Section (CDS). Each CDS contains one or more paragraphs, and nearly 80%
titles of CDS contain the word “Þ�ùK (Competitors)”. The right upper
part (i.e. “Table of Contents”) of Figure ?? shows a CDS called “;�Þ�
ùK (Major Competitors)”.
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Table 1. Distribution of Different CDS Types in One Prospectus

List Text Table List+Text List+Table Table+Text All

Amount 246 147 142 148 44 94 18

Ratio 29.32% 17.52% 16.92% 17.64% 5.24% 11.20% 2.15%

– Observation 2. Competitors mentioned in a CDS might appear in different
forms (e.g., a list, a table or free text). Moreover, a CDS may contain com-
petitor information of more than one form. As shown in the lower parts of
figure ??, competitor names are listed as titles of subsections in a list-type
CDS, are contents of the same column of a table in a certain table-type CDS,
and are mentioned in a text-type CDS respectively.

– Observation 3. Competitor information is redundant in prospectuseses.
Redundancies not only exist in different forms of the same prospectus, but
also can be found different prospectuses of the same domain. The former is
called intra redundancy, and the later is called inter redundancy.

Table ?? shows the distribution of different CDS types in one prospectus.
From the table, we can see a large proportion of prospectuses contain at least two
forms of CDS, which indicates big intra redundancies. We then check the inter
redundancies between different prospectuses. 99 appear in list-type CDSs of at
least two prospectuses, 85 come from table-type CDSs of different prospectuses,
and another 85 are from text-type CDSs. Furthermore, 209 competitors occur
in a list-type CDS of one prospectus but in a table-type CDS or a text-type
CDS of another prospectus with the same names. 203 is the number of inter
redundancies for the situation when one is from a table-type CDS and we find
matches from another type of CDS in a different prospectus. Similarly, 195 is the
answer for the third situation. Observation 2 and 3 are the basis of our multi-
strategy learning algorithm. Redundant competitors from CDSs of one type can
be used to annotate their occurrences in CDSs of other two types.

3.2 Overall Architecture of Our Approach

The objective of our approach is to find a way to extract competitor information
in a language-independent way without the use of any named entity recognition
(NER) tools or any prior knowledge about company information. According to
observations introduced in Section ??, competitors are mentioned in different
kinds of CDSs (list-type, table-type, and text-type). We also find rich intra- and
inter-redundancies between different types. In such circumstances, competitors
are first extracted from structured sources using specific wrappers. As far, the
main concern is whether we can use a limited set of heuristic rules or some au-
tomatic mechanism to get these wrappers which can cover most cases. Then the
extracted competitors are further used as seeds to help competitor identification
from free texts, which can be modeled as a distant supervision process. The over-
all architecture of our approach is shown in Figure ??. We have two main steps
namely Competitor Description Section Detection and Multi-Strategy Learning.
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Fig. 2. Overall Architecture of Our Approach

– Competitor Description Section Detection. As mentioned in Obser-
vation 1, there exists a specific section describing competitors and compet-
itive information in each prospectus called CDS. Compared with the whole
prospectus, a CDS is more focused and is thus more appropriate for com-
petitor identification. So the first step of our work is to find the CDS for each
prospectus. Since titles of a large number of CDSs contain the word “Þ�ù
K (Competitors)”, heuristic rules can be used to find these CDSs easily. In
order to find CDSs for the remaining prospectuses, we use a classification-
based method. The details will be described in Section ??.

– Multi-Strategy Learning. According to Observation 2, competitor names
may occur in lists, tables or free texts in CDSs. Since list-type CDSs are the
easiest to deal with, we first identify competitive lists and extract competitor
names from these lists, as shown in Figure ??. Then these competitor names
are served as seeds to extract more competitors from table-type CDSs and
text-type CDSs. Furthermore, the extracted competitors of high confidence
from table-type CDSs and text-type CDSs can also be fed as seeds to each
other. For table-type CDSs, we detect competitive columns in tables based
on the input seeds, and then header names of detected columns are used
to find similar column headers. In the iterative process, cell contents within
the detected columns are extracted as competitor names. The iteration will
not terminate until the newly discovered column contents do not conform to
a n-gram model of company names. For text-type CDSs, competitive sen-
tences containing seeds are collected. Competitive lexical patterns are then
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learned from contexts of these seeds in sentences, and competitor names are
extracted by applying the above patterns to new sentences in other text-type
CDSs. The process is also iterative. More details of multi-strategy learning
are introduced in Section ??.

4 Approach Details

4.1 Competitor Description Section Detection

If the title of a section has the word “Þ�ùK(Competitors)”, the section is a
CDS. Since each prospectus has a well-organized table of contents, the CDS sec-
tion is easy to locate. However, still 20 percent prospectuses cannot be covered.
Since the heuristic rule can find CDSs with high precision, we use CDSs found
by the rule as positive examples while other sections in these prospectuses are
treated as the background corpus. Then the CDS detection task is modeled as
a one-class classification problem, and we use one-class SVM (Support Vector
Machine) as the classification model. Each section is represented as a word fea-
ture selection. When applying the model to each section of a prospectus, CDSs
will be detected. For feature selection, Information Gain is used to select words
which can distinguish CDSs with the background corpus for performance im-
provements. Since prospectuses are in PDF formats, certain preprocessing steps
are required. Firstly, prospectuses are converted into HTML formats, then HTM-
L tags are removed and texts are extracted. At last, texts are segmented into
words using natural language processing tools, and stop words are removed. The
overall accuracy of CDS detection is higher than 95%.

4.2 Multi-Strategy Learning

Seeds Extraction from List-type CDSs Lists containing competitor names
in list-type CDSs have the following characteristics. These lists are parallel struc-
tures in CDSs and each item in such a structure starts with sequence numbers.
There are two types of such structure. One is subsections in a CDS, as shown
in Figure ??. The other is in a text paragraph whose precedent words are “Þ�
ùK/ (competitors are)” or “Þ�ùK	 (competitors include)”. Since some
lists might contain false positives, the extracted texts from these lists have no
relationship with competitor names. In order to filter out unrelated strings, we
use three rules to check whether a string is an organization name. If any of the
rules does not hold, the corresponding string does not refer to an organization.
The rules are learned by calculating statistics collected from the organization
list provided by Shanghai Bureau of Public Security [?].

– Lengths of organization names. Organization names have a limited number
of characters. The length distributions of organization names, including full
names and abbreviations, are shown in Figure ?? and Figure ?? respectively.
In most cases, the lengths of full organization names are between 4 and 24.
If the length of a string is out of the range, we can filter it out.
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Fig. 3. Length Distribution of Full Names

– Character occurrences in organization names. The distribution of commonly
used 3500 Chinese characters is calculated from the organization list, which
shows the user preferences to name organizations. In particular, we collect
positive characters that occur frequently with organizations, and negative
characters which never appear in organization names. For instance, negative
words such as “á (tamper)” and “� (pestilence)” have no occurrences in the
organization list. A language model is built using these characters to predict
the probability whether the string is an organization. If the probability is
very low, it can be treated as a non-organization of high confidence.

– Length Difference of items in a list. If items in a same list are organization
names, their lengths should not differ too much. In contrast, the word lengths
might vary a lot. When the length difference exceeds 6 characters, we can
safely remove it.

We extract competitors from a list-type CDS as follows. First, we find all
lists in the CDS of a prospectus. Then we remove those parallel structures in
text paragraphs whose precedent words do not contain “Þ�ùK(competitor)”.
After that, the first string after each sequence number is extracted as a competi-
tor name candidate. We further remove names from those candidates which do
not follow any of the above three rules. Finally, the remaining ones are returned
as competitors, which are used as seeds for further processing.

Competitive Table Column Detection The following observations are used
to detect competitors in table-type CDSs.

– While the formats of tables are diverse in real world, tables in prospectuses
are much simpler and table headers always refer to columns. Even for com-
plex tables which have nested headers across multiple columns, we can still
find headers strictly aligned to one column as our targets.

– Contents in a table column have the same sort of data. For instance, if more
than two cells of a column in a table contain competitor names, then all cells
of that column correspond to competitors.
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– Table columns contain similar contents if they have similar headers. For ex-
ample, the column “;�Þ�ùK (major competitors)” is similar to the
column titled “ Þ��� (competitive companies)”, and both column con-
tents refer to competitors.

– Column headers are similar if they have similar contexts. The context of a
column header is defined as names of all other headers in the table. For exam-
ple, If a table has four columns in form of (h1, h2, h3, h4), then (h2, h3, h4)
is the context of a header h1.

The process of detecting competitors from table-type CDSs is as follows.

1. Extracting tables. All tables in CDSs are extracted.
2. Finding competitive table columns. For a table column, if it has more than

two cells and the contents of these cells are recognized as competitor names
by results extracted from list-type CDSs as seeds, the column is a possible
competitive table column.

3. Finding similar table columns. We then find all columns whose header names
are similar to the names in Cnames. There are three ways to calculate the
similarity between two table columns. They are Cosine Similarity, Edit
Distance, and Context Similarity. The former two captures the header
name similarity while the last one is the distributional similarity between
the contexts of two headers. We use the combined results of the three types
of similarities to find additional competitive table column candidates. This
step is inspired by the work done by Limaye et al. [?].

4. Extracting competitor names. For a column returned in the previous two
steps, we check its contents to see whether they conform to the three rules
of organization names. If yes, we take contents of the column as competitor
names, and add these names to the seed set, and finally add the column
header name to the name set of competitive columns denoted as Cnames.

5. Iterating the whole process until no new column headers can be found.
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The details of the three types of similarity calculations are as follows.

– Cosine Similarity. It is a measure of similarity between two vectors. The
words occurring in the two table header names are used as features, and the
times of occurrences are used as weights of features. For example, to compute
the similarity between “Þ�ùK” and “Þ���”, after word segmentation,
three features “Þ�”, “ùK”, and “��” are selected. Then the two header
names are converted into vectors as < 1, 1, 0 > and < 1, 0, 1 >, and thus the
similarity score is 0.5.

– Edit Distance. It is a way to quantify how two strings are similar to each
other by counting the minimum number of operations (insert, delete, and
substitution) required to transform one string into the other. The smaller
the Edit Distance is, the more similar the two headers are. For example,
“�F” can be transformed to “�¶” by one substitution operation, namely
“F” replaced by “¶”. Therefore, the Edit Distance is 1.

– Context Similarity. The context of each header is also represented as
a vector, and Cosine Similarity is used to calculate the similarity be-
tween two header contexts. If the name of a header name appears in more
than one table, the two “local” contexts are merged and the occurrences of
some headers are accumulated. For example, one table column header list
is (h1, h2, h4, h5) and the other is (h1, h2, h3, h4). The context vector of h1
is < h2, h3, h4, h5 > by merging two local context vectors < h2, h4, h5 >
and < h2, h3, h4 >. The weight of the context is < 2, 1, 1, 1 >. If there
are altogether eight header names for all tables, the context vector of h1 is
< 0, 2, 1, 1, 1, 0, 0, 0 >.

Distant Supervision for Competitor Patterns in Free Texts Competitor
identification on text-type CDSs requires competitor name annotations in sen-
tences to learn patterns. These patterns are further used in other sentences to
extract competitors. The quality of the extracted competitors heavily depends
on the number of annotated sentences while manual annotation costs too many
human efforts. Here, we leverage competitors extracted from previous steps to
label free texts automatically. Such kind of distant supervision can save manual
efforts of labeling sentences significantly. We first collect sentences that contain
seed competitor names and label these sentences. Then we generate frequent co-
occurrence word sets from the labeled corpus. Extraction patterns are further
generated from the word sets and the annotated sentences. Finally, we use the
generated patterns to extract new competitors from the other text-type CDSs.
The whole process is iterative until there are no new patterns found. We describe
the details of each step as follows:

1. Labeling text with seeds
We use a triple <L, seed, R>to express the occurrences of a seed. The “L”
is the left context of a seed with a few words before the seed, and the “R” is
the right context having several words after the seed. We do not allow triples
spanning across multiple sentences separated by punctuations like full stops,
commas, and semi-commas.
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Sometimes, there are more than one competitor names in a sentence and
these names occur continuously. For example, “Þ�ùK	®o�"<�ù
�I (competitors are Microsoft, Sony, and Apple etc..)”. Such sentences are
called multi-slot sentences, and sentences that contain only one competitor
name are called single-slot sentences. For the above example, if the seed
is “SONY”, the triple looks like <“competitors are Microsoft”, seed, “and
Apple etc..”>. Since the left side or the right side of a seed may also be an
organization name, it is slightly different to generate patterns for multi-slot
sentences, which will be discussed later.

2. Generating frequent co-occurrence word sets
In multi-slot sentences, competitor names are delimited by “slight-pause
marks”. We neglect seeds which have “slight-pause mark” directly before
or after them at their left contexts or right contexts. That is to say, we only
select sentences labeled with at least two seeds where the left side of the
most left seed should not be a “slight-pause mark”, and the right side of
the most right seed is not a “slight-pause mark” either. Back to the above
example, if “®o (Microsoft)” and “ù�(Apple)” become seeds, the whole
sentence can be labeled, and the triple is <“Þ�ùK	 (competitors are)”,
“®o�"<�ù� (Microsoft, Sony, and Apple)”, “I�etc..	”>.
In this way, multi-slot sentences and one-slot sentences can be processed in
the same way as follows. First, we perform word segmentation for S where
S is the set of strings of all “L”s and “R”s in <L, seed, R>triples. Each
string in S is segmented into words using segmentation tools. Then we select
words occurring more than 5 times as words of high frequencies. Finally,
we construct the high frequency co-occurrence word sets by selecting those
co-occur in <L, seed, R>triples for more than twice.

3. Generating extraction patterns
Frequent co-occurrence word sets are used to generate extraction patterns.
Take WS as the word sets, and an element ws in WS would be a word set
{w1,w2...wn}. All sentences which contain {w1,w2...wn} are returned, and
each sentence forms a distinguished pattern. Patterns are aligned and con-
solidated based on the order of occurrences of elements in ws. Some words
are replaced by wildcards, others are unioned together. We also retain the
boundary words of the occurrences in the merged pattern. The pattern gen-
eralization is similar to that of Snowball [?]. The novelty lies on the previous
steps especially the first step to label sentences with seeds extracted from
other types of CDS corpus automatically. The distant supervision part as
well as the multi-strategy learning part have not been covered in traditional
seed-based pattern learning methods.
For example, if “�� (Company)” and “Þ�ùK (Competitor)” are with-
in one frequent word set. Given two sentences “���;�Þ�ùK	
®o�2¨��(The major competitors of the company are Microsoft and
Oracle.)”, and “;�Þ�ùK��/"<�ù�� (Major competitive com-
pany are SONY and Apple.)”, the distinguished pattern for each sentence
is “��*Þ�ùK*	 (Company*Competitor*include)”, and “Þ�ùK*�
�*/ (Competitor *Company* are)” respectively. The merged pattern is
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Table 2. Classification of Identified Competitors

Is-competitor Not-competitor

Extracted A B

Not-Extracted C D

“(��*Þ�ùK—Þ�ùK*��)*(	—/)”. It is more general to cover
both situations. Here ∗ denotes any number of any characters, | means the
union of several characters, and boundary strings such as “	 (include)” and
“/ (are)” are included in the pattern.

4. Extracting competitor names using patterns
Based on patterns generated in the previous step, strings are extracted as
competitor candidates. Note that not all candidates refer to organizations.
Thus, we reuse the above mentioned three rules to check whether a string is
an organization name, and thus filter out irrelevant ones.

5 Experiments

5.1 Experiment Setup

All prospectuses used in the experiment were crawled from the Web site of
Shanghai Stock Exchange (http://www.sse.com.cn). Although our approach
is unsupervised, labeled data is required to assess the quality and the coverage
of extracted results. 836 prospectuses are manually labeled, which result in 3000
competitor pairs in total. Precision and Recall are used as the evaluation metrics.
As shown in Table ??, we use A to represent the number of correctly extracted
competitor names, B is the number of incorrectly extracted competitor names,
C indicates the number of competitor names that are not extracted. In this way,
precision can be defined as A/(A + B), and Recall is A/(A + C).

Precision and recall are defined at two levels: the micro level and the macro
level. The micro level evaluates on prospectuses while the macro level evaluates
on competitor names. If the corpus has n prospectuses, and for each prospectus
di, we can get the corresponding Ai, Bi, and Ci as defined in Table ??. Precision
and Recall at two levels are defined as follows.

Micro Precision =

∑n
1 precison(di)

n
(1)

Micro Recall =

∑n
1 Recall(di)

n
(2)

Macro Precision =

∑n
1 Ai∑n

1 Ai +
∑n

1 Bi
(3)

Macro Recall =

∑n
1 Ai∑n

1 Ai +
∑n

1 Ci
(4)

http://www.sse.com.cn
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Table 3. Results of Each Type

List Table Text

Micro Recall 0.9157 0.9691 0.7440

Micro Precision 0.9734 0.9143 0.9029

Macro Recall 0.9285 0.9493 0.7497

Macro Precision 0.9814 0.9557 0.9279

Table 4. Iterations for Table-type CDSs

1 2 3

#extracted candiates 874 984 1015

#new competitor names 869 98 3

Micro Recall 0.9030 0.9686 0.9691

Micro Precision 0.9770 0.9663 0.9143

Macro Recall 0.8868 0.9433 0.9493

Macro Precision 0.9943 0.9827 0.9557

5.2 Results Evaluation

Results for Each Type of CDSs Table ?? shows the evaluation results for
competitor identification in the corpus of each CDS type. Here, precision and
recall are calculated against the corpus of each CDS type instead of the whole
corpus. For instance, regarding the recall A/(A + C) for the list type, A is the
number of correctly extracted competitor names in list-type CDSs, and C is
number of competitor names that are not extracted in the list-type corpus. The
other metrics can be calculated in the similar way. From the table, we can find
that our approach achieves very high precision for each type of CDSs. The recall
for text-type CDSs is lower than that on other type of corpus, but is still about
0.74. This is because we only capture frequent patterns but some sentences about
competitors are described by ad hoc lexical patterns that seldomly occur. We
also find the gap between micro-level and macro-level is small, which means our
approach is stable without very poor performance on some prospectus.

Since competitor identification on table-type CDSs and text-type CDSs are
both iterative, we show the results after each iteration for the two types of corpus
in Table ?? and Table ?? respectively. For both types, after a small number of
iterations (3 for table-type, and 2 for text-type), the whole process terminates. As
shown in Table ??, for each iteration of table-type corpus extraction, more similar
table headers are found, but fewer competitor names are extracted. For example,
after the second Iteration, 984 candidates are found, but only 98 of them are
recognized as organization names. This is due to the fact that most candidates
are from headers similar to the headers which do not represent actual competitive
table columns. Recalls increase after each iteration, but the precisions might drop
a bit especially for the late iterations. This is a signal to tell that we should set
more strict threshold values to ensure the quality of extracted competitors. We
can have similar findings in Table ??.
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Table 5. Iterations for Text-type CDSs

1 2

#extracted candidates 724 735

#new competitor names 675 7

Micro Recall 0.7345 0.7440

Micro Precision 0.9098 0.9029

Macro Recall 0.7272 0.7497

Table 6. Multi-strategy Learning Results

List Table Text List+Table List+Text Table+Text All

Micro Recall 0.4715 0.3791 0.3406 0.7838 0.6544 0.5611 0.8423

Micro Precision 0.9688 0.9147 0.8944 0.9433 0.9109 0.8807 0.9090

Macro Recall 0.4114 0.4470 0.3142 0.7892 0.5814 0.6058 0.8487

Macro Precision 0.9814 0.9557 0.9279 0.9698 0.9540 0.9444 0.9437

Results of Multi-strategy Learning We also carry out experiments to com-
pare the performance using multi-strategy learning with that based on single-
strategy learning. The detailed experimental results are shown in Table ??. The
column “All” represents our final results, which combines the results from differ-
ent types of CDSs. The column in form of “A+B” refer to the combined results
from the A-type corpus and the B-type corpus. Unlike the computation of recall
values in Table ??, recalls are computed against the whole corpus instead of one
specific type of CDS corpus. This is why for the first three columns (i.e. List,
Table, and Text), their recalls are much lower than those reported in Table ??.

From the table, we can see that recall values are greatly improved through
multi-strategy learning. The micro recall value for list-type, table-type and text-
type CDSs is 0.4715, 0.3791 and 0.3406 respectively. They are all below 0.5.
However, the combined result is about 0.8423, almost 200% increases. In addi-
tion, even we use multi-strategy learning on two types of CDS corpus, the recall
value improvements are obvious. Meanwhile, the precision values are still very
high. All these findings show the effectiveness of multi-strategy learning.

5.3 Comparison with Traditional NER-based Methods

In order to identify competitors, we can also use named entity recognition (NER)
methods to find organization mentions in the CDSs. Here, we select some popular
NLP tools namely NLPIR3, FudanNLP4, and Stanford NER5 to extract com-
petitors from the corpus. For the Stanford NER, we further distinguish whether
it uses distributional similarity features, denoted as Stanford NER with distSim,
and Stanford NER without distSim. We use these tools as the baselines to com-

3 http://ictclas.nlpir.org/
4 http://code.google.com/p/fudannlp/
5 http://nlp.stanford.edu/software/CRF-NER.shtml

http://ictclas.nlpir.org/
http://code.google.com/p/fudannlp/
http://nlp.stanford.edu/software/CRF-NER.shtml
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Table 7. The Results of Different Methods

NLPIR FudanNLP Stanford NER
with distSim

Stanford NER
without distSim

Our Approach

Precision 34.21% 28.97% 68.02% 63.85% 94.37%

Recall 1.02% 2.43% 47.30% 40.80% 84.87%

pare with our approach. Macro precisions and macro recalls of all methods are
shown in Table ??.

From the table, NLPIR and FudanNLP perform worst with low precisions
(around 30%) and pretty low recalls (between 1% and 3%). When using distri-
butional similarity features, Stanford NER can achieve more than 5% increases
in terms of precision and recall. Compared with these baselines, our approach
has much more promising results. The precision almost reaches 94.37% and the
recall is also higher than 80%.

6 Conclusions and Future Work

In this paper, we provide a multi-strategy learning approach to extract com-
petitors from Chinese prospectuses. Different kinds of competitive description
sections (list-type, table-type, and text-type) require different extraction meth-
ods and have different levels of difficulties. We extract competitors from list-type
CDSs first, and the extraction results are fed as seeds to boost the extraction
process from other two CDS types. Distant supervised learning is used in these
processes to avoid manual labeling efforts. One benefit of our approach is that
the named entity recognition (NER) step is not required to identify competitors.
Experimental results show our approach achieves higher precision and recall than
those of the traditional NER methods. As for the future work, we plan to try our
approach on English prospectuses and then extend to other corpus like company
Web sites for mining competitors.
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