
A Combined Approach to Incremental
Reasoning for EL Ontologies

Yuan Ren, Jeff Z. Pan(B), Isa Guclu, and Martin Kollingbaum

Department of Computing Science, University of Aberdeen, Aberdeen, UK
jeff.z.pan@abdn.ac.uk

Abstract. Due to the dynamic nature of knowledge and data in seman-
tic applications, ontology incremental reasoning technologies are essential
for ontology management systems. Nowadays, many proposed incremen-
tal reasoning solutions and implemented systems apply forward chaining
completion algorithms to handle the removal and addition of axioms.
In this paper, we propose a novel approach to ontology incremental rea-
soning that combines forward and backward chaining completion for EL.
Compared to existing work, this approach can be applied with or without
bookkeeping, does not affect parallelisation or tractability, and reduces
the effort for re-deriving the over-deleted results both theoretically and
empirically.

1 Introduction

Ontologies are widely used in many different application domains to support
knowledge management. In order to facilitate automatic processing of ontolo-
gies, today’s de facto standard ontology languages, the Web Ontology Lan-
guages (OWLs), are based on a family of Description Logics [1] (DLs). There
are some profiles for OWL 2, including EL, QL and RL. Using DLs, ontologies
can be regarded as a set of logical axioms.

Ontologies and their corresponding reasoning results are usually considered
static. However, with the expanding applications of ontologies, such a paradigm
has been challenged [13,16]. In many scenarios, ontologies are subject to rapid
changes [12].

The dynamics of ontologies have brought many new research challenges, such
as the design of new knowledge representation and query languages [3,5], the
development of new reasoning services [10,12] and the development of stream
benchmarks [18]. In this paper, we are particularly interested in the development
of incremental reasoning technologies that update reasoning results affected by
the updating of the ontology without naively re-computing all results. In order
to reuse previously computed results, many existing approaches [4,8,11,17,21]
adopted the Delete and Re-derive (DRed) strategy [7]. With DRed, an incre-
mental reasoner first over-estimates and over-deletes the results affected by the
deleted original axioms, unaffected results are preserved. It then re-derives the
over-deleted results that can be entailed by the preserved axioms. The authors
of [20] pointed out that DRed needs to examine all preserved results during

c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 167–183, 2016.
DOI: 10.1007/978-3-319-45276-0 13

168 Y. Ren et al.

re-derivation and proposed to completely avoid re-derivation by using count-
ing to pinpoint the affected results. Despite of the different mechanisms, all
these approaches adopt forward chaining consequence-based algorithms to com-
pute results. For Datalog-based systems, Motik et al. [14] proposed a Back-
ward/Forward (B/F) algorithm for reducing the work done by combining back-
ward and forward chaining to efficiently update the materialization incremen-
tally. In their approach, B/F continuously outperformed the DRed algorithm
up to a threshold of 12 % updates in the initial ontology

In this paper, we present a novel DRed approach to ontology incremental
reasoning by combining forward chaining and backward chaining of consequence-
based algorithms. It has several advantages: (1) It can be applied with either book-
keeping or non-bookkeeping. (2) It helps to reduce the volume of over-deletion and
re-derivation in the DRed strategy, as we will show both theoretically and empiri-
cally. (3) It can be parallelised and allows the use of multiple computational cores
with shared main memory, when applied in parallel reasoners. (4) It works for
OWL 2 EL and can be applied to any knowledge representation that supports a
consequence-based procedure. When applied with a tractable algorithm, our app-
roach is also tractable. In this paper, we will focus on (1) and (2) with OWL 2
EL [2].

2 Background

In this section, we introduce the most relevant notions of syntax and semantics
of DLs. See [1] for a more thorough introduction on DLs.

Briefly, an ontology O is a set of DL axioms, containing a TBox (schema
part of O) and ABox (data part of O). An axiom α is entailed by an ontology
O, written O |= α, iff all models of O satisfy α. JO(α) ⊆ O is a (minimal)
justification of α iff JO(α) |= α and J ′ �|= α for all J ′ ⊂ JO(α). The algorithms
presented in this paper handle both TBox and ABox axioms.

A consequence-based algorithm usually consists of two closely related com-
ponents: a set of completion rules and a serialised forward-chaining procedure
to apply the rules. For example, below is a completion rule for the DL EL+, in
which �∗ is the transitive, reflexive closure of � in O.

R∃
E � ∃R.C,C � D,R �∗ S

E � ∃S.D
: ∃S.D occurs in O

We say that some axioms in the ontology can be used as premises (consequences)
of a rule when they satisfy the syntactic form specified by the premises (con-
sequences) of the rule. When it is clear from context, we also simply call these
axioms premises (consequences) of the rule.

Given an ontology, a consequence-based algorithm repeatedly applies all com-
pletion rules in the rule set until no more rule can be applied to compute the
completion closure:

Definition 1 (Completion Closure). For a set of axioms S and a completion
rule set R, the immediate results of applying R on S, denoted by R(S) or R1(S),

A Combined Approach to Incremental Reasoning for EL Ontologies 169

is the set of axioms that are either in S, or can be derived as consequence from
premises in S by a single rule in R.

Let Rn+1(S) = R(Rn(S)) for n ≥ 1, then the completion closure of S w.r.t.
R, denoted by R∗(O), is some Rn(S) s.t. Rn(S) = R(Rn(S)).

A rule set R converges if for any O, R∗(O) exists.

It can be show that the following properties hold:

Lemma 1. Let S(i) be sets of axioms, R a set of completion rules and n ≥ 1:

S1 ⊆ S2 → Rn(S1) ⊆ Rn(S2) (1)
R∗(Rn(S)) = R∗(S) (2)

R∗(S1 ∪ S2) = R∗(Rn(S1) ∪ S2) (3)

The step of deriving consequences from premises using a rule is an execution
of the rule. The computation of closure can then be described with the help of
a list L in the following algorithm FCC (Forward Chaining Completion).

Forward Chaining Completion:
FCC(L, S,R)
INPUT: a list of axioms to be processed L, a set of processed axioms S, a
completion rule set R
OUTPUT: a set of processed axioms S

1: while L �= ∅ do
2: get an element α ∈ L
3: L := L \ {α}, S := S ∪ {α}
4: for each rule in R do
5: if α can be used as a premise, and all other premises α2, . . . , αn are in

S, and consequence β is not in S ∪ L then
6: execute rule and add β into L
7: return S

For each α ∈ L, FCC checks if it can be used to execute a rule with other
axioms in S to infer β /∈ S ∪ L, which implies that β has not been processed or
derived yet. If that is the case, the rule will be executed and β will be added
into L. In any case, α will be moved from L to S.

It can be shown that R∗(L) = FCC(L, ∅, R):

Lemma 2. If R(S) ⊆ S ∪ L, then R∗(S ∪ L) = FCC(L, S,R).

Since R∗(∅) ⊆ L∪∅, we have R∗(L) ⊆ FCC(L, ∅, R). With the above proce-
dure, consequence-based algorithms can be used to perform ontology reasoning
such as classification and materialisation.

In this paper, we focus on incremental reasoning. We consider an ontology
sequence (O1, t1), . . . , (On, tn), in which Oi are DL ontologies and t1 < · · · < tn
are time points. The change from Oi to Oi+1 is an update of the ontology. In this

170 Y. Ren et al.

paper, given an Oi and its following snapshot Oi+1, we address the problem of
computing the updated completion closure FCC(Oi+1, ∅, R). There are two dif-
ferent approaches to solve this problem. One is Naive Reasoning, which recom-
putes all results completely. The other is Incremental Reasoning, which attempts
to re-use the results of FCC(Oi, ∅, R) to compute FCC(Oi+1, ∅, R), without com-
pletely re-computing FCC(Oi, ∅, R). The later is the focus of this paper.

3 Technical Motivation

To deal with incremental reasoning, one key challenge is to handle the dele-
tion of original axioms. The authors of [21] first adopted the Delete and Re-
derive (DRed) strategy [7,19] from traditional data stream management sys-
tems and applied it on ontology incremental reasoning. A DRed approach first
over-deletes all the potential consequences of the original deletion. Other results
will be preserved. It then re-derives the over-deleted consequences that can be
derived by the preserved results. It finally performs reasoning to deal with the
new facts, which can be realised with the same mechanism we just introduced.
Such a mechanism has also been adopted by all the existing incremental rea-
soning approaches. Hence, in this paper we will focus on the optimisation of the
over-deletion and re-derivation.

Let O be an ontology, R∗(O) = FCC(O, ∅, R) be its completion closure w.r.t.
R, Del ⊆ O be a set of axioms to remove. A DRed approach first identifies a set
of valid over-deletion OD ⊆ R∗(O) w.r.t. Del:

Definition 2 (Valid Over-deletion). Let O be an ontology, Del ⊆ O a set
of axioms to remove, R a completion rule set, an over-deletion OD of R∗(O)
w.r.t. Del is valid if:

1. ∀α ∈ R∗(O), if for every JO(α) it is true that JO(α)∩Del �= ∅, then α ∈ OD.
2. ∀α ∈ R∗(O \ Del), there is some JO(α) such that JO(α) ∩ OD = ∅.

The first condition ensures that OD over-deletes all entailments that can
only be inferred from some axioms in Del. The second condition ensures that
any entailment of O \ Del is also entailed by R∗(O) \ OD. A DRed approach
then re-derives any axiom α ∈ OD if there is some JO(α) s.t. JO(α) ∩ Del = ∅.
Different DRed or non-DRed incremental reasoning approaches differ primarily
on how they identify the over-deleted results and how they perform re-derivation.
We introduce them w.r.t. their re-derivation mechanism:

– Global Re-derivation: There are a few variants, of the global re-derivation
approach, including [4,11,17,21]. These global re-derivation DRed approaches
have two major limitations: (1) Some of these approaches require bookkeep-
ing, e.g., a TMS [17], to identify the valid over-deletion. Such bookkeep-
ings will impose performance and resource-consumption overhead; (2) The
re-derivation has to go through all remaining axioms R∗(O) \ OD to ensure
the completeness of results, even if many of them cannot infer further entail-
ments. A TMS is a loopless directed graph in which nodes denote the axioms in

A Combined Approach to Incremental Reasoning for EL Ontologies 171

Fig. 1. Over-deletion with a TMS

the completion closure, and edges connect premise and side condition axioms
to consequence axioms. When some original axioms are deleted, all axioms to
which the deleted axioms have paths in the TMS will be over-deleted. Consider
the example:

Example 1. Figure 1 shows a TMS in over-deletion. In this figure, O = {α1,
α2, β1} and R∗(O) = O ∪ {α3, α4, β2}.

When Del = {α1} is deleted, OD = Del ∪ {α3} since according to the TMS,
α3 is the only entailment connected from α1 in the TMS.

– Local Re-derivation: A recent work [8] proposed a non-bookkeeping DRed
approach to address the above limitations. The key point is to exploit the
independent nature of different contexts to facilitate the over-deletion and re-
derivation. Nevertheless, this approach also has limitations: (1) It relies on
the context in rules so it is not applicable to consequence-based algorithms
without context; (2) It almost always over-deletes more axioms than neces-
sary. This approach first re-runs a similar forward chaining procedure as in
algorithm FCC to identify a set of entailments DEL = {C � D|C � D ∈
R∗(O) \ (O \ Del) and can be directly or indirectly derived from premises in
Del}. The computation of DEL is similar to the over-deletion proposed in
[11]. It then computes Broken = {C � E|C � E ∈ R∗(O), C � D ∈ DEL},
i.e. all derived GCIs who share a LHS (left hand side) context with some GCI
that can be derived from the removed axioms. Below is an example:

Example 2. Figure 2 shows a closure similar as the one in Fig. 1. Now the closure
is partitioned into two contexts. αis all have context C1 and βis all have context
C2. Suppose we still have Del = {α1} and DEL = Del ∪ {α3}, since α2 and α4

also belongs to the same context, we have {α2, α4} ⊆ Broken.

– No Re-derivation: In order to completely avoid the re-derivation in DRed,
the authors of [20] apply the counting strategy proposed in [7] to pinpoint
the axioms that have to be removed from R∗(O). This approach is conceptu-
ally and empirically more efficient than DRed when dealing with removal of
axioms.

Example 3. The upper part of Fig. 3 shows a TMS similar as the one in Fig. 1.
The main difference is that now the TMS recognised that α3 can not only be
derived from α1, but also α2. Hence its count N(α3) = 2.

172 Y. Ren et al.

Fig. 2. Over-deletion with context

Fig. 3. Over-deletion with counting

The lower part of Fig. 3 shows how the deletion works. When Del = {α1},
N(α1) = 0. Consequently N(α3) = 1. Since N(α3) �= 0, α3 will not be deleted
and its derivation from α2 is still preserved.

However, it needs to make a trade-off between efficiency and quality of results:
(1) If the independent rule executions for each entailment are not thoroughly and
precisely identified, then this approach might not yield exactly the same results
as naive reasoning. (2) In order to obtain and maintain all possible rule execu-
tions for each entailment, this approach essentially computes all justifications
for all entailments in the closure. This is known to be expensive even for EL.

In this paper, we do not want to increase the complexity of incremental rea-
soning in comparison to naive reasoning. We want the results to be exactly the
same as naive reasoning. Therefore, we will use DRed instead of the counting
strategy. We also want our approach to not to rely on contexts, but be par-
allelisable with contexts, so that it is applicable with both bookkeeping and
non-bookkeeping methods.

4 Combining Forward and Backward Chaining

In order to avoid unnecessary axiom over-deletion and re-derivation, it is nec-
essary to develop a re-derivation mechanism that focuses only on the preserved
entailments that can be used to infer over-deleted axioms.

A Combined Approach to Incremental Reasoning for EL Ontologies 173

Full Backward Chaining Re-derivation

One way to achieve our goal is a full backward chaining procedure: A backward
chaining procedure starts from the entailments that are attempted to be re-
derived. It then checks which potential premises in the original closure can be
used to derive such an entailment. If all the premises have been preserved during
over-deletion or re-derived during re-derivation, then the target axiom can be
re-derived. Otherwise, the algorithm can try to re-derive the potential premises
recursively. Eventually, this procedure can re-derive all entailments that can be
inferred from the preserved axioms. Such a procedure can be described with the
following algorithms:

Full Backward Chaining Re-derivation:
fBCRD(L, S,R)
INPUT: a list of axioms to be re-derived L, a partial closure S, a completion
rule set R
OUTPUT: a set of re-derived axioms Rederived

1: Rederived := ∅
2: while L �= ∅ do
3: get α ∈ L
4: L := L \ {α}
5: fTest(L, S,Rederived, {α}, α,R)
6: return Rederived

Given a closure after over-deletion S, a list of over-deleted axioms L and a
rule set R, Algorithm fBCRD(L, S,R) finds out all axioms in L that can be
directly or indirectly re-derived from S, i.e. fBCRD(L, S,R) = L ∩ R∗(S):

1. In Step-1 it first initialises the set of re-derived entailments, which is empty
initially.

2. From Step-2 to Step-5, it iteratively tests each entailment α ∈ L until L is
empty. Such a testing is performed by a sub-procedure Algorithm fTest.

Full Test:
fTest(L, S,Rederived, Testing, β,R)
INPUT: a list of axioms to be re-derived L, a partial closure S, a set of re-
derived axioms Rederived, a set of axioms being tested Testing, an axiom to be
tested β and a set of completion rules R
OUTPUT: nothing, but L and Rederived will be altered during the execution
of the algorithm
1: if β /∈ Rederived then
2: for each rule ∈ R do
3: if β can be used as the consequence of rule, and all premises A =

{α1, . . . , αn} of rule are in S ∪ L ∪ Rederived \ Testing then

174 Y. Ren et al.

4: while A ∩ L �= ∅ do
5: get α ∈ A ∩ L
6: fTest(L,S,Rederived,Testing ∪ {β},α,R)
7: if A ⊆ S ∪ Rederived then
8: Rederived := Rederived ∪ {β}
9: L := L \ {β}

10: return

Given S, L, Rederived, R and a set of axioms being tested Testing, Algo-
rithm fTest will check if an entailment β can be re-derived with R from entail-
ments in S. If β can be re-derived, the algorithm will extend Rederived accord-
ingly. To test the possibility of re-derivation, the algorithm will recursively test
the premises of β in L.

Let R∗(O) be a completion closure of ontology O w.r.t. rule set R and OD be
the set of over-deleted axioms, with the above algorithms, re-derivation can be
performed with fBCRD(OD,R∗(O) \ OD,R). It can be shown that the above
procedure produces the correct and complete re-derivation results:

Lemma 3. Let O be an ontology, S = R∗(O) = FCC(O, ∅, R) be the completion
closure of O w.r.t a set of completion rules R, Del ⊆ O be a set of deleted axioms,
OD ⊆ S be a valid over-deletion w.r.t. Del, then:

(S \ OD) ∪ fBCRD(OD,S \ OD,R) = R∗(O \ Del).

Combined Forward and Backward Chaining Re-derivation. The full
backward chaining approach introduced in the previous subsection can be fur-
ther optimised. Particularly, in the presented procedure, the testing of the same
axiom may be invoked multiple times.

In this section, we present a more efficient variant of the previous procedure
that eliminates the redundant testings. The key-point is to combine forward and
backward chaining in re-derivation:

1. Assuming we have a completion closure S = R∗(O) and a set of over-deleted
axioms OD, the purpose of re-derivation is to compute R∗(S \ OD).

2. Forward chaining re-derivation achieves this by computing FCC(S\OD, ∅, R)
either globally or locally, and may process unnecessary entailments.

3. Instead, we only need to find L′ = R(S \ OD) \ (S \ OD), and then compute
FCC(L′, S \OD,R). Since we have R(S \OD) ⊆ (S \OD)∪L′, according to
Lemma 2, results of FCC(L′, S\OD,R) is the same as R∗((S\OD)∪L′). Since
L′ = R(S \OD)\(S \OD), we have (S \OD)∪L′ = R(S \OD). According to
Property (2) of Lemma 1, R∗((S\OD)∪L′) = R∗(R(S\OD)) = R∗(S\OD).

The above procedure is the forward chaining part. The L′ = R(S \ OD) \
(S \ OD) will be computed by backward chaining. It can be achieved with a
procedure similar to fBCRD:

A Combined Approach to Incremental Reasoning for EL Ontologies 175

Backward Chaining Re-derivation:
BCRD(L, S,R)
INPUT: a list of axioms to be re-derived L, a partial closure S, a completion
rule set R
OUTPUT: a set of re-derived axioms Rederived

1: Rederived := ∅
2: for each α ∈ L do
3: Test(S,Rederived, α,R)
4: return Rederived

Test:
Test(S,Rederived, β,R)
INPUT: a partial closure S, a set of re-derived axioms Rederived, an axiom to
be tested β and a set of completion rules R
OUTPUT: nothing, but Rederived will be altered during the execution of the
algorithm
1: for each rule ∈ R do
2: if β can be used as the consequence of rule, and all premises A =

{α1, . . . , αn} of rule are in S then
3: Rederived := Rederived ∪ {β}
4: return

As we can see, the procedure is different from the previous full backward
chaining re-derivation on the following aspects:

1. Instead of testing axioms with algorithm fTest, a new algorithm Test is used.
2. Test no longer recursively checks if a premise is re-derivable when it is not

immediately available in S. Instead, it only checks if all premises are in S,
which is the preserved partial closure. Hence the set Testing is not needed,
because a tested axiom will not be used as premise to re-derive another tested
axiom.

3. As a consequence, BCRD(L, S,R) will compute L∩R(S), namely all axioms
in L that can be directly re-derived from S.

Therefore, for a completion closure S and a valid over-deletion OD, we have
R(S \ OD) \ (S \ OD) = BCRD(OD,S \ OD,R). Combining with the forward
chaining part mentioned above, re-derivation of R∗(S \ OD) can be achieved:

Theorem 1. Let O be an ontology, S = R∗(O) = FCC(O, ∅, R) be the comple-
tion closure of O w.r.t. a set of completion rules R, Del ⊆ O be a set of deleted
axioms, OD ⊆ S be a valid over-deletion w.r.t. Del, then:

R∗(O \ Del) = FCC(BCRD(OD,S \ OD,R), S \ OD,R).

176 Y. Ren et al.

Proof (Sketch). We can first show that R∗(O \ Del) = R∗(S \ OD). Hence we
only need to prove R∗(S \ OD) = FCC(BCRD(OD,S \ OD,R), S \ OD,R).
According to Lemma 2, we only need to prove that R(S \ OD) ⊆ (S \ OD) ∪
BCRD(OD,S \OD,R). For any α ∈ R(S \OD), it is either trivially in (S \OD,
or it will be added into Rederived in Step-2 of Algorithm Test. ��

When completion rule set R is tractable, this procedure is also tractable since
both BCRD and FCC will be tractable. This suggests that our re-derivation
itself does not affect the tractability of reasoning in general. When the com-
pletion rule set is intractable, our approach is as complex as forward chain-
ing completion. Although not affecting the worst case computational complex-
ity, conceptually, such a combined forward and backward chaining re-derivation
has a minimal problem space (the over-deleted entailments) and a small search
space (all premises must be preserved). The re-derivation will only examine the
over-deleted axioms once in the backward chaining stage and only process the
re-derived axioms once in the forward chaining stage. These characteristics make
the combined re-derivation more efficient than the full forward chaining or full
backward chaining re-derivation, especially when the over-deleted entailments
are much less than the preserved entailments.

Our approach does not rely on bookkeeping dependencies between premise
and consequence axioms. When performing Step-2 of Algorithm Test, an imple-
mented system only needs to identify one candidate premise α, and then it can
use α in the same way as in Step-5 of Algorithm FCC to find other premises.
The identification of α can be realised by exploiting the structural relationships
between premise and consequence of each rule. For example, in order to re-derive
α (e.g., E � ∃S.D) with backward chaining of rule R∃, the reasoner only needs
to search for a preserved entailment β (e.g., E � ∃R.C) with the same LHS as
α s.t. another γ (e.g., C � D) whose LHS is the RHS filler of β, and whose
RHS is the same as α is preserved, and R �∗ S holds. In general, if FCC can be
performed without bookkeeping, our approach can be performed without book-
keeping. Nevertheless, our approach can also be augmented with bookkeeping in
the same way as FCC. Our approach also does not rely on context in rules. Our
approach can also be modified to calculate the counts of entailments, but this is
clearly out of the scope of this paper. We will leave it to our future work.

5 Experimental Evaluation

In order to evaluate the usefulness and performance of our approach, we con-
ducted an empirical evaluation to find out:

1. Whether our approach can be used to reduce the number of axioms that are
processed, in comparison to global re-derivation and local re-derivation.

2. Whether our approach can be used to achieve efficient incremental reasoning
in terms of execution time and memory consumption.

A Combined Approach to Incremental Reasoning for EL Ontologies 177

Implementation

For evaluation purposes, we implemented the following approaches:

1. In order to compare with the naive reasoning approach, we first implemented
a consequence-based algorithm with context. This algorithm is used by the
parallel EL++ reasoner ELK [9].

2. In order to compare with the non-bookkeeping DRed approach [8], we also
implemented an extension of the above approach with the forward-chaining
over-deletion used in the non-bookkeeping DRed approach. Such an approach
first obtains a set DEL, consisting of all entailments that can be derived from
the deleted original axioms. It then effectively over-deletes and re-derives all
non-original GCIs OD with the same context as some axiom in DEL.

3. In order to examine the effect of applying our approach with context-based
non-bookkeeping DRed, we implemented our non-bookkeeping approach on
the above one by replacing the context-based re-derivation with our combined
forward and backward chaining re-derivation. As we mentioned earlier, this
approach will use DEL instead of OD as the over-deleted entailments.

4. In order to compare with the bookkeeping DRed approach, a variant of the
first naive reasoning implementation was augmented with the TMS mecha-
nism proposed by [17]. This implementation performs TMS-based DRed.

5. In order to examine the effect of applying our approach with TMS-based book-
keeping DRed, we implemented our TMS-based approach on the above one
by replacing the forward chaining global re-derivation with our re-derivation.

All our implementation used the same completion rules. Hence, they will have
the same completion closure for the same input. In order to support reasoning
with our evaluation benchmark, our implementations were extended with ABox
completion mechanisms. Implementation-wise, this was achieved by internalising
ABox axioms with TBox axioms. Such a treatment does not affect the complete-
ness of results on our evaluation benchmark. In order to support the DL used
by our evaluation benchmark, our completion rule set extends the R rules with
the following additional rule to exploit inverse roles in ABox reasoning:

RI
(a, b) : r, a : C

b : ∃s.C
: ∃s.C occurs in O, r �∗,− s

where r �∗,− s if r ≡ s− ∈ O or r′ �∗ r′, r �∗,− s′ and s′ �∗ s and r �∗ s if
r � s ∈ O, or r �∗ t and t �∗ s, or r �∗,− t and t �∗,− s. With such extension,
the rule set is tractable but it is complete for our evaluation benchmark. Note
that in the above formulation, all premise axioms still share a context {a}. Hence,
the extension should not affect the context-based parallelisation of the original
rule set.

Test Environment

For preparing the evaluation benchmark, we have used the Lehigh Univer-
sity Benchmark (LUBM) [6] with 10 universities, The University Ontology

178 Y. Ren et al.

Benchmark (UOBM)1 with 10 universities and Systematised Nomenclature of
Medicine - Clinical Terms (SNOMED CT)2 as experimental datasets. We used
el-vira3 to convert UOBM ontologies to OWL 2 EL ontologies.

All experiments were conducted on 64-bit Ubuntu 14.04 with 3.20 GHz CPU
and 10G RAM allocated to JVM. To examine if our approach can reduce the
number of over-deleted and/or processed axioms in re-derivation, we were inter-
ested in the sizes of the following sets:

Del: deleted original axioms.
DEL: the over-deleted non-original axioms directly or indirectly inferred

from Del axioms.
R∗: the completion closure.
DELL: the non-original axioms directly or indirectly inferred from Del

axioms with the forward chaining over-deletion in the non-bookkeeping DRed
approach.

ODL: the non-original axioms with the same context as some axioms in
DELL. These axioms, even if preserved, will be re-derived by the forward chain-
ing re-derivation of the non-bookkeeping DRed approach.

BCRDL: the axioms re-derived in the backward chaining re-derivation stage
of our non-bookkeeping approach.

ODT : the over-deleted axioms in the TMS-based DRed approach. These are
also the axioms to be processed in the backward chaining re-derivation stage of
our TMS-based approach.

BCRDT : the axioms re-derived in the backward chaining re-derivation
stage of our TMS-based approach. These are also the axioms to be ini-
tialised in L in the forward chaining re-derivation stage of our TMS-
based approach. Our implementations are available at https://app.box.com/s/
mh81cprp0tgpmjc1qmcjdp00powkcpi9.

We conducted the experiments for n = 1, 2, 5, 10, i.e. 2%, 4%, 10% and 20%
of the ABox were updated respectively. For each n, the size of above sets were
obtained on the � 150

n � runs. The reasoning output of the incremental reasoner
was the same as the naive reasoner.

We also explored the performance and memory overhead of the TMS. Naive
re-computation was performed by the implementation without TMS. In this
experiment, we performed tests for 151 times, on the ABoxes A1∪· · ·∪A50, A2∪
· · · ∪ A51, . . . , A151 ∪ · · · ∪ A200. Each time, we calculated %initial and %memory.
For Tdeletion and Taddition, we conducted the experiments for n = 1, 2, 5, 10. For
each n, the incremental reasoning were performed for � 150

n � times. The reasoning
output of the incremental reasoner was the same as the naive reasoner.

Test Results

The average percentages of |Del|, |R∗ \ ODT |, |BCRDT |, |DELL|, |ODL|,
|BCRDL| against |R∗| are illustrated in Table 1.
1 https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/.
2 http://www.ihtsdo.org/snomed-ct(2011-Jan.Version).
3 http://el-vira.googlecode.com.

https://app.box.com/s/mh81cprp0tgpmjc1qmcjdp00powkcpi9
https://app.box.com/s/mh81cprp0tgpmjc1qmcjdp00powkcpi9
https://www.cs.ox.ac.uk/isg/tools/UOBMGenerator/
http://www.ihtsdo.org/snomed-ct (2011-Jan. Version)
http://el-vira.googlecode.com

A Combined Approach to Incremental Reasoning for EL Ontologies 179

Table 1. Re-derivation evaluation results (in %)

n
50 LUBM UOBM SNOMEDCT

2 4 10 20 2 4 10 20 2 4 10 20

|Del|/|R∗| 0.55 1.10 2.76 5.52 0.72 1.45 3.62 7.26 0.43 0.86 2.16 4.37

|ODT |/|R∗| 1.81 3.60 8.88 17.33 1.61 3.22 8.05 16.13 10.66 20.47 45.72 77.58

|R∗ \ ODT |/|R∗| 98.2 96.4 91.1 82.7 98.4 96.8 92.0 83.9 89.3 79.5 54.3 22.4

|BCRDT |/|R∗| 0.52 1.02 2.32 4.02 0.03 0.06 0.14 0.28 0.40 0.73 1.60 2.73

|DELL|/|R∗| 3.66 6.35 13.58 23.86 1.83 3.66 9.15 18.33 5.92 11.75 29.10 58.03

|ODL|/|R∗| 6.47 11.04 22.75 37.88 2.11 4.22 10.57 21.17 5.73 11.42 28.58 58.19

|BCRDL|/|R∗| 1.70 2.59 4.61 6.72 0.03 0.05 0.13 0.27 0.89 1.66 3.78 6.54

Fig. 4. Time consumption ratio for 2 % Update (in %)

To examine if our approach can be used to achieve efficient incremental
reasoning in terms of execution time, in comparison to other approaches, we
have conducted experiments using 2 synthetic (LUBM, UOBM) and 1 real-
world (SNOMEDCT) datasets to see what would be the ratio of execution
time consumed for an update of 2% in the initial ontology when compared
to re-computation. The average values for every approach-dataset pair are illus-
trated in Fig. 4. We have implemented different algorithms in the environment
of TrOWL EL reasoner. Results of experiments are expressed using percentages,
instead of absolute values, to proportionally see the effect of different incremental
reasoning algorithms and make a comparison between them.

Experiment results regarding the memory overhead are illustrated in Table 2
and Fig. 5.

Observations

1. Because of the nature of Naive Reasoning, the cost of time consumed for every
small or big update in ontology is always the time of re-computation from
scratch(100%). When the update rate is high, this approach can be prefer-
able. But, if the update ratio is as small as 2%, other incremental reasoning
techniques become more advantageous. Judging from our experiments, about
memory overhead of incremental reasoning, approximately 15% update is the

180 Y. Ren et al.

Table 2. Incremental reasoning evaluation results

%initial 125.89%

%memory 121.56%
n
50

2% 4% 10% 20%

%deletion 7.37% 14.06% 37.12% 70.21%

%addition 5.94% 15.17% 33.87% 52.44%

%incremental 13.31% 29.23% 70.99% 122.65%

Fig. 5. Incremental reasoning evaluation results

turning point. As illustrated in Table 2 and Fig. 5, up to 15% update in the
ontology, incremental reasoning consumes less RAM than naive reasoning,
but after that threshold RAM cost of incremental reasoning makes naive rea-
soning preferable.

2. Using TMS-based DRed in a reasoner will impose a performance and mem-
ory over-head. The reasoning time was about 25.89% longer than the same
reasoner without TMS. The TMS approach consumed 21.56% more memory.

3. When Del is small, as shown with the ontology SNOMEDCT in Table 1,
BCRDT is much smaller than R∗ \ODT (e.g. 0.40% v.s. 89.3% when Del is
0.43% of R∗), indicating that the forward chaining stage in our TMS-based
approach processes much less axioms than the TMS-based DRed.
Even when taking into account the cost of the backward chaining, as implied
by the size of ODT , our combined forward and backward chaining approach
should still process less axioms than the TMS-based approach.

4. When the size of DELL (non-original axioms directly or indirectly inferred
from Del axioms) is smaller than the size of ODL (axioms that are over-
deleted and will be re-derived, even if preserved), the non-bookkeeping DRed
is unnecessarily over-deleting more entailments than necessary. By apply-
ing our non-bookkeeping re-derivation approach, the over-deletion in non-
bookkeeping approach can be reduced, i.e. over-deleting DELL instead
of ODL.

A Combined Approach to Incremental Reasoning for EL Ontologies 181

For example, In case of LUBM with 2% update, 3.66% of data, which con-
stitutes the non-original axioms that are inferred from the deleted original
axioms, will be selected for over-deletion. Some of this data will be re-derived
in forward chain completion. But non-bookkeeping DRed approach chooses
a scope of 6.47% of the data for over deletion. By this way 2.81% of data is
unnecessarily processed. In this case our non-bookkeeping approach saves the
reasoner from ca.77% (2.81/3.66) of unnecessary processing. In case of UOBM
with 2% update, the contribution of our non-bookkeeping DRed approach is
15% ((2.11-1.83)/1.83) when compared to non-bookkeeping DRed approach.
In case of SNOMEDCT, we don’t observe big contribution but nearly same
results.

5. Our non-bookkeeping approach and non-bookkeeping DRed continuously con-
sumed less computation time when compared to other approaches. When
interconnections in ontologies increase, performance advantage of them
against naive re-computation and global approach becomes more obvious.
Increase in the interconnected axioms makes processing of TMS-based Global
DRed longer in terms of execution time but does not have that much increase
in the processing of them.

To summarise, our combined forward and backward chaining re-derivation
technology is very suitable for ontology updating with small scale deletion. It can
significantly reduce the re-derivation effort in comparison to the bookkeeping
global re-derivation approach. It can reduce the unnecessary over-deletion in
comparison to the non-bookkeeping local re-derivation approach. It can also be
used to address the completeness issue of the counting approach.

6 Conclusion

In this paper, we presented a novel approach for ontology incremental reasoning.
Although we chose the proposed approach is presented in EL, the approach can
be used to other completion based algorithms. The motivation of using EL is
due to the effective EL based approximate reasoning approach [15] implemented
in the TrOWL ontology reasoner. Thus we can combine our approach with the
approximate reasoning approach for OWL 2 DL incremental reasoning.

Based on a DRed framework, our approach first uses backward chaining to
re-derive the over-deleted axioms that can be directly inferred from preserved
axioms, and then uses these directly re-derived axioms to initiate forward chain-
ing and re-derive the completion closure of the preserved axioms. This app-
roach can be combined with different over-deletion techniques. It can also be
used with or without bookkeeping. The implementation of our approach does
not affect the parallelisation or tractability of reasoning and its mechanism is
applicable to many consequence-based algorithm. Evaluation results showed that
our approach can indeed reduce unnecessary over-deletion and/or re-derivation
in a DRed incremental reasoner and can perform efficient incremental reason-
ing, particularly when the ontology update is of small size in comparison to the
ontology, which is where incremental reasoning is mostly needed.

182 Y. Ren et al.

The backward chaining stage of our approach derives the immediate results
of the preserved closure. Such an idea has also been exploited in [11] (in their
Algorithm 1.3) and [8] (in their Algorithm 4). The difference is that existing
approaches derive such immediate results by forward chaining with all the pre-
served entailments or un-deleted original axioms, which will essentially re-process
the entire new closure or the entire broken contexts. Our approach uses back-
ward chaining to avoid the unnecessary processing. Backward chaining can be
implemented easily with rule systems. Hence, the original DRed strategy [7], its
declarative variant [19] and the ontological adoption of the latter [21] can also
exploit such a backward chaining mechanism. Nevertheless, we notice that back-
ward chaining only needs to be performed to re-derive immediate consequence of
the preserved partial closure. Hence, expensive recursive full backward chaining
can be avoided. Also, our approach only considers a given completion rule set
and does not need to generate additional rules from the axioms.

In the future we would like to combine the strengths of different approaches
to develop an adaptive incremental reasoning framework, e.g., using TMS to
deal with deletion of side condition axioms and contexts to deal with deletion of
non-side condition axioms.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

2. Baader, F., Lutz, C., Suntisrivaraporn, B.: Is tractable reasoning in extensions of
the description logic EL useful in practice? In: Proceedings of the 2005 International
Workshop on Methods for Modalities (M4M–2005) (2005)

3. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-SPARQL:
SPARQL for continuous querying. In: WWW 2009 (2009)

4. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In: Aroyo, L., Antoniou, G.,
Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.)
ESWC 2010, Part I. LNCS, vol. 6088, pp. 1–15. Springer, Heidelberg (2010)

5. Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to
process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis,
M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
Web Semant. Sci. Serv. Agents World Wide Web 3(2–3), 158–182 (2005)

7. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally.
In: SIGMOD 1993 (1993)

8. Kazakov, Y., Klinov, P.: Incremental reasoning in OWL EL without bookkeeping.
In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo,
L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part I. LNCS, vol. 8218,
pp. 232–247. Springer, Heidelberg (2013)

9. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK. J. Autom. Reasoning
53, 1–61 (2013)

A Combined Approach to Incremental Reasoning for EL Ontologies 183

10. Klarman, S., Meyer, T.: Prediction and explanation over DL-Lite data streams.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol.
8312, pp. 536–551. Springer, Heidelberg (2013)

11. Kotowski, J., Bry, F., Brodt, S.: Reasoning as axioms change. In: Rudolph, S.,
Gutierrez, C. (eds.) RR 2011. LNCS, vol. 6902, pp. 139–154. Springer, Heidelberg
(2011)

12. Lecue, F., Pan, J.Z.: Predicting knowledge in an ontology stream. In: Proceedings
of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013)
(2013)

13. Luther, M., Bohm, S., Mobility, S.-A.: An application for stream reasoning. In:
Proceedings of 1st International Workshop on Stream Reasoning (SR2009) (2009)

14. Motik, B., Nenov, Y., Piro, R., Horrocks, I.: Incremental update of datalog mate-
rialisation: the backward/forward algorithm. In: Proceedings of the 29th National
Conference on Artificial Intelligence (AAAI 2015), pp. 1560–1568 (2015)

15. Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL. Artif.
Intell. 235, 95–155 (2016)

16. Parsia, B., Halaschek-Wiener, C., Sirin, E.: Towards incremental reasoning through
updates. In: OWL DL, Proceedings of WWW-2006 (2006)

17. Ren, Y., Pan. J.Z.: Optimising ontology stream reasoning with truth maintenance
system. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, pp. 831–836. ACM (2011)

18. Scharrenbach, T., Urbani, J., Margara, A., Della Valle, E., Bernstein, A.: Seven
commandments for benchmarking semantic flow processing systems. In: Cimiano,
P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS,
vol. 7882, pp. 305–319. Springer, Heidelberg (2013)

19. Staudt, M., Jarke, M.: Incremental maintenance of externally materialized views.
In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) Proceed-
ings of the 22th International Conference on Very Large Data Bases (VLDB 1996),
3–6 September 1996, Mumbai, India, pp. 75–86. Morgan Kaufmann (1996)

20. Urbani, J., Margara, A., Jacobs, C., van Harmelen, F., Bal, H.: DynamiTE: parallel
materialization of dynamic RDF data. In: Alani, H., Kagal, L., Fokoue, A., Groth,
P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.)
ISWC 2013, Part I. LNCS, vol. 8218, pp. 657–672. Springer, Heidelberg (2013)

21. Volz, R., Staab, S., Motik, B.: Incrementally maintaining materializations of ontolo-
gies stored in logic databases. In: Spaccapietra, S., Bertino, E., Jajodia, S., King,
R., McLeod, D., Orlowska, M.E., Strous, L. (eds.) Journal on Data Semantics II.
LNCS, vol. 3360, pp. 1–34. Springer, Heidelberg (2005)

	A Combined Approach to Incremental Reasoning for EL Ontologies
	1 Introduction
	2 Background
	3 Technical Motivation
	4 Combining Forward and Backward Chaining
	5 Experimental Evaluation
	6 Conclusion
	References

