
Parallel ABox Reasoning of EL Ontologies

Yuan Ren1, Jeff Z. Pan1 and Kevin Lee2

1University of Aberdeen, Aberdeen, UK
2NICTA, Australia

Abstract. In order to support the vision of the Semantic Web, ontology reason-
ing needs to be highly scalable and efficient. A natural way to achieve scalabil-
ity and efficiency is to develop parallel ABox reasoning algorithms for tractable
OWL 2 profiles to distribute the load between different computation units within
a reasoning system. So far there have been some work on parallel ABox reasoning
algorithms for the pD* fragment of OWL 2 RL. However, there is still no work
on parallel ABox reasoning algorithm for OWL 2 EL, which is the language for
many influential ontologies (such as the SNOMED CT ontology). In this paper,
we extend a parallel TBox reasoning algorithm [5] for ELHR+ to parallel ABox
reasoning algorithms for ELH⊥,R+, which also supports the bottom concept so
as to model disjointness and inconsistency. In design of algorithms, we exploit
the characteristic of ABox reasonings to improve parallelisation and reduce un-
necessary resource cost. Our evaluation shows that a naive implementation of
our approach can compute all ABox entailments of a Not-Galen− ontology with
about 1 million individuals and 9 million axioms in about 3 minutes.

1 Introduction

Ontologies are the knowledge infrastructures of the Semantic Web and many intelligent
systems. In order to support the vision of the Semantic Web, ontology reasoning ser-
vices need to be highly scalable and efficient. The modern ontology language standard,
the W3C OWL Recommendation, is based on (different) description logics (DLs). In
the last decades, DL reasoning technologies have been developed to support inference
with ontologies. Well-optimised DL reasoning systems, such as FaCT++1, HermiT2,
Pellet3, CEL4, CB5 and TrOWL6, have been implemented with different reasoning tech-
nologies. So far, these systems are designed for a single computation core. Reasoning
is performed sequentially and can not be parallelised.

A natural way to achieve scalability and efficiency is to develop parallel ABox rea-
soning algorithms for tractable OWL 2 profiles, such as OWL 2 EL and OWL 2 RL, that
can distribute the load between different computation units within a reasoning system:

1 http://owl.man.ac.uk/factplusplus/
2 http://hermit-reasoner.com/
3 http://clarkparsia.com/pellet/
4 http://lat.inf.tu-dresden.de/systems/cel/
5 http://code.google.com/p/cb-reasoner/
6 http://trowl.eu/

One direction is to perform parallel reasoning with a cluster of multiple computer
nodes (or simply, peers). In Marvin [9], peers use a divide-conquer-swap strategy for
RDFS inference. Weaver and Handler propose a parallel RDFS inference engine [18];
peers use an ABox partitioning approach to RDFS inference. In SAOR [4], peers use
optimised template rules for join-free inference in pD* [15]. In DRAGO [12], peers
performs OWL DL reasoning under the setting of Distributed Description Logics [2],
which support local reasoning at the price of sacrificing expressiveness in the links be-
tween local models. A distributed resolution algorithm for ALC was proposed in [10].
Different from the aforementioned work where each peer has the same capability, in this
algorithm each peer is responsible for inferences for different types of literals, making
certain peer(s) become potential bottleneck and a single-point-of-failure. This issue is
addressed by the authors when they extend their algorithm forALCHIQ [11]. MapRe-
duce [3] has also been adopted to support ABox reasoning in RDFS [17], pD* [16] as
well as justifications in pD* [19], and TBox reasoning in EL+ [7] (there is no imple-
mentation for the EL+ case yet).

Another direction is to perform parallel reasoning with multiple computation cores
(or simply, workers) in a single computer. Soma and Prasanna [13] propose to use
data-partitioning and rule-partitioning in their parallel algorithms for pD*. Liebig and
Müller [6] exploit the non-determinism introduced by disjunctions or number restric-
tions in the SHN tableau algorithm so that multiple workers can apply expansion rules
on independent alternatives. Similarly, Meissner [8] proposes parallel expansions of
independent branchings in an ALC tableau and experimented with 3 different strate-
gies. Aslani and Haarslev [1] propose a parallel algorithm for OWL DL classification.
Recently, Kazakov et al. [5] presented a lock-free parallel completion-based TBox clas-
sification algorithm for ELHR+.

As discussed above, there have been work on parallel ABox reasoning for the pD*
fragment of OWL 2 RL. However, there is still no work on parallel ABox reasoning al-
gorithm for OWL 2 EL, in which many influential ontologies (such as the SNOMED CT
ontology) are written. In this paper, we extend a parallel TBox reasoning algorithm [5]
for ELHR+ to a parallel and lock-free ABox reasoning algorithm for ELH⊥,R+, which
also supports the bottom concept so as to model disjointness and inconsistency. We ex-
ploit the different characteristic of ABox reasoning from TBox reasoning and optimise
the design of completion rules and algorithms accordingly to improve parallelisation
and reduce unnecessary resource cost. Particularly, we parallelise the initialisation of
algorithms, separate TBox and ABox saturation, and streamline the processing of each
axiom in each worker. Our evaluation shows that a naive implementation of our ap-
proach can handle combined complex TBox and large ABox efficiently.

The remainder of the paper is organised as follows: In Sec. 2 we introduce back-
ground knowledge of DLs ELHR+ and ELH⊥,R+, and the parallel ELHR+ TBox
classification algorithm in [5]. In Sec. 3 we explain the technical challenges , before
presenting the completion rules and parallel ABox reasoning algorithms for ELH⊥,R+

in Sec. 4. We present an implementation of our approach and our evaluation in Sec.5,
before we conclude the paper in Sec. 6.

The proof of all lemmas and theorems are included in our online tech report at
http://www.box.net/shared/mpqxgxydhhl2bpuus5f7.

2 Preliminary

2.1 The ELHR+ and ELH⊥,R+ DLs

A signature of an ontologyO is a tripleΣO = (CNO,RNO, INO) consisting of three
mutually disjoint finite sets of atomic concepts CNO, atomic rolesRNO and individu-
als INO. Given a signature, complex concepts in ELH⊥,R+ can be defined inductively
using the ELH⊥,R+ constructors as in Table 1. ELHR+ supports all ELH⊥,R+ con-
structors except ⊥. Two concepts C and D are equivalent if they mutually include each
other, denoted by C ≡ D. An ontologyO = (T ,A) consists of a TBox T and an ABox

Table 1. ELH⊥,R+ Syntax and Semantics

Concepts:
atomic concept A AI

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI
existential restriction ∃r.C {x|∃y.〈x, y〉 ∈ rI and y ∈ CI}

Roles:
atomic role r rI

TBox Axioms:
general concept inclusion (GCI): C v D CI ⊆ DI
role inclusion (RI): r v s rI v sI
role transitivity: Trans(t) tI × tI ⊆ tI

ABox Axioms:
class assertion: A(a) aI ∈ AI
role assertion: r(a, b) 〈aI , bI〉 ∈ rI
individual equality: a

.
= b aI = bI

individual inequality: a ˙6=b aI 6= bI

A, which are finite sets of TBox axioms and ABox axioms, respectively. ELH⊥,R+ al-
lows all axioms listed in Table 1. ELHR+ allows all except individual inequalities.

An interpretation I is a pair (∆I , �I) where ∆I is a non-empty set and �I is a
function that maps each atomic concept A to a subset AI ⊆ ∆I , each atomic role
r to a binary relation rI ⊆ ∆I × ∆I and each individual a to an object aI ∈ ∆I .
Interpretation function �I can be extended to complex concept as shown in Table 1.

An interpretation I is a model of an ontology O, written I |= O, if it satisfies
all axioms of O as shown in the lower part of Table 1. An axiom α is entailed by an
ontology O, written O |= α, iff all models of O satisfy α. A concept C is satisfiable
w.r.t. an ontology O if there exists some model I of O such that CI 6= ∅. Given an
ontology O, we use v∗O to represent the relfexive transitive closure of RIs. It is easy to
see that in an ELHR+/ ELH⊥,R+ ontology, all of such v∗O relations can be computed
in polynomial time w.r.t. the size of O.

In ABox reasoning, we are particularly interested in finding all atomic types and
relations of all individuals, i.e. finding all A(a) s.t. a ∈ INO, A ∈ CNO, O |= A(a)

and all r(a, b) s.t. a, b ∈ INO, r ∈ RNO and O |= r(a, b). We call such a reasoning
task ABox classification. Computing and maintaining ABox classification results can be
very useful for efficient on-line instance retrieval and/or query answering.

2.2 Parallel TBox Classification of ELHR+ Ontologies

Given an ontology O, TBox classification is a reasoning task that computes all inclu-
sions over atomic concepts in O. Kazakov et. al [5] proposed an approach to paral-
lel TBox classification for ELHR+. They devise a set of completion rules as follows,
where D → E is used to denote the special form of GCIs where D and E are both
existential restrictions. Given an ELHR+ ontology O that has no ABox, these rules
infer C v D iff O |= C v D for all C and D such that C v C ∈ S and D occurs in
O (Theorem 1 of [5]), where S is the set of axioms closed under the following inference
rules.

Rv
C v D
C v E

: D v E ∈ O

R−u
C v D1 uD2

C v D1;C v D2

R−∃
C v ∃R.D
D v D

R+
>
C v C
C v >

: > occurs in O

R+
u
C v D1, C v D2

C v D1 uD2
: D1 uD2 occurs in O

R+
∃

C v D
∃s.C → ∃s.D

: ∃s.D occurs in O

RH
D v ∃r.C, ∃s.C → E

D v E
: r v∗O s

RT
D v ∃r.C, ∃s.C → E

∃t.D → E
: r v∗O t v∗O s, Trans(t) ∈ O

The completion rules are designed in a way that all premises of each rule have a
common concept (the concept C in each rule), which is called a context of the corre-
sponding premise axioms. Each context maintains a queue of axioms called scheduled,
on which some completion rule can be applied, and a set of axioms called processed, on
which some completion rule has already been applied. An axiom can only be included
in the scheduled queues and/or processed sets of its own contexts. To ensure that mul-
tiple workers can share the queues and sets without locking them, they further devised
a concurrency mechanism in which: (i) each worker will process a single context at a
time and vice versa; (ii) the processing of all axioms in the scheduled queue of a con-
text requires no axioms from the processed sets of other contexts. To realise all these,
all contexts with non-empty schedules are arranged in a queue called activeContexts. A
context can be added into the activeContexts queue only if it is not already in the queue.

Here are the key steps of the parallel TBox algorithm:

1. Tautology axiom A v A for each A ∈ CNO is added to the scheduled queues of
A. All active contexts are added into the queue of activeContexts.

2. Every idle worker always looks for the next context in the activeContexts queue
and processes axioms in its scheduled queue.
(a) Pop an axiom from the scheduled queue, add it into the processed set of the

context.
(b) Apply completion rules to derive conclusions.
(c) Add each derived conclusion into the scheduled queue of its corresponding

contexts, which will be activated if possible.

Before we extend the parallel TBox reasoning algorithm to support ABox reasoning
in Sec. 4, we first discuss the challenges to dealt with in parallel ABox reasoning.

3 Technical Challenges: Parallel ABox Reasoning

When we design parallel ABox classification algorithms, we need to consider the char-
acteristic of ABox classification that distinguish it from TBox classification — the num-
ber of individuals is often much larger than the number of concepts and roles.

A naive way of doing ABox classification is to internalise the entire ABox into
TBox (i.e., by converting assertions of the form C(a) into {a} v C and R(a, b) into
{a} v ∃R.{b}) and treat the internalised “nominals” as ordinary atomic concepts with
the TBox classification algorithm. This is inefficient due to redundant computations. For
example, axiom {a} v ∃r.C has two contexts {a} andC. Thus this axiom will be added
into the scheduled queues of both {a} andC. In contextC, this axiom will be saved into
the processed set of C and further retrived as the left premise of Rule RH and/or RT ,
for some future right premise ∃s.C → E. However our target language ELH⊥,R+ does
not support nominals. Therefore it is unnecessary to maintain {a} v ∃r.C in context
C because any corresponding right premise ∃s.C → E will not contain any nominal,
hence it can always be computed independently from (or before) the derivation of {a} v
∃r.C. This provides means to optimise reasoning because the concept hierarchies and
RI closures will be static when doing ABox reasoning (cf. Sec 4.2).

Furthermore, it is important to optimise the seemingly trivial parts, which could
become non-trivial due to the large number of individuals, of the algorithm in order to
speed up the reasoning. Particularly:

1. Instead of initialising the contexts in a sequential manner one should parallelise this
process in order to gain further efficiency (cf. Sec 4.3).

2. When applying completion rules to derive conclusions, as described by steps 2 at
the end of the last section, a reasoner usually needs to check the forms of input ax-
ioms, decide the applicable rules, check the forms of conclusion axioms, etc. Some
of the checking could be skipped, as they are all dependent thus can be stream-
lined (cf. Sec 4.4).

3. After derivation, the conclusions are maintained in a set, and then immediately
retrieved to get contexts. All retrieved contexts are also maintained in a set, and then
immediately retrieved for activation. One should be able to skip such save/retrieve
steps and directly use the conclusions and their contexts given that the forms of
conclusions are known to the reasoner (cf. Sec 4.4).

4. When an axiom is added into the scheduled queue of a context, the worker needs
to activate this context for further processing. However if the context is the context
currently under processing of the worker, such activation can be skipped. We only
need to activate a context if we do not know it is the same as the current context
(cf. Sec 4.4).

4 Approach

In this section we present parallel TBox and ABox classification algorithms for ELH⊥,R+.
We first present the new completion rules and then the algorithms.

4.1 TBox Completion Rules

We first extend the ELHR+ TBox completion rules to support the bottom concept with
the following rule for the ⊥ concept:

R⊥
D v ∃r.C,C v ⊥

D v ⊥

In what follows, we call the set containing the above rule and the ELHR+ rules in
Sec. 2.2 the R rule set, which is sound and complete for ELH⊥,R+ classification:

Lemma 1. Let S be any set of TBox axioms closed under the R rule set, then C v D
iff C v ⊥ ∈ S or C v D ∈ S for any C and D such that C v C ∈ S, D occurs in O
and ⊥ v ⊥ ∈ S if ⊥ occurs in O.

With the R rules we can perform TBox reasoning:

Definition 1. (TBox Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontology,
its TBox completion closure, denoted by ST , is the smallest set of axioms closed under
the rule set R such that:

1. for all A ∈ CNO, A v A ∈ ST ;
2. ⊥ v ⊥ ∈ ST if ⊥ occurs in O.

According to Lemma 1, we have A v C ∈ ST or A v ⊥ ∈ ST for any A and C
where A is an atomic concept and C occurs in T . This realises TBox classification.

4.2 ABox Completion Rules

Now we present the ABox completion rules for ELH⊥,R+. Although ELH⊥,R+ does
not support nominals ({a}), we still denote individuals with nominals since this helps
simplify the presentation: (i) ABox rules are more readable, as they have similar syn-
tactic forms to the TBox ones, and (ii) some of the ABox rules can be unified. More
precisely, we establish the following mappings as syntactic sugar:

C(a)⇔ {a} v C
a
.
= b⇔ {a} ≡ {b}
a ˙6=b⇔ {a} u {b} v ⊥

r(a, b)⇔ {a} v ∃r.{b}

Obviously, these mappings are semantically equivalent. In the rest of the paper,
without further explanation, we treat the LHS and RHS of each of the above mappings
as a syntactic variation of one another. Together with the mapping, all ABox axioms in
the original O can be represented in a similar form of TBox axioms. Note that, axioms
such as C v {b} and C v ∃r.{b} will not be in the ontology since they are invalid
ABox axioms in ELH⊥,R+.

We present the ABox completion rules as follows — we call them the AR rules,
which should be applied after a complete closure ST is constructed from the R rules.
In contrast to the R rules, the AR rules contain concepts D(i) and E that can take
multiple forms including nominals. Thus the mapping between ABox and TBox ax-
ioms allows us to describe the rules in a more compact manner which would otherwise
require additional rules to achieve the same purpose.

ARv
{a} v D
{a} v E

: D v E ∈ ST ∪ A

AR∗H
{a} v ∃r.D
{a} v E

: ∃s.D → E ∈ ST , r v∗O s

AR∗T
{a} v ∃r.D
∃t.{a} → E

: ∃s.D → E ∈ ST , r v∗O t v∗O s, Trans(t) ∈ O

AR−u
{a} v D1 uD2

{a} v D1; {a} v D2

AR+
u
{a} v D1, {a} v D2

{a} v D1 uD2
: D1 uD2 occurs in O

AR+
∃

{a} v D
∃s.{a} → ∃s.D

: r v∗O s,∃r.D occurs in O

AR⊥
{b} v ∃r.{a}, {a} v ⊥

{b} v ⊥

AR∗⊥
{a} v ∃r.D
{a} v ⊥

: D v ⊥ ∈ ST

ARH
{b} v ∃r.{a}, ∃s.{a} → E

{b} v E
: r v∗O s

ART
{b} v ∃r.{a}, ∃s.{a} → E

∃t.{b} → E
: r v∗O t v∗O s, Trans(t) ∈ O

ARR
H
{b} v ∃r.{a}
{b} v ∃s.{c}

: r v∗O s, a = c or {a} v {c} ∈ A

The AR rules deserve some explanations:

– There are clear correspondences between the R rules and AR rules. For example,
ARv is an ABox counterpart of Rv except that the context is explicitly a nominal,
and TBox results are used as side conditions. The last rule RR

H is an additional rule
to handle relations.

– Note that directly applying the R rules together with the AR rules could intro-
duce unnecessary performance overheads such as axiom scheduling, processing

and maintenance as we discussed in Sec. 3. In our approach, we separate TBox
reasoning from ABox reasoning, and use TBox reasoning results as side conditions
in ABox rules. This helps reduce memory usage and computation time.

Now we show below with an example on how the two-stage ABox reasoning works
in operation. Suppose we have the following ontology:

PlanarStructure v PhysicalStructure (1)
PhysicalStructure v GeneralisedStructure u ∃hasCountability.discrete (2)
PlanarStructure ≡ ∃hasShape.(∃hasAS.Laminar u Shape) (3)

{a} v ∃hasShape.{b} (4)
{b} v ∃hasAS.{c} (5)
{c} v Laminar (6)
{b} v Shape (7)

We can see that (1)-(3) are TBox axioms and (4)-(7) are ABox axioms. Note that the
input contains the assertions hasShape(a, b), hasAS(b, c),Laminar(c) and Shape(b),
corresponding to (4)-(7) respectively. This conversion is expected to be performed be-
fore execution of the completion rules.

In the first stage, we compute the saturation of the TBox axioms (i.e., (1)-(3)) by
applying the R rules. As an example, we illustrate how the axiom below is derived:

∃hasShape.(∃hasAS.Laminar u Shape) v GeneralisedStructure (8)

To begin, we apply Rv on (1) and (3) to get (9), then again on (2) and (9) to get (10):

∃hasShape.(∃hasAS.Laminar u Shape) v PhysicalStructure (9)
∃hasShape.(∃hasAS.Laminar u Shape) v GeneralisedStructure

u ∃hasCountability.discrete (10)

Lastly, we apply the R−u -rule to (10) to get (8). Similarly, we infer all other TBox
axioms by applying the completion rules repeatedly. Once saturation of the TBox rules
is completed and the closure ST is constructed, we use the output ST from the first
stage as part of input to the second stage to compute the saturation of the ABox axioms.
Below, we demonstate how the ABox axiom {a} v GeneralisedStructure is inferred
through the ABox rules. We start by applying AR+

∃ on (6) and we get:

∃hasAS.{c} → ∃hasAS.Laminar (11)

From (5) and (11) we apply the ARH-rule to infer:

{b} v ∃hasAS.Laminar (12)

We then apply AR+
u on (12) and (7) to obtain the following:

{b} v ∃hasAS.Laminar u Shape (13)

Similarly, we apply AR+
∃ on (13), followed by ARH on (4)-(14):

∃hasShape.{b} → ∃hasShape.(∃hasAS.Laminar u Shape) (14)
{a} v ∃hasShape.(∃hasAS.Laminar u Shape) (15)

Finally, we use the ARv-rule on (15) and (10) to get {a} v GeneralisedStructure.
It can be converted back into assertion form GeneralisedStructure(a).

Definition 2. (Ontology Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontol-
ogy, its ontology completion closure, denoted by S, is the smallest set of axioms closed
under the AR rule set such that:

1. ST ⊆ S;
2. A ⊆ S (axioms mapped as elaborated at the beginning of this section);
3. for all a ∈ INO, {a} v {a} ∈ XO, and {a} v > if > occurs in O;

Similar to the R rules, the above rules are also complete, sound and tractable. The
soundness and tractability of rules are quite obvious. The completeness on ABox clas-
sification can be shown by the following Theorem:

Theorem 1. For any ELH⊥,R+ ontology O = (T ,A), we have either there is some
{x} v ⊥ ∈ S, or

1. O |= D(a) only if {a} v D ∈ S for D occurs in O;
2. O |= r(a, b) only if {a} v ∃r.{b} ∈ S for r ∈ RNO.

As we can see, the AR rules also preserve the feature that all premises of each rule
have a same common part as context. Therefore, they still enjoy the lock-free feature in
reasoning. In later sections, we will further elaborate this point.

4.3 Parallel Algorithms

In this section, we present the parallel algorithms corresponding to the ELH⊥,R+ com-
pletion rules. We reuse some notions such as context, activeContexts queue, scheduled
queue and processed set from the original TBox algorithm for ELHR+ presented in [5]
to realise the lock-free property. Most importantly, we need to make refinements to tai-
lor the algorithm for ELH⊥,R+ ABox reasoning. Here is a summary on how to deal
with the challenges mentioned in Sec. 3 :

1. In our algorithm, reasoning is separated into two stages: the first stage is satu-
rate(TBoxInput), where contexts are ELH⊥,R+ concepts and the R rules are ap-
plied. The second is saturate(ABoxInput), where contexts are the (mapped) nom-
inals and the AR rules are applied. See Algorithm 1 for details of the saturate()
method.

2. Different from the TBox saturate algorithm in [5], in our algorithm, we parallelise
the initialisation (line 3-8 of Algorithm 1) to improve efficiency. As mentioned in
Sec. 3, initialisation could become non-trivial due to the large number of individu-
als. The introduction of parallelisation could help speed up these parts.

The revised saturation algorithm (Algorithm 1) is presented as follows. The satura-
tion of an ontology is realised by first performing saturation of the TBox, the output of
which (i.e., ST) is then used in the saturation of the ABox. The saturation of the ABox
yields S which satisfies Theorem 1. All necessary tautology axioms must be added to
the input prior to saturation. For TBox, we add axioms of the form C v C into ST for
all concepts C such that C ∈ CNO ∪{⊥}. Similarly, for ABox we add {a} v {a} into
S for all individuals a ∈ INO.

Algorithm 1: saturate(input): saturation of axioms under inference rules
Input: input (the set of input axioms)
Result: the saturation of input is computed in context.processed

1 activeContexts← ∅;
2 axiomQueue.addAll(input);
3 loop
4 axiom← axiomQueue.pop();
5 if axiom = null then break;
6 for context ∈ getContexts(axiom) do
7 context.scheduled.add(axiom);
8 activeContexts.activate(context);

9 loop
10 context← activeContexts.pop();
11 if context = null then break;
12 loop
13 axiom← context.scheduled.pop();
14 if axiom = null then break;
15 process (axiom);

16 context.isActive← false;
17 if context.scheduled 6= ∅ then activeContexts.activate(context);

In the saturation (Algorithm 1), the activeContexts queue is initialised with an
empty set (line 1), and then all input axioms are added into an axiomQueue (line 2).
After that, two main loops (lines 3-8 and lines 9-17) are sequentially parallelised.
In the first main loop, multiple workers independently retrieve axioms from the ax-
iomQueue (line 4), then get the contexts of the axioms (line 6), add the axioms into
corresponding scheduled queues (line 7) and activate the contexts.

In the first loop of Algorithm 1 we need to get contexts of a given axiom (line
6), by calling the getContexts() method (Algorithm 2). As explained earlier, for TBox
and ABox reasoning, the contexts are different. In ABox reasoning, only “nominals”
can be contexts. Note that the getContexts() method is only used in Algorithm 1 during
initialisation. The process() method (line 15 in Algorithm 1, to be discussed in Sec. 4.4),
does not call the getContexts() method but directly get the contexts based on the form
of input axiom. This is also different from the parallel TBox algorithm for ELHR+

presented in [5].

Algorithm 2: getContext(axiom)
Input: an axiom
Result: the set of contexts that needs to be activated for the input axiom

1 result← ∅;
2 if axiom contains no nominal then // contexts for R rules
3 if axiom match C v D then result.add(C);
4 if axiom match D v ∃r.C then result.add(C);
5 if axiom match ∃s.C → E then result.add(C);

6 else // contexts for AR rules
7 if axiom match {a} v C then result.add ({a});
8 if axiom match C v ∃r.{a} then result.add ({a});
9 return result;

The activation of a context (Algorithm 3) is the same as in the TBox algorithm for
ELHR+ [5]: an atomic boolean value isActive is associated with each context to indi-
cate whether the context is already active. A context is added into the activeContexts
queue only if this value is false, which will be changed to true at the time of activation.
This procedure continues until the axiomQueue is empty.

Algorithm 3: activeContexts.activate(context)
Input: the context to be activated

1 if context.isActive.compareAndSwap(false, true) then
2 activeContexts.put(context);

In the second main loop of Algorithm 1, multiple workers independently retrieve
contexts from the activeContexts queue (line 10) and process its scheduled axioms (line
15). Once context.scheduled is empty, context.isActive is set to false (line 16). A
re-activation checking is performed (line 17) in case other workers have added new
axioms into context.scheduled while the last axiom is being processed (between line
14 and line 16). This procedure will continue until the activeContexts queue is empty.

4.4 Cascading Processing

In this subsection, we describe the details of the process() method, which covers items
2.(a), 2.(b), 2.(c) at the end of Sec. 2.2. As mentioned in Sec. 3, it is important to
optimise the seemingly trivial parts, which could become non-trivial due to the large
number of individuals. To address many of the issues mentioned in Sec. 3, we present a
cascading processing procedure (Algorithm 4).

Algorithm 4: process(axiom) for context {a}
Input: the axiom to be processed

1 if axiom match {a} v D then
2 if D ∈ {a}.subsumptions then break;
3 {a}.subsumptions.add (D);

// For rule ARv
4 for E ∈ (D.subsumptions ∪D.originalTypes) do
5 if E 6∈ {a}.subsumptions then
6 {a}.scheduled.add({a} v E);
7 if E match ∃r.{b} then
8 {b}.scheduled.add({a} v E);
9 activeContexts.activate({b});

// similarly for rules AR∗H, AR∗T, AR−u, AR+
u, AR+

∃ ,
AR∗⊥ and AR⊥ right premise

10 if axiom match {b} v ∃r.{a} then
11 if 〈r, {b}〉 ∈ {a}.predecessors then break;
12 {a}.predecessors.add(〈r, {b}〉);
13 if ⊥ ∈ {a}.subsumptions \ {b}.subsumptions then
14 {b}.scheduled.add({b} v ⊥);
15 activeContexts.activate({b});

// similarly for rules ARH, left premise, ART, left
premise and ARR

H

16 if axiom match ∃s.{a} → E then
17 if 〈s, E〉 ∈ {a}.implications then break;
18 {a}.implications.add(〈s, E〉);
19 for r ∈ ({a}.predecessors.keySet() ∩ s.subRoles) do
20 for {b} ∈ {a}.predecessors.get(r) do
21 if E 6∈ {b}.subsumptions then
22 {b}.scheduled.add ({b}v E);

// similar as line 7-9

// similarly for rules ART, right premise

23 return result;

We match the form of input axiom once (line 1) and check whether it has been pro-
cessed before (line 2); if not it will be added into the processed set (line 3). Based on
the form of axiom, applicable completion rules can be determined. Meanwhile, check-
ing if the conclusion is already in corresponding context’s processed set can be per-
formed (line 5). Once a completion rule has been applied, the conclusion axioms and
their forms are determined. Once a conclusion is derived, its contexts and whether they
are definitely the same as the current context are determined. The conclusion axioms
can directly be added into corresponding scheduled queues (line 6 and 8). For the

brevity of the paper, we only present the processing of some ABox axioms. Processing
of TBox axioms and the other forms of ABox axioms can be done in a similar manner.

In Algorithm 4 certain axioms are maintained by several indexes to facilitate more
efficient access. Most of them are the same as in the parallel TBox algorithm for
ELHR+ [5]. The additional one is D.originalTypes, which is used to maintain origi-
nal ABox axioms:

D.originalTypes = {E|D v E ∈ A},
r.subRoles = {s|s v∗O r},

C.subsumptions = {D|C v D ∈ processed},
C.predecessors = {〈r,D〉|D v ∃r.C ∈ processed},
C.implications = {〈r, E〉|∃r.C → E ∈ processed},

5 Evaluation

We implemented our algorithms in our PEL reasoner (written in JAVA). Inspired by the
ELK reasoner [5] , we also use thread-safe datatypes ConcurrentLinkedQueue
for all the queues, including activeContexts, axiomQueue and scheduled. And we
use AtomicBoolean for the isActive value of a context thus its compareAndSwap
operation is atomic and thread-safe. The indexes we used in Algorithm 4 are imple-
mented with normal HashSet and HashMap. We use OWL API to parse ontologies.

To compare our system against sequential reasoners we use the Amazon Elastic
Computer Cloud (EC2) High-CPU Extra Large Instance 7. It has 7 GB of memory and
8 cores with 2.5 EC2 compute units each, where each EC2 unit “ provides the equivalent
CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor”. The OS is 64-
bit Linux platform and running JVM version 1.6.0 20 with 7 GB memory. We run our
implementation with sequential reasoners Pellet 2.2.2, FaCT++ 1.5.2, HermiT 1.3.2 and
(the OWL 2 EL reasoner in) TrOWL 0.8 because they (except HermiT) implemented
the EL algorithm and support ABox reasoning. Other reasoners, including dedicated
EL reasoners such as the OWL API-compliant CEL, jCEL and Snorocket, etc. and
consequence-driven reasoner CB and ELK, do not fully support ABox reasoning yet.

Our test cases include a slightly simplified real world ontology VICODI, and a
real world TBox NotGalen with generated ABox 8. The VICODI 9 ontology is devel-
oped to represent the history of Europe. It has a simple TBox and moderate number of
individuals. NotGalen− is extracted from an earlier version of Galen 10 by removing
functional role assertions. It contains a moderate-size TBox and no ABox. To populate
the ontology we use the SyGENiA system [14] to generate ABoxes for a small part of
the Galen ontology and we combined the generated ABoxes of different sizes with the
NotGalen− TBox and aligned the namespaces to make reasoning more complicated; in
this way, we have test ontologies NG-1, NG-2, NG-5 etc. Such ABoxes are not com-
pletely random because, as generated by SyGENiA, they cover axioms that can lead to

7 http://aws.amazon.com/ec2/instance-types/
8 Our test ontologies can be found at http://www.box.net/shared/qok98u39s9lrmy3ie2n1.
9 http://www.vicodi.org/about.htm

10 http://www.opengalen.org/

all possible sources of incompleteness w.r.t. a TBox and certain query. Being able to
handle such ABoxes means that the reasoner won’t miss any result when dealing with
any real-world ABoxes. The stats of our ontologies are illustrated in the Table 2.

For each ontology, we perform ABox classification, i.e. to compute the atomic types
of all the individuals and the atomic relations between all pairs of individuals. If such
assertion are not “pre-computable” when a reasoner classifies the ontology, we use the
reasoner API functions to retrieve these results to make sure they are computed. The
time shown in our evaluation is the overall computation time. Results of sequential
reasoners reasoners are presented in Table 2. Results of our implementation PEL are
presented in Table 3. The timeout is one hour. Time unit is second.

Table 2. Ontologies and Results of Sequential Reasoners (in sec)

Ontology |CN | |RN| |IN | |A| TrOWL Pellet HermiT FaCT++
VICODI 184 10 29614 114164 2.014 9.971 13.138 timeout

NG-1

2748 413

4236 8008 4.284 210.945 307.93 timeout
NG-2 12161 23976 9.342 757.379 timeout timeout
NG-5 47756 118458 28.947 timeout timeout timeout
NG-8 78899 278365 63.833 timeout timeout timeout
NG-13 97995 665304 143.288 timeout timeout timeout

Table 3. Results of PEL (in sec)

Ontology 1 worker 2 workers 4 workers 6 workers
VICODI 1.136 1.05 1.054 1.059

NG-1 2.339 1.361 1.169 1.069
NG-2 3.025 2.939 2.848 2.77
NG-5 6.427 6.004 5.114 5.125
NG-8 12.604 10.474 9.449 9.75

NG-13 23.609 20.853 16.877 17.539

From the comparison between Table 2 and 3 we can see that PEL is in general faster
than sequential reasoners, especially when more workers are used. PEL is also good
when dealing with combination of complex TBox and large ABox. For example, in the
relatively simpler VICODI ontology, PEL is about 2 times faster than TrOWL, which
is also highly optimised for EL reasoning. While in the more complex NotGalen− on-
tologies with a large ABox, PEL is up to 6 times faster than TrOWL with one worker,
and up to about 8-9 times faster with multiple workers.

To further evaluate the scalability of PEL, we generated a different set of NotGalen−

ontologies with larger numbers of individuals, denoted by NGS-1, NGS-5, NGS-10, etc.
And we use PEL to reason with these ontologies on a EC2 High-Memory Quadruple
Extra Large Instance which has 8 virtual cores with 3.25 EC2 units each and 60 G
memory allocated to JVM. Results are shown in Table 4.

From the comparison between different numbers of workers in Table 3 and Table 4
we can see that multiple parallel workers can indeed improve the reasoning perfor-
mance, even when the ontology contains complex TBox and very large number of indi-

Table 4. Results of PEL (in sec) for Scalability Tests

Ontology |IN | |A| 1 worker 2 workers 4 workers 6 workers
NGS-1 4031 8001 1.396 0.977 0.757 0.676
NGS-5 62572 119832 3.81 2.885 2.376 2.341

NGS-10 211408 437637 10.282 8.007 7.04 6.493
NGS-20 596007 1642876 52.753 40.208 40.228 34.507
NGS-30 866136 3542257 108.252 90.72 81.877 77.453
NGS-40 971222 6036910 172.743 146.411 131.536 129.827
NGS-50 995985 9025426 270.806 234.905 189.706 190.303

viduals. In general, the improvement is most profound from 1 worker to 2 workers, and
start to decrease when more workers are involved. With more than 4 workers, the per-
formance may even decrease. We believe one of the potential reasons is that although
the CPU cores can work in parallel, the RAM bandwidth is limited and RAM access is
still sequential. In relatively “light-weight” ABox reasoning with large ABox, the RAM
access will be enormous and very often so that multiple workers will have to compete
for RAM access. This makes memory I/O a potential bottleneck of parallelisation and
wastes CPU cycles. In our algorithm, especially the cascading processing, we have al-
ready tried to reduce unnecessary memory I/O. A better management of memory will
be an important direction of our future work.

6 Conclusion

In this paper we extended early related work to present a parallel ABox reasoning ap-
proach to ELH⊥,R+ ontologies. We have proposed new completion rules and show
that they are complete and sound for ABox reasoning. We have revised the lock-free
saturation procedure with optimisations that take the features of ABox reasoning into
account. Particularly, we separate TBox and ABox reasoning to simplify derivation and
parallise many seemingly trivial steps to improve efficiency and reduce memory access.
Our evaluation shows that ABox reasoning can benefit from parallisation. Even with our
naive implementation, we can outperform highly optimised EL reasoners.

The evaluation results suggested that improving performance with more than 4
workers becomes difficult, which is also observed in [5]. In our future work we will
further investigate its reason and pay special attention on the management of memory.

Acknowledgement

This work is partially funded by the K-Drive and ITA projects. We would also like to
thank reviewers for their very constructive and helpful comments.

References

1. Mina Aslani and Volker Haarslev. Parallel tbox classification in description logics –first
experimental results. In Proceeding of the 2010 conference on ECAI 2010: 19th European

Conference on Artificial Intelligence, pages 485–490, Amsterdam, The Netherlands, The
Netherlands, 2010. IOS Press.

2. Alex Borgida and Luciano Serafini. Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1, 2003.

3. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51:107–113, January 2008.

4. Aidan Hogan, Jeff Z. Pan, Axel Polleres, and Stefan Decker. Saor: Template rule optimisa-
tions for distributed reasoning over 1 billion linked data triples. In International Semantic
Web Conference (1), pages 337–353, 2010.

5. Yevgeny Kazakov, Markus Krötzsch, and František Simančik. Concurrent classification of
el ontologies. In ISWC, 2011. To appear.

6. Thorsten Liebig and Felix Müller. Parallelizing tableaux-based description logic reasoning.
In Proceedings of the 2007 OTM Confederated international conference on On the move to
meaningful internet systems - Volume Part II, OTM’07, pages 1135–1144, Berlin, Heidel-
berg, 2007. Springer-Verlag.

7. Raghava Mutharaju Frederick Maier, , and Pascal Hitzler. A mapreduce algorithm for el+.
In Proc. of International Worshop of Description Logic (DL2010), 2010.

8. Adam Meissner. Experimental analysis of some computation rules in a simple parallel rea-
soning system for the ALC description logic. Applied Mathematics and Computer Science,
21(1):83–95, 2011.

9. Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten Teije, and Frank
van Harmelen. Marvin: Distributed reasoning over large-scale semantic web data. Web
Semant., 7:305–316, December 2009.

10. Anne Schlicht and Heiner Stuckenschmidt. Distributed resolution for alc. In Description
Logics Workshop, 2008.

11. Anne Schlicht and Heiner Stuckenschmidt. Distributed resolution for expressive ontology
networks. In Proceedings of the 3rd International Conference on Web Reasoning and Rule
Systems, RR ’09, pages 87–101, Berlin, Heidelberg, 2009. Springer-Verlag.

12. Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture for the se-
mantic web. In In ESWC, pages 361–376. Springer, 2005.

13. Ramakrishna Soma and V. K. Prasanna. Parallel inferencing for owl knowledge bases. In
Proceedings of the 2008 37th International Conference on Parallel Processing, ICPP ’08,
pages 75–82, Washington, DC, USA, 2008. IEEE Computer Society.

14. Giorgos Stoilos, Bernardo Cuenca Grau, and Ian Horrocks. How incomplete is your semantic
web reasoner? In Proc. of AAAI 10, pages 1431–1436. AAAI Publications, 2010.

15. Herman J. ter Horst. Completeness, decidability and complexity of entailment for rdf schema
and a semantic extension involving the owl vocabulary. J. Web Sem., 3(2-3):79–115, 2005.

16. Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and Henri Bal. Owl
reasoning with webpie: calculating the closure of 100 billion triples. In Proceedings of the
Seventh European Semantic Web Conference, LNCS. Springer, 2010.

17. Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and Frank van Harmelen. Scalable distributed
reasoning using mapreduce. In Proceedings of the ISWC ’09, volume 5823 of LNCS.
Springer, 2009.

18. Jesse Weaver and James A. Hendler. Parallel materialization of the finite rdfs closure for
hundreds of millions of triples. In Abraham Bernstein, David R. Karger, Tom Heath, Lee
Feigenbaum, Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, editors, In-
ternational Semantic Web Conference, volume 5823 of Lecture Notes in Computer Science,
pages 682–697. Springer, 2009.

19. Gang Wu, Guilin Qi, and Jianfeng Du. Finding all justifications of owl entailments using
tms and mapreducec. In the ACM Conference on Information and Knowledge Management,
2011.

