
Optimising Parallel ABox Reasoning of EL Ontologies⋆

Yuan Ren1, Jeff Z. Pan1 and Kevin Lee2

1University of Aberdeen, Aberdeen, UK
2NICTA, Australia

Abstract. The success of modern multi-core processors makes it possible to de-
velop parallel ABox reasoning algorithms to facilitate efficient reasoning on large
scale ontological data sets. In this paper, we extend a parallel TBox reasoning
algorithm for ELHR+ to a parallel ABox reasoning algorithm for ELH⊥,R+,
which also supports the bottom concept so as to model disjointness and incon-
sistency. In design of algorithms, we exploit the characteristic of ABox reason-
ing in ELH⊥,R+ to improve parallelisation and reduce unnecessary resource
cost. Particularly, we separate the TBox reasoning, ABox reasoning on types and
ABox reasoning on relations. Our evaluation shows that a naive implementation
of our approach can compute all ABox entailments of a Not-Galen− ontology
with about 1 million individuals and 9 million axioms in about 3 minutes.

1 Introduction

Optimisation of reasoning algorithms is one of the core research topics in description
logic (DL) study. In the last decades, highly-efficient DL reasoning systems have been
implemented with different optimisation technologies. So far, these systems are de-
signed for a single computation core. Reasoning is performed sequentially and can not
be parallelised. With the development of modern computing hardware, it is possible and
also desired to parallelise reasoning procedures to improve efficiency and scalability.

One direction of parallel reasoning is to use a cluster of multiple computer nodes
(or simply, peers). In Marvin [9], peers use a divide-conquer-swap strategy for RDFS
inference. Weaver and Handler propose a parallel RDFS inference engine [18], in which
peers use an ABox partitioning approach. In SAOR [2], peers use optimised template
rules for join-free inference in pD* [3]. In DRAGO [13], peers perform OWL DL rea-
soning under the setting of Distributed Description Logics. A distributed resolution
algorithm for ALC was proposed by Schlicht and Stuckenschmidt [11] and further im-
proved and extended to ALCHIQ [12]. MapReduce has also been adopted to support
ABox reasoning in RDFS [17], pD* [16] as well as justifications in pD* [19], and TBox
reasoning in EL+ [7] (there is no implementation for the EL+ case yet).

Another direction of parallel reasoning is to use multiple computation cores (or
simply, workers) in a single computer. Soma and Prasanna [14] propose to use data-
partitioning and rule-partitioning in their parallel algorithms for pD*. Liebig and Müller
exploit the non-determinism introduced by disjunctions or number restrictions in the
SHN tableau algorithm [6], so that multiple workers can apply expansion rules on

⋆ This paper is an extended version of “Parallel ABox Reasoning of EL Ontologies” [10].

independent alternatives. Similarly, Meissner [8] proposes parallel expansions of inde-
pendent branchings in an ALC tableau and experimented with 3 different strategies.
Aslani and Haarslev [1] propose a parallel algorithm for OWL DL classification. Re-
cently, Kazakov et al. [4] present a lock-free parallel completion-based TBox classifi-
cation algorithm for ELHR+. They later extend this work to support nominals [5] but
the impact on parallelisation has not been reported.

In this paper, we extend the parallel TBox reasoning algorithm [4] for ELHR+ to
a parallel and lock-free ABox reasoning algorithm for ELH⊥,R+, which also supports
the bottom concept so as to model disjointness and inconsistency. We will optimise the
parallelisation by separating TBox classification, the computation of types and relations
for individuals. We show that our completion rules and algorithms are complete and
sound. Our evaluation shows that a naive implementation of our approach can achieve
high performance and scalability. Comparing to the original version [10], this paper
extends with new optimisations (particularly, Sect. 4.2 and Sect. 4.3) and evaluation
regarding ABox reasoning.

The remainder of the paper is organised as follows: In Sect. 2 we introduce back-
ground knowledge of DLs ELHR+ and ELH⊥,R+, and the parallel ELHR+ TBox
classification algorithm [4]. In Sect. 3 we explain the technical challenges , before pre-
senting the completion rules and parallel ABox reasoning algorithms for ELH⊥,R+ in
Sect. 4. We evaluate our approach in Sect. 5, before we conclude the paper in Sect. 6.

The proof of all lemmas and theorems are included in our online tech report at
http://www.box.com/s/3636a703614b65f6cdba.

2 Preliminary

2.1 DL ELHR+ and ELH⊥,R+

A signature of an ontologyO is a triple ΣO = (CNO,RNO, INO) consisting of three
mutually disjoint finite sets of atomic concepts CNO, atomic rolesRNO and individu-
als INO. Given a signature, complex concepts in ELH⊥,R+ can be defined inductively
using the ELH⊥,R+ constructors as in Table 1. ELHR+ supports all ELH⊥,R+ con-
structors except ⊥. Two concepts C and D are equivalent if they mutually include each
other, denoted by C ≡ D. An ontologyO = (T ,A) consists of a TBox T and an ABox
A, which are finite sets of TBox axioms and ABox axioms, respectively. ELH⊥,R+ al-
lows all axioms listed in Table 1. ELHR+ allows all except individual inequalities. The
semantics of constructors and axioms are also listed in Table 1. Given an ontology O,
we use ⊑∗

O to represent the reflexive transitive closure of RIs. It is easy to see that in
an ELHR+/ ELH⊥,R+ ontologyO, all of such⊑∗

O relations can be computed in poly-
nomial time w.r.t. the size of O. In ABox reasoning, we are particularly interested in
ABox materialisation, i.e. finding all A(a) s.t. a ∈ INO, A ∈ CNO, O |= A(a) and
all r(a, b) s.t. a, b ∈ INO, r ∈ RNO andO |= r(a, b). Such results can be very useful
for efficient on-line instance retrieval and/or query answering.

2.2 Parallel TBox Classification of ELHR+ Ontologies
Given an ontology O, TBox classification is a reasoning task that computes all inclu-
sions over atomic concepts in O. Kazakov et. al [4] proposed an approach to parallel

Table 1. ELH⊥,R+ syntax and semantics

Concepts:
atomic concept A AI

top ⊤ ∆I

bottom ⊥ ∅
conjunction C ⊓D CI ∩DI

existential restriction ∃r.C {x|∃y.⟨x, y⟩ ∈ rI and y ∈ CI}
Roles:

atomic role r rI

TBox Axioms:
general concept inclusion (GCI): C ⊑ D CI ⊆ DI

role inclusion (RI): r ⊑ s rI ⊑ sI

role transitivity: Trans(t) tI × tI ⊆ tI

ABox Axioms:
class assertion: A(a) aI ∈ AI

role assertion: r(a, b) ⟨aI , bI⟩ ∈ rI

individual equality: a
.
= b aI = bI

individual inequality: a ˙̸=b aI ̸= bI

TBox classification for ELHR+. They devise a set of completion rules as follows.

R⊑
C ⊑ D

C ⊑ E
: D ⊑ E ∈ O R−

⊓
C ⊑ D1 ⊓D2

C ⊑ D1;C ⊑ D2

R+
⊤
C ⊑ C

C ⊑ ⊤
: ⊤ occurs in O R−

∃
C ⊑ ∃R.D

D ⊑ D

R+
⊓
C ⊑ D1, C ⊑ D2

C ⊑ D1 ⊓D2
: D1 ⊓D2 occurs in O

R+
∃

C ⊑ D

∃s.C → ∃s.D
: ∃s.D occurs in O

RH
D ⊑ ∃r.C, ∃s.C → E

D ⊑ E
: r ⊑∗

O s

RT
D ⊑ ∃r.C, ∃s.C → E

∃t.D → E
: r ⊑∗

O t ⊑∗
O s, Trans(t) ∈ O

In the above rules, D → E denotes the special form of GCIs where D and E are
both existential restrictions. Given an ELHR+ ontology O that has no ABox, these
rules infer C ⊑ D iffO |= C ⊑ D for all C and D such that C ⊑ C ∈ S and D occurs
in O [4, Theorem 1], where S is the set of axioms closed under the above rules. The
completion rules are designed in a way that all premises of each rule have a common
concept (the concept C in each rule), which is called a context of the corresponding
premise axiom(s). Each context maintains a queue of axioms called scheduled, on which
some completion rule can be applied, and a set of axioms called processed, on which
some completion rule has already been applied. An axiom can only be included in the
scheduled queues and/or processed sets of its own contexts. To ensure that multiple

workers can share the queues and sets without locking them, they further devised a
concurrency mechanism, in which: (i) each worker will process a single context at a
time and vice versa; (ii) the processing of all axioms in the scheduled queue of a context
requires no axioms from the processed sets of other contexts. To realise all these, all
contexts with non-empty schedules are arranged in a queue called activeContexts. A
context can be added into the activeContexts queue only if it is not already in the queue.

Here are the key steps of the parallel TBox algorithm:

1. Tautology axiom A ⊑ A for each A ∈ CNO is added to the scheduled queue of A.
All active contexts are added into the queue of activeContexts.

2. Every idle worker always looks for the next context in the activeContexts queue
and processes axioms in its scheduled queue.
(a) Pop an axiom from the scheduled queue, add it into the processed set of the

context.
(b) Apply completion rules to derive conclusions.
(c) Add each derived conclusion into the scheduled queue of its corresponding

context(s), which will be activated if possible.

Before we extend the parallel TBox reasoning algorithm to support ABox reasoning
in Sect. 4, we first discuss the challenges to deal with in parallel ABox reasoning.

3 Technical Challenges: Parallel ABox Reasoning

A naive approach to ABox materialisation is to internalise the entire ABox into TBox
(i.e., converting assertions of form C(a) into {a} ⊑ C, and R(a, b) into {a} ⊑ ∃R.{b})
and treat the internalised “nominals” as atomic concepts with TBox classification rules.
This is inefficient due to unnecessary computation and maintenance costs. For example,
axiom {a} ⊑ ∃r.C has C as a context. Thus once derived, it will be maintained in
the processed set of C, as a possible left premise of Rule RH and/or RT . However,
ELH⊥,R+ does not support nominals, meaning that any corresponding right premise
∃s.C → E can always be computed independently from (or before) the derivation of
{a} ⊑ ∃r.C. Therefore it is unnecessary to maintain {a} ⊑ ∃r.C in context C because
with all possible right premises pre-computed, it can be directly used to trigger all rules.

Even with TBox and ABox reasoning separated, performance and scalability can
still be improved: (1) The computation of relations in ELH⊥,R+ is independent from
the computation of types (Lemma 2). Thus when crafting type reasoning rules, rela-
tions can be used as side conditions instead of premises. (2) Among all the relations
that can be entailed by an ELH⊥,R+ ontology, some can be trivially computed and
do not contribute to type computation. These relations can be easily recovered in re-
trieval (Lemma 3). (3) Without individual equality, the computation of relations in
ELH⊥,R+ can be perfectly parallelised on an individual basis. This indicates that when
computing relations, the concurrency mechanism can be simplified. As we will show,
we no longer need to maintain the scheduled queue and this improves scalability and
performance.

The above optimisations are related to the design of completion rules. For further
optimisation on the execution of algorithms, we refer readers to our original paper [10].

4 Approach

4.1 TBox Completion Rules

We first extend the ELHR+ TBox completion rules to support the bottom concept:

R⊥
D ⊑ ∃r.C,C ⊑ ⊥

D ⊑ ⊥

In what follows, we call the set containing the above rule and the ELHR+ rules in
Sect. 2.2 the R rule set, which is sound and complete for ELH⊥,R+ classification:

Lemma 1. For an ELHR+ TBox O, let S be any set of TBox axioms closed under the
R rule set, using O axioms as side conditions, and ⊥ ⊑ ⊥ ∈ S if ⊥ occurs in O. Then
for any C and D such that C ⊑ C ∈ S, D occurs in O, we have O |= C ⊑ D iff
C ⊑ D ∈ S or C ⊑ ⊥ ∈ S.

The← direction is trivial. The→ direction can be proved with contrapositive. As-
suming there are X ⊑ X ∈ S and Y occurs in O s.t. X ⊑ Y /∈ S and X ⊑ ⊥ /∈ S, we
construct a model of O based on S and shows that this model does not satisfy X ⊑ Y .

With the R rules we can perform TBox reasoning:

Definition 1. (TBox Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontology,
its TBox completion closure, denoted by ST , is the smallest set of axioms closed under
rule set R, using O axioms as side conditions, such that: for all A ∈ CNO, A ⊑ A ∈
ST ; ⊥ ⊑ ⊥ ∈ ST if ⊥ occurs in O.

According to Lemma 1, we have A ⊑ C ∈ ST or A ⊑ ⊥ ∈ ST for any A and C
where A is an atomic concept and C occurs in T . This realises TBox classification.

4.2 Relation Completion Rules

As we pointed out in Sect. 3, relations can be computed independently from types. This
is characterised by the following lemma.

Lemma 2. Let O = (T ,A) be an ELH⊥,R+ ontology and At ⊆ A be the set of all
class assertions. Then O is inconsistent, or for all r ∈ RNO, a, b ∈ INR, we have
O |= r(a, b) iff O \ At |= r(a, b).

Now we present the ABox completion rules for ELH⊥,R+. Although ELH⊥,R+

does not support nominals ({a}), we still denote individuals with nominals since this
helps simplify the presentation: (i) ABox rules are more readable, as they have similar
syntactic forms to the TBox ones, and (ii) some of the ABox rules can be unified. More
precisely, we establish the following mappings as syntactic sugar:

C(a)⇔ {a} ⊑ C, a
.
= b⇔ {a} ≡ {b},

a ˙̸=b⇔ {a} ⊓ {b} ⊑ ⊥, r(a, b)⇔ {a} ⊑ ∃r.{b},

Obviously, these mappings are semantically equivalent. In the rest of the paper,
without further explanation, we treat the LHS and RHS of each of the above mappings
as a syntactic variation of each other.

We first present the relation completion rules as follows:

ARR
H
{b} ⊑ ∃r.{a}
{d} ⊑ ∃r.{c}

: {a} ⊑ {c}, {d} ⊑ {b} ∈ A

ARR
T
{b} ⊑ ∃r.{a}
{c} ⊑ ∃s.{a}

: {c} ⊑ ∃t.{b} ∈ A, r, t ⊑∗
O s, Trans(s) ∈ O

It is worth noting that (1) without individual equality, the ARR
H rule is not needed,

rendering the ARR
T rule perfectly parallelisable. This is an important property because

in ELH⊥,R+ ontologies, individual equality can be easily eliminated by pre-computing
equal individuals and using one of them as a representative; (2) relation computation is
also independent from TBox completion. We call the reasoning results with the above
rules the relation completion closure:

Definition 2. (Relation Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontol-
ogy, its relation completion closure, denoted by SR, is the smallest set of axioms closed
under the rules ARR

H and ARR
T , usingO axioms as side conditions, such that ST ⊆ SR

and A \ At ⊆ SR (axioms mapped as elaborated before), where At ⊆ A is the set of
all class assertions.

The soundness and tractability of relation completion closure is quite obvious. Its com-
pleteness can be characterised by the following lemma.

Lemma 3. For any ELH⊥,R+ ontology O, let SR be its relation completion closure,
then O is inconsistent, or O |= r(a, b) only if {a} ⊑ ∃s.{b}, s ⊑∗

O r ∈ SR for
r ∈ RNO.

4.3 Type Completion Rules

Now we present the other ABox completion rules as follows, which should be applied
after a complete closure SR is constructed. In contrast to the R rules, the following
rules contain concepts D(i) and E that can take multiple forms including nominals.
Thus the mapping between ABox and TBox axioms allows us to describe the rules in a
more compact manner. Together with the above two relation completion rules, we call
all the ABox completion rules the AR rules.

The AR rules deserve some explanations: There are clear correspondences between
the R rules and AR rules. For example, AR⊑ is an ABox counterpart of R⊑ except that
the context is explicitly a nominal, and TBox results are used as side conditions. Note
that directly applying the R rules together with the AR rules could introduce unnec-
essary performance overheads such as axiom scheduling, processing and maintenance
as we discussed in Sect. 3. In our approach, we separate TBox reasoning, ABox rela-
tion computation and ABox type computation. This helps reduce memory usage and
computation time.

AR⊑
{a} ⊑ D

{a} ⊑ E
: D ⊑ E ∈ SR ∪ A

AR∗
H
{a} ⊑ ∃r.D
{a} ⊑ E

: ∃s.D → E ∈ SR, r ⊑∗
O s

AR∗
T

{a} ⊑ ∃r.D
∃t.{a} → E

: ∃s.D → E ∈ SR, r ⊑∗
O t ⊑∗

O s, Trans(t) ∈ O

AR−
⊓
{a} ⊑ D1 ⊓D2

{a} ⊑ D1; {a} ⊑ D2

AR+
⊓
{a} ⊑ D1, {a} ⊑ D2

{a} ⊑ D1 ⊓D2
: D1 ⊓D2 occurs in O

AR+
∃

{a} ⊑ D

∃s.{a} → ∃s.D
: r ⊑∗

O s,∃r.D occurs in O

AR⊥
{a} ⊑ ⊥
{b} ⊑ ⊥

: {b} ⊑ ∃r.{a} ∈ SR

AR∗
⊥
{a} ⊑ ∃r.D
{a} ⊑ ⊥

: D ⊑ ⊥ ∈ SR

ARH
∃s.{a} → E

{b} ⊑ E
: r ⊑∗

O s, {b} ⊑ ∃r.{a} ∈ SR

ART
∃s.{a} → E

∃t.{b} → E
: r ⊑∗

O t ⊑∗
O s, Trans(t) ∈ O, {b} ⊑ ∃r.{a} ∈ SR,

Now we defined the closure of applying all the rules:

Definition 3. (Ontology Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontol-
ogy, its ontology completion closure, denoted by S, is the smallest set of axioms closed
under the AR rule set, withO axioms as side conditions, such thatSR ⊆ S;A ⊆ S (ax-
ioms mapped as elaborated at the beginning of this section); and for all a ∈ INO,
{a} ⊑ {a} ∈ XO, and {a} ⊑ ⊤ if ⊤ occurs in O.

Together the AR rules are also complete, sound and tractable. The soundness and
tractability of rules are quite obvious. The completeness on ABox materialisation can
be shown by the following Theorem:

Theorem 1. For any ELH⊥,R+ ontology O = (T ,A), we have either there is some
{x} ⊑ ⊥ ∈ S, or

1. O |= D(a) only if {a} ⊑ D ∈ S for D occurs in O;
2. O |= r(a, b) only if {a} ⊑ ∃s.{b}, s ⊑∗

O r ∈ S for r ∈ RNO.

The result regarding roles is quite obvious due to Lemma 3 and item 1 in Def. 3.
The type part can be proved by contrapositive. Assuming there is no {x} ⊑ ⊥ ∈ S, it’s
obvious that the TBox T has a model. We can construct such a model based on ST and

shows that it can be extended to a model of O based on S, such that this model entails
a said class assertion only if it is in S. Full proof can be found in our technical report.

As we can see, the AR rules also preserve the feature that all premises of each rule
have a same common part as the context. Therefore, they still enjoy the lock-free feature
in reasoning. In later sections, we will further elaborate this point.

4.4 Parallel Algorithms

In this section, we present the parallel algorithm corresponding to the ELH⊥,R+ com-
pletion rules. We reuse some notions such as context, activeContexts queue, scheduled
queue and processed set from the original TBox algorithm for ELHR+ [4] to realise
the lock-free mechanism. Axioms are indexed w.r.t. corresponding contexts.

The revised saturation algorithm (Algorithm 1) is presented as follows. The satura-
tion of an ontology is realised by first performing saturation of the non-class assertion
axioms, the output of which (i.e., SR) is then used in the saturation of the class asser-
tions. This yields S, which satisfies Theorem 1. This result contains all entailed class
assertions, and all role assertions can be easily retrieved. All necessary tautology axioms
must be added to the input prior to saturation. For TBox, we add axioms of the form
C ⊑ C for all concepts C such that C ∈ CNO ∪ {⊥}. Similarly, for type computation
we add {a} ⊑ {a} for all individuals a ∈ INO.

Algorithm 1: saturate(input): saturation of axioms under inference rules
Input: input (the set of input axioms)
Result: the saturation of input is computed in context.processed

1 activeContexts← ∅;
2 axiomQueue.addAll(input);
3 loop
4 axiom← axiomQueue.pop();
5 if axiom = null then break;
6 for context ∈ getContexts(axiom) do
7 context.scheduled.add(axiom);
8 activeContexts.activate(context);

9 loop
10 context← activeContexts.pop();
11 if context = null then break;
12 loop
13 axiom← context.scheduled.pop();
14 if axiom = null then break;
15 process (axiom);

16 context.isActive← false;
17 if context.scheduled ̸= ∅ then activeContexts.activate(context);

In the saturation (Algorithm 1), the activeContexts queue is initialised with an
empty set (line 1), and then all input axioms are added into an axiomQueue (line 2).
After that, two main loops (lines 3-8 and lines 9-17) are sequentially parallelised.

In the first main loop, multiple workers independently retrieve axioms from the ax-
iomQueue (line 4), then get the contexts of the axioms (line 6), add the axioms into cor-
responding scheduled queues (line 7) and activate the contexts. In the second main loop,
multiple workers independently retrieve contexts from the activeContexts queue (line
10) and process its scheduled axioms (line 15). Once context.scheduled is empty,
context.isActive is set to false (line 16). A re-activation checking is performed (line
17) in case other workers have added new axioms into context.scheduled while the last
axiom is being processed (between line 14 and line 16). This procedure will continue
until the activeContexts queue is empty.

The getContext() method returns the context of an axiom, depending on the form
of the axiom. In the following list, the concept C or {a} is the context.

C ⊑ D | D ⊑ ∃r.C | ∃s.C → E | D ⊑ ∃r.{a} | {a} ⊑ D

To activate a context, an atomic boolean value isActive is associated with each
context to indicate whether the context is already active. A context is added into the
activeContexts queue only if this value is false, which will be changed to true at the
time of activation. The process() method covers items 2.(a), 2.(b), 2.(c) shown at the
end of Sect. 2.2. We match the form of input axiom and check whether it has been pro-
cessed before; if not it will be added into the processed set of the context. Based on the
form of axiom, applicable completion rules can be determined. Meanwhile, checking
if the conclusion is already in corresponding context’s processed set can be performed.
Once a completion rule has been applied, the conclusion axioms and their forms are
determined. Once a conclusion is derived, its contexts and whether they are definitely
the same as the current context are determined. The conclusion axioms can directly be
added into corresponding scheduled queues.

5 Evaluation

We implemented our algorithms in our PEL reasoner (written in JAVA). To evaluate
its performance we use the Amazon Elastic Computer Cloud (EC2) High-Memory
Quadruple Extra Large Instance. It has 8 virtual cores with 3.25 EC2 units each, where
each EC2 unit “provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor”. The instance has 60 GB memory allocated to JVM. Our
test cases include a real world TBox NotGalen with generated ABox. NotGalen− is
extracted from an earlier version of Galen (http://www.opengalen.org/) by removing
functional role assertions. It contains a moderate-size TBox with 2748 classes, 413
roles and no ABox. To populate the ontology we use the SyGENiA system [15] to gen-
erate ABoxes for a small part of the Galen ontology and combine the generated ABoxes
of different sizes with the NotGalen− TBox. In this way, we have test ontologies with
larger and larger number of individuals, denoted by NGS-1, NGS-5, NGS-10 etc. Such
ABoxes are not completely random because, as generated by SyGENiA, they cover ax-
ioms that can lead to all possible sources of incompleteness w.r.t. a TBox and certain
query (in our evaluation, we query for instances of PlateletCountProcedure). Being
able to handle such ABoxes means that the reasoner won’t miss any result when dealing
with any real-world ABoxes.

For each ontology, we perform ABox materialisation. Note that not all the relations
have to be computed in reasoning, but only the necessary ones as indicated in Theo-
rem 1. Nevertheless all relations can be retrieved very easily if needed. Results of our
implementation PEL are presented in Table 2. The time shown in our evaluation is the
overall computation time. Time unit is second.

Table 2. Results of PEL (in sec) for scalability tests

Ontology |IN | |A| 1 worker 2 workers 4 workers 6 workers
NGS-1 4309 8000 1.378 0.931 0.789 0.733
NGS-5 62639 119852 4.97 4.108 3.746 3.709
NGS-10 211244 437542 16.276 14.196 7.867 6.634
NGS-20 596616 1642664 60.314 52.381 53.559 36.599
NGS-30 865790 3541822 127.517 87.141 83.855 81.964
NGS-40 970925 6036497 180.494 148.802 101.614 105.231
NGS-50 995932 9024356 247.547 204.713 192.055 201.127

From the comparison between different numbers of workers in Table 2 we can see
that multiple parallel workers can indeed improve the reasoning performance, even
when the ontology contains complex TBox and very large number of individuals. In
general, the performance improves when more and more workers are used. With more
than 4 workers, the performance may decrease on very large ABoxes. We believe one
of the potential reasons is that although the CPU cores can work in parallel, the RAM
bandwidth is limited and RAM access is still sequential. In relatively “light-weight”
ABox reasoning with large ABox, the RAM access will be enormous and very often so
that multiple workers will have to compete for RAM access. This makes memory I/O
a potential bottleneck of parallelisation and wastes CPU cycles. Another potential rea-
soner is that with such a large Jave heapsize, the memory management of the JVM will
take quite some time. A better management of memory will be an important direction
of our future work.

6 Conclusion

In this paper we extended early related work to present a parallel ABox reasoning ap-
proach to ELH⊥,R+ ontologies. We proposed new completion rules to improve effi-
ciency and scalability of parallel ABox reasoning, and showed that they are complete
and sound for ABox reasoning. Our evaluation shows that ABox reasoning can benefit
from parallelisation, even for very large ABoxes. In future, We would like to continue
the work in two directions. One is to develop distributed algorithms so that the memory
cost can also be distributed. The other is to develop target-driven materialisation instead
of full materialisation to reduce memory cost.

Acknowledgement

Yuan Ren and Jeff Z. Pan are partially funded by the EU FP7 K-Drive project.

References

1. Aslani, M., Haarslev, V.: Parallel TBox classification in description logics – first experimen-
tal results. In: Proceeding of ECAI2010 (2010)

2. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: SAOR: Template rule optimisations for dis-
tributed reasoning over 1 billion linked data triples. In: Proceedings of International Semantic
Web Conference. pp. 337–353 (2010)

3. ter Horst, H.J.: Completeness, decidability and complexity of entailment for RDF schema
and a semantic extension involving the OWL vocabulary. J. Web Sem. 3(2-3), 79–115 (2005)

4. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Concurrent classification of EL ontologies. In:
Proceedings of ISWC’11. LNCS, vol. 7032. Springer (2011)

5. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Practical reasoning with nominals in the EL family
of description logics. In: Proceedings of KR’12 (2012)

6. Liebig, T., Müller, F.: Parallelizing tableaux-based description logic reasoning. In: Proceed-
ings of the 2007 OTM Confederated international conference on On the move to meaningful
internet systems - Volume Part II. pp. 1135–1144. Springer-Verlag, Berlin, Heidelberg (2007)

7. Maier, R.M.F., , Hitzler, P.: A MapReduce algorithm for EL+. In: Proc. of International
Worshop of Description Logic (DL2010) (2010)

8. Meissner, A.: Experimental analysis of some computation rules in a simple parallel reasoning
system for the ALC description logic. Applied Mathematics and Computer Science 21(1),
83–95 (2011)

9. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin:
Distributed reasoning over large-scale semantic web data. Web Semant. 7, 305–316 (2009)

10. Ren, Y., Pan, J.Z., Lee, K.: Parallel ABox reasoning of EL ontologies. In: Proc. of the First
Joint International Conference of Semantic Technology (JIST 2011) (2011)

11. Schlicht, A., Stuckenschmidt, H.: Distributed resolution for ALC. In: Description Logics
Workshop (2008)

12. Schlicht, A., Stuckenschmidt, H.: Distributed resolution for expressive ontology networks.
In: Proceedings of RR’09. pp. 87–101. Springer-Verlag, Berlin, Heidelberg (2009)

13. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic web. In:
ESWC2005. pp. 361–376. Springer (2005)

14. Soma, R., Prasanna, V.K.: Parallel inferencing for owl knowledge bases. In: Proceedings
of the 37th International Conference on Parallel Processing. pp. 75–82. ICPP ’08, IEEE
Computer Society, Washington, DC, USA (2008)

15. Stoilos, G., Cuenca Grau, B., Horrocks, I.: How incomplete is your semantic web reasoner?
In: Proc. of AAAI 10. pp. 1431–1436. AAAI Publications (2010)

16. Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: WebPIE: A web-scale par-
allel inference engine using MapReduce. Web Semant. 10, 59–75 (Jan 2012)

17. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable distributed reasoning using
MapReduce. In: Proceedings of the ISWC ’09. LNCS, vol. 5823. Springer (2009)

18. Weaver, J., Hendler, J.A.: Parallel materialization of the finite RDFS closure for hundreds of
millions of triples. In: Proc. of ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer (2009)

19. Wu, G., Qi, G., Du, J.: Finding all justifications of OWL entailments using TMS and MapRe-
duce. In: Proc. of CIKM2011 (2011)

