
Optimising Ontology Stream Reasoning with
Truth Maintenance System ∗

Yuan Ren
Department of Computing Science
University of Aberdeen, Aberdeen

AB24 3UE, UK
y.ren@abdn.ac.uk

Jeff Z. Pan
Department of Computing Science
University of Aberdeen, Aberdeen

AB24 3UE, UK
jeff.z.pan@abdn.ac.uk

ABSTRACT
So far researchers in the Description Logics / Ontology communi-
ties mainly consider ontology reasoning services for static ontolo-
gies. The rapid development of the Semantic Web and its emerg-
ing data ask for reasoning technologies for dynamic knowledge
streams. Existing work on stream reasoning is focused on light-
weight languages such as RDF and RDFS. In this paper, we intro-
duce the notion of Ontology Stream Management System (OSMS)
and present a stream-reasoning approach based on Truth Mainte-
nance System (TMS). We present optimised EL++ algorithm to
reduce memory consumption. Our evaluations show that the op-
timisation improves TMS-enabled EL++ reasoning to deal with
relatively large volumes of data and update efficiently.

Categories and Subject Descriptors
I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving—
Inference engines

General Terms
Algorithms

Keywords
Ontology, Stream Reasoning, Truth Maintenance System

1. INTRODUCTION
Ontologies are the knowledge infrastructures of the Semantic

Web and many intelligent systems. The standard Web Ontology
Language OWL is based on the Description Logics (DLs). So far
researchers in the DL/ Ontology communities mainly consider on-
tology reasoning services for static ontologies. However, in real
world data and knowledge is usually subject to change. Parsia et.
al. [13] described several typical scenarios such as ontology editing,
web service matchmaking, sensor networks and mobile semantic
web [11]. Considering the following running example:

∗This paper is an extension of [14], an earlier work presented in a
workshop.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

EXAMPLE 1. Given the schedule of a conference and researchers’
personal information and activities, such as who is attending which
events, a knowledge management system would be able to collect
data and provide recommendations, in real time.

In this paper, we assume such data has been extracted and for-
malised, and focus on the data processing and reasoning aspect.
Due to the real-time nature of these user generated information and
ongoing events, it is adequate to consider them as data streams.

There have been many works regarding querying streaming
data on the semantic web. A. Bolles et al. [7] proposed an exten-
sion of SPARQL to process data streams. Similarly, C-SPARQL [5],
another extension of SPARQL can continuously query from a RDF
knowledge base. More related work focus on continuously and in-
crementally updating and materialising ontological knowledge
bases. R. Volz et al. [15] adopted the Delete and Re-derive (DRed)
algorithm [9] from traditional data stream management systems
and proposed a declarative variant of it. When change occurs, the
“stream reasoner” first overestimates the consequences of the dele-
tion, then “cash-back” the over-deleted consequences that can be
derived by other facts, and finally adds new entailments that are
derived from the new facts. Further optimisation was proposed [6]
with an additional assumption that the time window of stream is
fixed and known to the stream reasoner. The relation between
a consequence and a time point can be maintained so that when
the time comes, the stream reasoner expires corresponding conse-
quences. In their evaluation, this approach outperforms a naive ap-
proach with up to 13% of RDF triples changed, which is better than
the 3% limit of [15]. However, these approaches are still limited to
relatively simple languages such as RDF, RDFS. The optimisation
also requires a known fixed time window. Otherwise, the optimisa-
tion can not work. This also means deleting axioms in real-time is
not allowed. For example, if data collected from different sources
make the ontology inconsistent, such inconsistency can not be ac-
tively resolved by removing conflicting knowledge.

In this paper, we introduce the notion of ontology stream man-
agement system (OSMS). We present an ontology stream reason-
ing approach by applying Truth Maintenance Systems (TMS [8])
for OSMS. A TMS maintains not only reasoning results, but also
intermediate results and the deduction relations among them. Thus
on the one hand, impacted results of removed knowledge can be
retrieved without prior knowledge of fixed time window. On the
other hand, further inference can be carried on from the interme-
diate results, instead of the original asserted knowledge. Both will
significantly increase the efficiency of stream reasoning to facilitate
real-time response. However, TMS has a well-known disadvan-
tage of excessive memory consumption. To address this issue, we
present an optimised algorithm for EL++, the logic underpinning
OWL 2 EL, by reducing the number of unnecessary intermediate

results. Our evaluation shows that our approach can outperform
naive re-computation with relatively large volumes of knowledge
base (up to 30000 axioms) and updates (up to 10%).

2. BACKGROUND
A signature Σ = (CN ,RN , IN) consists of three disjoint sets
CN , RN , IN , where CN is the set of atomic concepts, RN is
the set of atomic roles and IN is the set of individuals. Given a
signature, > the top concept, ⊥ the bottom concept, A an atomic
concept, a an individual, r an atomic role, EL++ concept expres-
sions C, D can be composed with the following constructs:

> | ⊥ | A | C uD | ∃r.C | {a}

We slightly abuse the notion of atomic concepts to include also >,
⊥ and nominals (i.e. concepts of form {a}). Given a knowledge
base K, we use CNK, RNK, INK to denote the set of atomic
concepts, atomic roles and individuals in K, respectively.

A DL ontology O =< T ,A > is composed of a TBox T and
an ABox A. A TBox is a set of concept and role axioms. EL++

supports general concept inclusion axioms (GCIs, e.g. C v D)
and role inclusion axioms (RIs, e.g. r v s, r1 ◦ · · · ◦ rn v s).
If C v D and D v C, we write C ≡ D. An ABox is a set
of concept assertion axioms, e.g. a : C, role assertion axioms,
e.g. (a, b) : R, and individual equality axioms, e.g. a = b, and
individual inequality axioms, e.g. a 6= b.

EXAMPLE 2. Here are some simple EL++ ontologies:
Ontology O : { ActiveTalk v ∃in.Session, hasTopic ◦

interest v recommend, ∃recommend.{David} v Talk4Dave,
ActiveTalkuTalk4Dave v TargetTalk, (ontology,Daivd) :
interest, (talk1, ontology) : hasTopic, (talk2, ontology) :
hasTopic, } specifies that an ActiveTalk must be presented in
some Session; A talk can be recommended to someone if the talk
has topic that interests the person; A talk is for David if it can be
recommended to David and such a talk will be a TargetTalk if it
is active; It also says that David is interested in ontology. There
are two talks talk1 and talk2 that have topic about ontology.
O(0) = {talk0 : ActiveTalk} shows that talk0 is anActiveTalk.
O(1) = {talk1 : ActiveTalk} shows that talk1 is anActiveTalk.
O(2) = {talk2 : ActiveTalk} shows that talk2 is anActiveTalk.

If an axiom α can be derived from an ontologyO, we say that α
is entailed by O, denoted by O |= α. α is an entailment of O. For
an ontologyO and its entailment α, a set of axioms JO(α) ⊆ O is
a justification of α iff JO(α) |= α and J ′ 6|= α for all J ′ ⊂ JO(α).
For EL++, a single justification can be computed in PTIME [4].

Franz Baader et. al. [1] presents a completion-based algorithm
to classify an EL++ TBox. Given an EL++ TBox T , it can be
normalised in linear time [3] into a normal form TBox T ′ in which
all axioms are in one of the following forms, where Ai ∈ CN T ′

and ri ∈ RN T ′ , by introducing fresh atomic concepts and roles:

A1 v A2, A1 v ∃r.A2,
A1 u · · · uAn v An+1, ∃r.A1 v A2,

r1 ◦ r2 v r3, r1 v r2.

For any two A,B ∈ CN T , T |= A v B iff T ′ |= A v
B [2]. Given a normalised EL++ TBox T , the algorithm uses a
set of completion rules (Table 1, in R6 X ;R A iff there exists
C1, . . . , Ck ∈ CN T s.t. C1 = X or C1 = {b}, Cj v ∃rj .Cj+1

for some rj ∈ RN T (1 ≤ j ≤ k) and Ck = A) to compute, for
each two A,B ∈ CN T , entailed subsumption T |= A v B.

Reasoning with rules R1-R8 is PTIME-Complete [2]. ABox rea-
soning can also be reduced to TBox reasoning with these rules [2].

Table 1: EL++ TBox completion rules (no datatypes)
R1 If X v A, A v B then X v B

R2 If X v A1, . . . , An, A1 u · · · uAn v B
then X v B

R3 If X v A, A v ∃r.B then X v ∃r.B
R4 If X v ∃r.A, A v A′, ∃r.A′ v B then X v B
R5 If X v ∃r.A, A v ⊥ then X v ⊥
R6 If X,A v {a}, X ;R A then X v A
R7 If X v ∃r.A, r v s then X v ∃s.A

R8 If X v ∃r1.A, A v ∃r2.B, r1 ◦ r2 v r3,
then X v ∃r3.B

Alternatively, we can internalize ABox axioms into TBox axioms
as follows to perform reasoning. In the rest of the paper, we always
internalize ABox into TBox.

a : C {a} v C (a, b) : r {a} v ∃r.{b}
a
.
= b {a} ≡ {b} a ˙6=b {a} u {b} v ⊥

3. ONTOLOGY STREAM MANAGEMENT
SYSTEMS

In this section, we introduce the notion of ontology stream man-
agement systems (OSMS). A typical ontology stream management
system is illustrated in Fig. 1. It can retrieve certain information

Figure 1: Ontology Stream Management System

from streams. Data Aggregation is the type of retrieval that does
not require reasoning. For example, in the above stream, we can
ask which takes are active. This type of retrieval has been widely
addressed by, e.g., the C-SPARQL proposals. Stream Reasoning
requires reasoning to be performed on the stream to yield correct
answers. Their output are streams of results.

In stream reasoning [6] a streaming RDF knowledge base is de-
fined as a set of pairs (α, t) where each RDF triple α is associated
with a timestamp t. By grouping triples of the same timestamp t
we have the ontology at time point t. Such a versioning idea re-
sembles the concept of Linear Version Space (LVS) [10], which is
a sequence of ontologies S = (O0,O1, . . . ,On). We recast these
concepts and present a unified definition:

DEFINITION 1. (Discrete Ontology Stream) An discrete ontol-
ogy stream On

m from point of time m to point of time n is a se-
quence of ontologies On

m(t0),On
m(t1), . . . ,On

m(tx) where t0 =
m ≤ t1 ≤ · · · ≤ tx = n. On

m(ti) is called a snapshot at ti.

For conciseness, in the rest of the paper we use the name ontol-
ogy stream or stream for short. We also assume that a stream always
starts from time point 0 and is updated at each following integer
time point, i.e. On

0 = On
0 (0),On

0 (1), . . .On
0 (n). A change from

On
0 (i) toOn

0 (i+1) is an update. When a “new” update occurs, the
stream is consequently updated fromOn

0 toOn+1
0 . It’s important to

note that the updates are not necessarily known to stream reasoners
in advance. That means any axiom can be added into, or removed
from the changing ontology at any time.

From Example 2 we construct a stream O1
0 = O ∪ O(0),O ∪

O(1). The stream is illustrated in Fig. 2. We assume all ABox
axioms have been internalised. This stream specifies that the fea-

Figure 2: Example Stream

ture of ActiveTalk, the role chain of recommend, the condition
of Talk4Dave and TargetTalk, David’s interest on ontology,
and the topics of the two talks preserve from time point 0 to 1.
talk0 is active in time point 0 and talk1 is active in time point 1.

In this paper, we focus on such stream reasoning services. More
formally, for a stream On

0 and a reasoning problem Q, applica-
tions usually ask for reasoning results of Q on snapshot On

0 (i),
denoted by Ans(On

0 (i), Q). For example, with the information in
Fig. 2, we can ask for all ongoing talks that are interesting to David,
which can be regarded asQ =retrieving instances of TargetTalk.
Such a request can be simply fulfilled by applying the comple-
tion rules on the snapshots. By manual checking we know that
Ans(O1

0(0), Q) = ∅ andAns(O1
0(1), Q) = {talk1 : TargetTalk}.

If we updateO1
0 toO2

0 withO2
0(2) = O∪O(2). A new talk talk2

is being presented at time point 3 (Fig. 3). Now David wants to

Figure 3: Updated Stream

know, what isAns(O2
0(0), Q), given the results ofAns(O1

0(0), Q)?
We can directly compute the new results on O2

0(2). We call this
approach the naive approach. This approach is not efficient be-
cause the time of computing the new results is determined by the
entire ontology, instead of the changed part. Even if the change is
very small, the updating of results can take very long time if the
ontology is big. More interestingly, people would like to compute
results on the latest snapshot based on results on the previous snap-
shot, so that partial results can be reused without re-computation.

As we mentioned in the last section, existing work is limited to
relatively simple languages and have certain restrictions. In the
next sections, we propose a truth maintenance system-based ap-
proach for EL++ and which requires no fixed time window.

4. STREAM REASONING WITH TMS
In this section, we present how to provide stream reasoning in

OSMS. Different from the naive approach, which re-compute ev-
erything from scratch, we propose to maintain the (intermediate)
results and their inferencing relations, so that when updating, en-
tailments affected or not affected by the removed axioms can be
easily distinguished and intermediate results can be re-used. Such
maintenance can be realised by a Truth Maintenance System (TMS [8]).

A TMS maintains both beliefs and their dependencies in the form
of a dependency network, in which nodes are beliefs and edges are
the inference steps from which the nodes are derived.

DEFINITION 2. (Truth Maintenance System) Given an ontol-
ogy O, a TMS GO = 〈NO, EO〉 of O is a directed graph such
that (1) O ⊆ NO; (2)NO ⊆ {α|O |= α}; (3) for any α ∈ NO ,
{β|(β, α) ∈ EO} is a minimal set of axioms that entails α.

The 3rd property is important such that if all inbound nodes of an
entailment are preserved, then the entailment is preserved. Oth-
erwise the entailment should be removed unless a different set of
axioms can entail it.

It is obvious that a node can have multiple inbound edges if the
entailment is derived from multiple other entailments. Tautology
axioms do not have any inbound edges. Asserted axioms only have
inbound edges from themselves. It is also apparent that an ontology
can have multiple or even infinite TMSes, depending on how many
entailments are preserved. For example, applying R1-8 in Table 1,
a TMS ofO1

0(1) from our running example is illustrated in Fig. 4.

Figure 4: TMS of O1
0 (1) GO1

0(1)

We first show how the TMS can be used in stream reasoning.
After that we explain how the nodes and edges of a TMS can
be constructed. Suppose we have an ontology stream On

0 , a rea-
soning request Q and a TMS GOn

0 (n) containing all elements of
Ans(On

0 (n), Q), when an update occurs, i.e. we have a new snap-
shot On+1

0 (n + 1). We can update the entailments in NOn
0 (n) by

updating TMS GOn+1
0 (n+1)

out of the old one:

1. Initialise GOn+1
0 (n+1)

= GOn
0 (n);

2. Remove all the erased axioms and their reachable nodes from
NOn+1

0 (n+1)
. The erased TMS of our example is illustrated

in Fig. 5, where the red node and edges are removed;

3. Add all new axioms in On+1
0 (n+ 1) to NOn+1

0 (n+1)
;

Figure 5: Erased TMS of O1
0 (1)

4. Check which new result ofAns(On+1
0 (n+1), Q) can be en-

tailed and add corresponding nodes and edges toGOn+1
0 (n+1)

.
In our example, new results {talk2} v ∃in.Session, {talk2} v
Talk4Dave and {talk2} v TargetTalk should be added.

As a example, applying the above procedure on our example
O2

0(2) will produce the following new TMS (Fig. 6). In this TMS
the green nodes and edges are newly added while the others are
preserved from GO1

0(1)
.

Figure 6: TMS of O2
0 (2) GO2

0(2)

As we can see, the answer to David’s question has been updated
after the updating of ongoing events in the conference. During this
procedure, intermediate results {talk2} v ∃recommend.{Daivd}
and {talk2} v Talk4Dave have been preserved and reused to in-
fer the new results, without being re-computed.

The way in which a TMS is constructed has significant impact on
its structure and performance. A most straightforward way is to di-
rectly connect reasoning results with their justifications. However
this approach contradicts with the intention of stream reasoning as
it omits all intermediate results. This leads to potentially redundant
computation of justifications and potentially redundant edges. For
example, if α, β ∈ Ans(O, Q) and O |= β only if O |= α, then α
is needed to entail β and JO(α) ⊆ JO(β). Obviously, when com-
puting JO(β), the JO(α) should be computed at the same time,
and all edges from axioms in JO(α) to β can be replaceable by a
single edge from α to β.

To overcome the above drawbacks and improve efficiency, one
can also develop a glass-box approach. The basic idea is to cap-
ture all the run-time states of a reasoner. For example, whenever
a new belief is entailed from the ontology, we include it as a node
of the TMS and connect it with the beliefs or assumptions we use
to entail it, which should also be included as nodes if not included
in previous reasoning steps. If an assumption is made, we include
this assumption as a new node into the TMS. If it is withdrawn,
we remove this assumption. All nodes derived from it, and all cor-
responding edges, should also be removed, etc. In this approach,

the construction of the TMS does not affect the termination, sound-
ness, completeness of the original reasoning algorithms. It does not
change the reasoning results. These are all because the TMS does
not interfere with the reasoning procedure. It does not require addi-
tional reasoning, and can be performed on-the-fly with reasoning.

Due to the fact that the completion-based algorithm of EL++

uses entailments as antecedents and consequents of rules, and re-
quires no assumption in reasoning, it naturally fit with the construc-
tion of a TMS. And the glass-box approach for a completion-based
algorithm can be described by the following algorithm A-1:

Algorithm A-1:
GlassboxTMS(O, Q)
INPUT: an ontology O, a reasoning request Q
OUTPUT: a directed graph G = 〈NO, EO〉
1: NO := O, EO := {(α, α)|α ∈ O}
2: while a rule R =

∧
i=1,2,...,n αi →

∧
j=1,2,...,m βj is exe-

cuted for Q do
3: NO := NO ∪

⋃
j=1,2,...,m{βj}

4: EO := EO ∪
⋃

i=1,2,...,n,j=1,2,...,m{(αi, βj)}
5: return 〈NO, EO〉

It is not difficult to show that the constructed directed graph is a
TMS of O containing all results in Ans(O, Q):

THEOREM 1. For an ontology O and a reasoning request Q,
GlassboxTMS(O, Q) = 〈NO, EO〉 as computed by A-1 is a
TMS of O and Ans(O, Q) ⊆ NO .

TMS can thus be constructed and updated. First of all, given
an EL++ ontology O = (T ,A), we internalize it into O′ =
(T ′, ∅) and we initialise a TMS G = 〈NT ′ , ET ′〉 as NT ′ = T ′
and ET ′ = {(α, β)|α ∈ A, β ∈ T ′ and β is internalised from
α} ∪ {(α, α)|α ∈ T ∪ A}. Then we normalise the TBox T ′ into
its normal form T ′′. Meanwhile we extend the TMS asNT ′ = T ′′
and ET ′ := ET ′ v {(α, β)|α ∈ T ′, β ∈ T ′′ and β is nor-
malised from α}. Then in reasoning, we apply completion rules to
add new entailments into T ′′, which is also the node set of the
TMS. At the same time, we add edges between all antecedents
and consequent into ET ′ . For example, for R1, we have ET ′ :=
ET ′ ∪ {(X v A,X v B), (A v B,X v B)}. For R5, we have
ET ′ := ET ′ ∪ {(X v ∃r.A,X v ⊥), (A v ⊥, X v ⊥)}

When no rule can be executed, the reasoning terminates and the
TMS is constructed. When the TMS is updated from On

0 (n) to
On+1

0 (n+1), the same procedure is applied on the previous TMS.

5. OPTIMISING TMS IN EL++

Although completion-based algorithms are suitable for stream
reasoning with TMS. They could still unnecessarily consume some
time and memory if not all intermediate results are contributing to
answering the reasoning request. Taking EL++ algorithm as an
example, it performs the Classification of a TBox by computing
results of form A v B and A v ∃r.B. The former is useful when
computing the concept hierarchies of the ontology, or retrieving the
types of individuals (in form of {x} v A), while the later is of less
use in such scenarios. For example, in Fig. 4 and Fig. 6, we can
see that inference results {talk1} v ∃in.Session and {talk2} v
∃in.Session are not needed.

In order to address this issue, we further optimise completion-
based algorithms. The key point is, instead of directly performing
the forward-chaining reasoning procedure and apply all executable
rules, we develop some backward-chaining control mechanism to

determine which intermediate results will NOT be useful and thus
they are not needed to be computed.

As we can see from Table 1, the intermediate results of the form
A v ∃r.B are involved in the following rules:

1. R3, R7 and R8 use them to generate results of the same form.

2. R4 and R6 use them to generate new results of form A v B.

This means that, all results of form A v ∃r.B will eventually
contribute to inference of results of form A v B through R4 and
R6. If we know which axioms of form A v ∃r.B will (not) be
used in R4 and R6, we can inductively know which of them will
(not) be used in the entire reasoning process to compute all results
of form A v B, without even executing any rule. Apparently, this
is related to the role r in the entailment.

Given an internalised and normalised EL++ TBox T , we as-
sume that all role subsumption closures have been pre-computed [1].
We analyse the roles as follows:

In R4: If X v ∃r.A, A v A′, ∃r.A′ v B then X v B. It
is obvious that antecedents of form X v ∃r.A is worth entailed
only if there is some ∃r.A′ v B ∈ T . Note that the later will not
be computed from any rule and can only exist in the original TBox.
Therefore for a role r, if there is no axiom of form ∃r.A′ v B ∈ T ,
all results of form X v ∃r.A will not be useful in R4.

In R6: IfX,A v {a},X ;R A thenX v A. It is obvious that
antecedent axioms of form Cj v ∃rj .Cj+1 is worth entailed only
if there is some X v {a} entailed, which eventually requires there
being some {a} appearing on the RHS (Right Hand Side) of some
GCI. Therefore, if there is no nominal {a} on the RHS of any GCI,
all results of form X v ∃r.A will not be used in R6.

From the above analysis, we define the classification-relevant
roles as follows:

DEFINITION 3. (Classification-relevant role) Given a normalised
EL++ TBox T , a role r is classification relevant (C-R for short) if
r is on the LHS (left hand side) of some GCI, or there exists some
GCI whose RHS (right hand side) is a nominal, or r is on the LHS
of some RI whose RHS is a C-R role.

The first two conditions correspond to R4 and R6, respectively.
The last condition corresponds to R7 and R8. According to this
definition, in our example, roles hasTopic, interest, recommend
are C-R, and role in is not. All C-R roles can be identified in poly-
nomial time. They control which entailment A v ∃r.B will be
useful in classification:

THEOREM 2. When classifying an EL++ TBox T with R1-8,
an entailed A v ∃r.B will contribute to execution of R4 or R6
only if r is a C-R role.

In classification of an EL++ TBox, we computes intermediate
results of form A v ∃r.B only if r is C-R. Thus the corresponding
R3, R7 and R8 should be revised as follows:

• R3’: If X v A, A v ∃r.B and r is C-R, then X v ∃r.B;

• R7’: If X v ∃r.A, r is C-R, r v s then X v ∃s.A

• R8’: If X v ∃r1.A, A v ∃r2.B, r1 ◦ r2 v r3, r3 is C-R,
then X v ∃r3.B

Such an optimisation is not only applicable on TMS construc-
tion. It is a generic optimisation on EL++ classification algorithm
and preserves soundness and completeness of classification:

THEOREM 3. For any normalised EL++ TBox T , A v B can
be inferred by R1-8 iff A v B can be inferred by R1-2, R3’, R4-6,
R7’-8’.

When constructing TMS with a glass-box approach, the TMS
enjoys the same optimisation. The construction of TMS will follow
the same rule as before. The fact that some role r is C-R is not
necessary to be maintained as a node. For example, the optimised
TMS of O1

0 (1) is illustrated in the Fig. 7:

Figure 7: Optimised TMS of O1
0 (1)

Such modifications will help eliminate unnecessary intermedi-
ate results and will not require additional reasoning. Therefore it
should improve both the efficiency and scalability.

6. EXPERIMENTAL EVALUATION
We implemented the proposed approach and optimisations in our

TrOWL 1 reasoner. We perform experiments to evaluate whether
the optimisation presented in Sec.5 can improve the efficiency of
TMS-enabled reasoning and reduce memory consumption, and fur-
thermore how does such an optimised TMS-enabled EL++ stream
reasoner perform in reality. Therefore, we first evaluate the optimi-
sation, then the stream reasoning. All experiments were conducted
in an environment of 64-bit Windows 7 Enterprise with 1.60 GHz
CPU and 3G RAM allocated to JVM 1.6.0.07.

In this optimisation evaluation, our test cases are two ontolo-
gies generated from the Galen ontology 2. Both of them are EL++

ontologies. The stats of these two ontologies are summarized in
Table 2. Although they don’t contain ABox, the optimisation eval-
uated here will have the similar effects on ABoxes.

In this evaluation we perform ontology classification to retrieve
entailed subsumptions between all pairs of atomic concepts. For
each of the ontologies, we classify it with two TMS-enabled EL++

reasoners. The one without optimisation implemented is called
TMS. And the one with optimisation implemented is called TMS-
Opt. For each reasoner, we measure the time used to classify the
ontology. Due to the difficulty of precise measurements of the
memory consumption, we calculate the number of intermediate re-
sults of the form A v ∃r.B for each reasoner. For TMS-Opt we
further calculate the number of C-R roles. The results of our eval-
uation is shown in Table 2.

From results we can see that in both ontologies, not all roles are
necessary for classification. With TMS-Opt, the number of un-
necessary intermediate results (#Ext.) is significantly reduced. In
NotGalen−, only 15.3% is computed. In FullGalen− only 39.8% is
computed. With less unintended and unnecessary inference, the ef-
ficiency is improved (24% in NotGalen− and 44% in FullGalen−).
Also, the memory consumption of maintaining such inference should
also be significantly reduced.

With the positive results on TMS optimisations, we evaluate its
performance in stream reasoning. Due to the lack of stream reason-

1http://trowl.eu
2http://www.opengalen.org/

Table 2: Evaluation of optimisation. |CN |, |RN|, #GCI and #RI are numbers of atomic concepts, atomic roles, GCIs and RIs,
respectively. #Sub. is the number of entailed atomic concept subsumptions. t is classification time (in seconds). #Ext. is the number
of entailed intermediate results A v ∃r.B. #C −R is the number of classification-relevant roles.

Ontology |CN | |RN| #GCI #RI #Sub.
TMS TMS-Opt

t #Ext. t #Ext. #C −R
NotGalen− 2748 413 4348 442 30682 1,843 73156 1.407 11294 245
FullGalen− 23141 950 37482 1015 475211 45.741 1687552 25.572 671595 749

ing benchmark, we generated our test data from the FullGalen− on-
tology and simulated streams. We randomly partition the ontology
into 45 sub-ontologies of same size. We call them K0,K1, . . . ,K44.
We construct an ontology stream O10

0 in a way that O10
0 (i) =⋃

j=i,...,i+34 Kj . Therefore for each i = 0, . . . , 9, O10
0 (i + 1) =

O10
0 (i) \Ki ∪Ki+35. Now we create a stream with 10 updates. In

each update, 2.9% of the ontology is changed. Each snapshot con-
tains about 30000 axioms. Each update changes about 855 axioms.
For each snapshotO10

0 (i), we perform classification to compute the
subsumption between all atomic concepts. The reasoner does not
know which axioms will be updated in advance. We accomplish
such a reasoning task with both the naive approach (re-do reason-
ing onO10

0 (i) from scratch) and the TMS-Opt. We record the time
of both approaches to evaluate the effectiveness of the TMS-Opt.
The results are summarised in the following table (Table 3).

Table 3: Evaluation Results. t0 shows the time for the initial
ontology. Max(ti), Min(ti) and Ave(ti) show the maximal,
minimal and average time for the updated ontologies, respec-
tively. Time unit is second.

Approach t0 Max(ti) Min(ti) Ave(ti)
Naive 4.119 3.323 2.625 3.125

TMS-Opt 5.492 2.543 1.482 1.856

From the table we can see that, TMS-Opt took more time to
classify the original ontology due to the construction of TMS. But
in updating, TMS-Opt was significantly faster.

It is interesting to see how many percentages of the ontology
can be updated while the TMS stream reasoning approach remains
faster than the naive approach. To answer this question, we further
increase to size of update to 3.33%, 5% and 10% of the original
ontology, respectively. We perform classification on such ontol-
ogy streams and calculate the relative time as (Ave(ti)Naive −
Ave(ti)TMS-Opt)/Ave(ti)Naive. Our experiments and calculation
yield 75.1%, 86.0% and 96.5% relative time for the above relative
size of updates, respectively. From these results, we can see that
although TMS gradually loses its efficiency advantage to Naive ap-
proach when the relative volume of update increases, it still pays
off when about 10% of ontology is changed. This figure is bet-
ter than the maintenance program approach [15] and comparable to
the fixed-window approach [6]. Considering the higher expressive
power and difficulty of the test ontology FullGalen− and its large
volume, our evaluation justifies the usability of our approach.

7. CONCLUSION
In this paper, we introduce Ontology Stream Management Sys-

tems (OSMS). We focus on how to provide stream reasoning ser-
vices based on TMS for OSMS. We chose EL++, the logic under-
pinning the tractable OWL 2 EL language and developed a classification-
relevant role optimisation for EL++ by controlling the kind of in-
termediate results that should be inferred. Evaluation on real world
ontologies shows that our approach and optimisation work nicely

in practice with relatively large volume of knowledge base and up-
date. In the future, we would like to investigate stream reasoning
in complete OWL 2 EL, QL and RL profiles, and even OWL 2 DL,
as well as related optimisations.

Acknowledgement: This work is partially funded by the
RCUK dot.rural and the EU K-Drive projects.

8. REFERENCES
[1] F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope.

In Proceedings IJCAI-05, 2005.
[2] F. Baader, S. Brandt, and C. Lutz. Pushing the EL Envelope

Further. In K. Clark and P. F. Patel-Schneider, editors, In
OWLED-2008, 2008.

[3] F. Baader, C. Lutz, and B. Suntisrivaraporn. Is Tractable
Reasoning in Extensions of the Description Logic EL Useful
in Practice? In Proceedings of the 2005 International
Workshop on Methods for Modalities (M4M-05), 2005.

[4] F. Baader and B. Suntisrivaraporn. Debugging SNOMED CT
using axiom pinpointing in the description logic EL+. In
Proceedings of the 3rd Knowledge Representation in
Medicine (KR-MED’08): Representing and Sharing
Knowledge Using SNOMED, volume 410 of CEUR-WS,
2008.

[5] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and
M. Grossniklaus. C-sparql: Sparql for continuous querying.
In WWW2009, 2009.

[6] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and
M. Grossniklaus. Incremental reasoning on streams and rich
background knowledge. In ESWC2010, 2010.

[7] A. Bolles, M. Grawunder, and J. Jacobi. Streaming sparql
extending sparql to process data streams. In ESWC08, 2008.

[8] J. Doyle. A truth maintenance system. Artificial Intelligence,
12:231–272, 1979.

[9] A. Gupta, I. S. Mumick, and V. S. Subrahmanian.
Maintaining views incrementally. In SIGMOD ’93, 1993.

[10] Z. Huang and H. Stuckenschmidt. Reasoning with
multi-version ontologies: A temporal logic approach. In In
Proceeding of ISWC2005, 2005.

[11] M. Luther and S. Bohm. Situation-Aware Mobility: An
Application for Stream Reasoning. In in Proc. of 1st
International Workshop on Stream Reasoning (SR2009),
2009.

[12] B. Parsia, C. Halaschek-wiener, and E. Sirin. E.s.: Towards
incremental reasoning through updates. In in OWL DL. In:
Proc. WWW-2006. (2006), 2006.

[13] Y. Ren, J. Z. Pan, and Y. Zhao. Towards Scalable Reasoning
on Ontology Streams via Syntactic Approximation. In the
Proc. of IWOD2010, 2010.

[14] R. Volz, S. Staab, and B. Motik. Incementally maintaining
materializations of ontologies stored in logic databases. In
Journal of Data Semantics II, LNCS, Vol 3360, 2:1–34, 2005.

