
Fuzzy Extensions of OWL: Logical Properties and Reduction to
Fuzzy Description Logics✩

G. Stoilos∗,a,1, G. Stamoua, J. Z. Panb

aDepartment of Electrical and Computer Engineering,
National and Technical University of Athens

bDepartment of Computing Science,
The University of Aberdeen

Abstract

The Semantic Web is an extension of the current web, where information would have
precisely defined meaning, based on formal semantics, and structured using a knowledge
representational language. The current W3C standard for representing knowledge is the
Web Ontology Language (OWL). OWL is based on Description Logics which is a popular
knowledge representation formalism. Although, DLs are quire expressive they feature lim-
itations with respect to what can be said about vague knowledge, which appears in several
applications. Consequently, fuzzy extensions to OWL and DLs have gained considerable
attention. In the current paper we study fuzzy extensions of the semantic web language
OWL. First, we present the (abstract) syntax and semantics of a simplistic fuzzy extension
of OWL creating fuzzy OWL (f-OWL). More importantly we use this extension to provide
an investigation on the semantics of several f-OWL axioms and more precisely for those
which can be expressed in many different ways (at least in classical DLs) and analyze their
intuitive meaning. Moreover, we present a translation method which reduces inference
problems of f-OWL into inference problems of expressive fuzzy Description Logics, in order
to provide reasoning support through (fuzzy) DLs. Finally, we provide two further fuzzy
extensions of OWL based on fuzzy subsumptions and fuzzy nominals.
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1. Introduction

The last years great research effort has been focusing on the realization of the Seman-
tic Web [1]. The Semantic Web has been proposed as an extension of the current web,
where information and knowledge would be structured in a machine understandable and
processable way. To this extent Semantic Web agents would be able to (semi)automatically
carry out complex tasks assigned by humans in a meaningful (semantic) way. For example,
they would be able to carry out a “holiday organization”, an “item purchase” or a “doctor
appointment” [1] task. In order for information to be structured in a formal and machine
understandable way the Semantic Web needs to make use of knowledge representational
languages. The current W3C standard for representing knowledge in the Semantic Web
is the OWL Web Ontology Language [2]. The logical underpinnings of OWL are mainly
very expressive Description Logics, like SHOIN (D) and SHIF(D) [3]. Description Log-
ics (DLs) is a logical formalism that has gained popularity the last decade. DLs combine
both considerable expressive power as well as decidable reasoning procedures, which has
attracted the attention of many researchers. Although, there is a close correspondence of
OWL with Description Logics there are also many notable differences that need proper
handling [4]. On the one hand in order for OWL to serve as a (Semantic) Web language
it has adopted an XML like syntax to represent knowledge which is quite different from
the usual abstract and logical syntax of knowledge representation languages. But, most
importantly in order for OWL to be as much usable as possible and enjoy wide accep-
tance even by non-experts in knowledge representation it allows stating many complex DL
axioms by simple syntactic sugar constructors which need to be properly mapped to DL
axioms by reasoning systems. For example, one is able to declare that the range of role
hasSon is the concept Boy by the statement ObjectProperty(hasSon range(Boy)), which in
DLs would require a cumbersome axiom of the form ⊤ ⊑ ∀hasSon.Boy or the equivalent
∃hasSon−.⊤ ⊑ Boy, where hasSon− denotes the inverse of hasSon.

Although DLs is a quite expressive logical formalism it features limitations, mainly
with what can be said about vague information. Such information is apparent in many
applications and tasks both of the Semantic Web as well as of applications using DLs.
For example, a task like a “holiday organization” could involve a request like: “Find me
a good hotel in a place that is relatively hot and with many attractions”, or a “doctor
appointment” could look like: “Make me an appointment with a doctor close to my home
not too early and of good references”. Moreover, several intermediate processes, like infor-
mation extraction or retrieval, mathing user preferences with data and more, might involve
imperfect information due to their automatic nature. Last but not least, several modern
applications that have adopted Semantic Web technologies in order to enhance their perfor-
mance and “connect” with the Semantic Web require the management of such knowledge.
For example there are schemes for using Semantic Web technologies in multimedia applica-
tions for multimedia analysis [5], in Semantic Portals [6], ontology mapping validation [7],
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Semantic Web Services matching [8], word-computing based systems [9] and many more,
all of which require the management of some form of fuzzy information. For example, in
image analysis one has to map low-level numerical values that are extracted by analysis al-
gorithms for the color, shape and texture of a region into more high-level symbolic features
like concepts. For example, values of the RGB color model would need to be mapped into
concepts like Blue, Green, etc or values of special shape and texture (signal) transforms
need to be mapped to concepts like RectangularShaped, CoarseTextured, SmoothTextured
and more, all of which are obviously vague concepts and need proper handling.

In order to provide the necessary means to handle such information and knowledge
there are today many proposals for fuzzy extensions to Description Logics [10, 11, 12] as
well as several reasoning algorithms [13, 14, 15, 16, 17, 18] intended to provide inference
support for vague information (see [19] for an overview). Fuzzy Description Logics extend
the syntax and semantics of standard Description Logics using the ideas and techniques of
Fuzzy Set Theory [20]. Consequently, instead of a Boolean {0, 1}-interpretation of concepts
and roles one adopts a more relaxed view where an object can belong to a set to any degree
between 0 and 1. For example, a region reg1 of an image could be Blue to a degree 0.6 and
closeTo region reg2 to a degree 0.8. Then we can use DL axioms which together with the
above fuzzy assertions and reasoning mechanisms can be used to provide semantic means
of object recognition [5]. For example, we can have the following axioms:

Leafs ≡ LightGreenColored ⊓ RegularTextured

Log ≡ BrownColored ⊓ SmoothTextured

Tree ≡ ∃hasPart.(Log ⊓ ∃isBelowOf.Leafs)

where ≡ is an equivalence relation, ⊓ is a conjunction, ∃ is an existential restriction, hasPart
and isBelow are roles (binary predicates), while the rest are concepts (unary predicates).
Furthermore, in order to capture more accurately the semantic relations and properties of
the entities of our domain, one might want to say that the role hasPart is transitive and
that isBelowOf is the inverse of isAboveOf.

Although the literature on fuzzy extensions of DLs has been flourishing and we have
also started to comprehend the difficulties of reasoning there are still several open issues
regarding the semantics and their properties until we fully comprehend their logical features
and provide proper ways to represent vague knowledge in the level of OWL. For example,
as we have seen earlier there are at-least two different ways to map a role range axiom into
a DL axiom. Although, these two different forms are logically equivalent in classical logics
this is not always the case in fuzzy DLs. This is also true for many other syntactic sugar
axioms, like concept disjointness, functional role axioms, domain and range restrictions
and the one-of (enumeration) constructor. All these need to be clarified and investigated
in order to further understand their logical properties and possibly provide guidelines for
using a fuzzy OWL language. Last but not least, the reduction of several f-OWL reasoning
services in expressive f-DL reasoning services has not been previously studied.

The current paper makes the following major contributions:
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1. It presents fuzzy extensions of the OWL language. First, we present a simplistic
extension that is only based on fuzzy instance relations and present its abstract
syntax and semantics which are based on the notions of fuzzy sets and fuzzy set
theoretic operators (see Section 4). To provide such semantics we mainly rely on
the equivalence between OWL axioms and axioms of expressive fuzzy DLs. Finally
we also present further extensions of OWL which allow for features such as fuzzy
nominals (Section 6.1) and fuzzy subsumption (Section 6.2).

2. As we have already discussed there are usually more than one ways to map an OWL
axiom into a DL axiom. The current paper provides a thorough investigation of
these axioms intending to shed some light on their properties. More precisely, we
investigate class disjointness axioms, role range axioms, functional role axioms, the
one-of/enumeration constructor (Section 4.2) and the fuzzy one-of/enumeration con-
structor (Section 6.1). This is very important since although in classical logics the
various different forms are these axioms and constructors are logically equivalent this
is not true in fuzzy logics. Consequently, we compare the different semantics try-
ing to explicate their intuitive meaning, assisting users and developers in choosing
among them. Moreover, we also investigate in which special cases these different
forms coincide. Finally, we also investigate on the semantics of fuzzy subsumptions.
We believe that this analysis could assist (fuzzy) knowledge engineering tasks and
users or system implementors to build tools for handling such knowledge.

3. For each of the above extensions, it shows how one can provide an RDF/XML seri-
alization of the extended abstracts syntax of fuzzy OWL. Using this syntax we can
create real fuzzy OWL ontologies and store fuzzy information (Section 4.3).

4. It presents a translation method for reducing fuzzy OWL ontology entailment to
fuzzy DL knowledge base satisfiability (Section 5). First, a method to map fuzzy
OWL ontologies to fuzzy DL knowledge bases is provided, thus fuzzy OWL entail-
ment is reduced to fuzzy DL knowledge base entailment. Subsequently, entailment
of knowledge bases should be reduced to satisfiability, which is achieved by reducing
every axiom of the knowledge base. Although the reduction of the most popular
types of fuzzy DL axioms (e.g. concept subsumption and fuzzy concept assertions)
to satisfiability has been studied in the literature there are plenty of axioms which
have not. Thus, we additionally show how to reduce transitive role axioms, fuzzy role
assertions and role subsumptions to the problem of satisfiability. Again, as in the case
of syntactic sugar constructors there are cases where more than one reductions could
be made according to which types of fuzzy operators are used. Our investigation is
general enough to cover fuzzy DLs with arbitrary choices of fuzzy operators.

5. Besides showing the reduction to KB unsatisfiability we also investigate on what we
call practical reductions. That is the reduction of several f-OWL axioms, like concept
inclusions, require checking for an infinite number of unsatisfiable KBs. Straccia [13]
has shown that for a specific class of fuzzy-DLs one can restrict to just two degrees.
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We show that this result does not extend to fuzzy-DLs that use arbitrary fuzzy
operators. Furthermore, for the case fo fuzzy DLs considered in [13] we also show
how this result can be extended for nominals (Theorem 5.6) and fuzzy nominals
(Corollary 6.1), while we also show a practical reduction for fuzzy subsumption in
f-DLs that use S-implications (Corollary 6.2).

At this point we want to make clear that our intention is not to present the ultimate or
one and only fuzzy OWL extension. Throughout these years there have been several fuzzy
features that have been proposed and added in Description Logics, like concept modifiers
[12], fuzzy quantifiers [21], comparison expressions [22], and many more, that one could
claim are missing from our presentation. Our goal here is to investigate the properties of
fuzzy extensions to Semantic Web languages. More precisely, the syntactic sugar construc-
tors, their meaning and finally the difficulties in reducing fuzzy OWL ontology entailment
to fuzzy DL knowledge base satisfiability. A “standard” f-OWL language could only be
the result of extensive face to face discussions between different research and industrial
parties and identification of requirements in the context of a standardization group as well
as evaluation of the efficiency and the existence of practical reasoning algorithms for each
of those fuzzy features.

The rest of the paper is organized as follows. In Section 2 we provide a quick introduc-
tion to fuzzy set theory, expressive Description Logics and the OWL language. In Section
3 we present the syntax and semantics of a simplistic fuzzy extension of SHOIN (D)
creating the f-SHOIN (D) DL. Although the semantics of f-SHOIN (D) have been pre-
sented in the literature in the past [11, 23] we recall them here for completeness reasons.
Subsequently, in Section 4 we present a (simplistic) fuzzy extension of OWL. We present
the abstract syntax and provide semantics by relying an the equivalence between fuzzy
OWL and expressive fuzzy Description Logics. Then, we use this simplistic extension as a
mechanism for providing our investigation on the syntactic sugar axioms of f-OWL, like the
disjoint classes, property range axioms and functional role axioms giving an insight on their
meaning, properties and also investigating when different expressions of these constructors
coincide. Having a mapping from f-OWL to f-SHOIN (D), in Section 5 we finally present
a technique that reduces the problem of f-OWL entailment to the problem of f-SHOIN (D)
knowledge base satisfiability, studying the reduction of the entailment of axioms that have
not been studied before. In the same section we show that the result of Straccia [13] about
reducing the number of degrees considered in the reduction of concept inclusion axioms
cannot be extended in fuzzy DLs that use arbitrary fuzzy operators. Then, in Section 6
we present some further extension compared to the initial simplistic one. First, we extend
f-OWL with the fuzzy one-of/enumeration constructor [24], while then we extend it with
fuzzy subsumptions [11]. For both these reductions we present again the extended abstract
syntax of f-OWL, its semantics, the reduction to satisfiability, and provide an investigation
on these operators. Finally, Section 7 concludes the paper.
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2. Preliminaries

2.1. Fuzzy Sets
Fuzzy set theory and fuzzy logic are widely used for capturing vague knowledge [20]

in applications. While in classical set theory an element either belongs to a set or not,
in fuzzy set theory elements belong only to a certain degree. More formally, let X be a
collection of elements (the universe of discourse), i.e. X = {x1, x2, . . .}. A crisp subset S
of X is any collection of elements of X that can be defined with the aid of its characteristic
function χS(x) that assigns any x ∈ X to the value 1 or 0 if this element belongs to X or
not, respectively.

On the other hand, a fuzzy subset A of X, is defined by a membership function µA(x), or
simply A(x), x ∈ X, of the form µA(x) : X −→ [0, 1]. This membership function assigns any
x ∈ X to a value between 0 and 1 that represents the degree in which this element belongs
to X. Similarly, we can define fuzzy relations. A fuzzy relation R over X×X is defined by
a function which, given a pair of elements 〈x, y〉 returns the degree that the pair belongs to
the fuzzy relation. Furthermore, the most important operations and properties defined on
crisp sets and relations, like complement, union, intersection, transitivity etc, are extended
in order to cover fuzzy sets and fuzzy relations, thus creating a sound mathematical theory
which is today applied successfully in many applications.

Now we will introduce the fuzzy set theoretic operators.
The operation of a fuzzy complement (c) is a unary operation, defined by a function

of the form c : [0, 1] → [0, 1]. In order to produce meaningful fuzzy complements, these
functions must satisfy certain properties. More precisely, they must satisfy the following
conditions:

• boundary conditions: c(0) = 1 and c(1) = 0

• monotonic decreasing : for a ≤ b, c(a) ≥ c(b).

Most of the cases fuzzy complements are also continuous and involutive, for each a ∈ [0, 1]
c(c(a)) = a, holds. Many widely used fuzzy complements, like the Lukasiewicz negation,
cL(a) = 1 − a and the Sugeno class, cS(a) = 1−a

1+λa , λ ∈ (−1,∞) satisfy them. One
non-involutive fuzzy complement is the Gödel complement given by, cG(a) = 0 if a > 0,
otherwise c(0) = 1. The equilibrium of a fuzzy complement is defined as any point ec for
which c(ec) = ec.

The operation of fuzzy intersection is performed by a function of the form t : [0, 1] ×
[0, 1] → [0, 1], called t-norm [20] operation. These functions must satisfy the following
properties:

• boundary condition: t(a, 1) = a,

• monotonic increasing : for b ≤ d, t(a, b) ≤ t(a, d)
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• commutative: t(a, b) = t(b, a),

• associative: t(a, t(b, c)) = t(t(a, b), c).

Usually, t-norm operations are also considered to be continuous and subidempotent, i.e.
t(a, a) < a for all a ∈ (0, 1). Such norms are called Archimedean t-norms. The only
idempotent t-norm is the Gödel t-norm given by, tG(a, b) = min(a, b). It can be proved that
for any t-norm t it holds that, a, b ≥ t(a, b), and t(a, 0) = 0. Commonly used Archimedean
t-norms are the Lukasiewicz t-norm tL(a, b) = max(0, a + b − 1), and the product t-norm
tP (a, b) = a · b. A t-norm is called nilpotent if for every a ∈ (0, 1] (called nilpotent element)
there exists some n ∈ N such that:

t(a, a, . . . , a︸ ︷︷ ︸
n−times

) = 0.

For example, the Lukasiewicz t-norm is nilpotent since t(0.3, 0.3) = max(0, 0.3+0.3−1) = 0.
The operation of fuzzy union is performed by a function u : [0, 1] × [0, 1] → [0, 1],

called t-conorm. Similarly to t-norms, these functions satisfy the boundary condition,
u(a, 0) = a, are monotonic increasing, commutative and associative. In many cases t-
conorms are continuous and superidempotent, u(a, a) > a for all a ∈ (0, 1). Such norms
are called Archimedean t-conorms. The only idempotent t-conorm is the Gödel t-conorm
given by, uG(a, b) = max(a, b). It can be proved that for any t-conorm u it holds that,
a, b ≤ u(a, b), and u(a, 1) = 1. Commonly used Archimedean t-conorms are the Lukasiewicz
t-conorm uL(a, b) = min(1, a + b), and the probabilistic sum uP (a, b) = a + b − a · b.

Another important operation in fuzzy logics is the fuzzy implication, which gives a
truth value to the predicate A → B. A fuzzy implication is a function J of the form
J : [0, 1] × [0, 1] → [0, 1], which is monotonic decreasing (increasing) on the first (second)
argument. In fuzzy logics, we are usually interested in two kinds of fuzzy implications, i.e.,

• S-implications: JS(a, b) = u(c(a), b),

• R-implications: JR(a, b) = sup{x ∈ [0, 1] | t(a, x) ≤ b},

where a, b are the truth values for A and B, respectively. S-implications result from the
extension of the proposition ¬A ∨ B with fuzzy operators, while R-implications by the
proposition max{x ∈ [0, 1] | a ∧ x ≤ b}, which is an alternative expression for logical
implication. Commonly used R-implications are the Lukasiewicz implication JL(a, b) =
min(1, 1 − a + b), the Gödel implication, JG(a, b) = b, if a > b, JG(a, b) = 1 otherwise,
and the Goguen implication, JP (a, b) = a/b, if a > b, JP (a, b) = 1 otherwise, while for
S-implications the Kleene-Dienes implication, JKD(a, b) = max(1 − a, b). Note that the
Lukasiewicz implication is both an R and an S-implication, i.e. sup{x | tL(a, x) ≤ b} =
uL(cL(a), b). For each R-implication there is an associated fuzzy complement, called the
precomplement of J , defined by c(a) = J (a, 0). The precomplement is interesting when
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one investigates meta-mathematical properties of fuzzy logics [25] but from a reasoning
(practical) point of view is less interesting, since for both the Goguen and the Gödel R-
implications their precomplement is the Gödel negation.

The above mentioned classes of fuzzy implications have some important differences.
For example, for all R-implications JR(a, b) = 1 iff a ≤ b, as well as for any R-implication
JR, its respective t-norm t and a, b, c ∈ [0, 1] it holds that t(a, b) ≤ c ⇔ JR(a, c) ≥ b. In
other words JR and t are adjoint operators.

We conclude that in order to define a fuzzy logic we need to specify the fuzzy operations,
c, t, u and J , that we are going to use. Such a collection of operations would be referred to
as a fuzzy quadruple, 〈c, t, u,J 〉, or fuzzy triple in the case of 〈c, t, u〉. In the current paper
we will provide a general investigation of fuzzy DLs and fuzzy OWL, regardless of the norm
operations used, while in some occasions we will go into more detail on the properties of
fuzzy OWL and DLs when specific norm operations are used.

2.2. Expressive Description Logics
Description Logics (DLs) [3] are a family of logic-based knowledge representation for-

malisms designed to represent and reason about the knowledge of an application domain in
a structured and well-understood way. They are based on a common family of languages,
called description languages, which provide a set of constructors to build concept (class)
and role (property) descriptions. Such descriptions can be used in axioms and assertions
of DL knowledge bases and can be reasoned about with respect to (w.r.t.) DL knowledge
bases by DL systems

In this section, we will briefly introduce the SHOIN (D) DL, which will be extended
later. A description language consists of an alphabet of distinct concept names (or atomic
concepts) (C), abstract role names (RA), concrete role names (RD)2, abstract individ-
uals (IA), concrete individuals (ID) and (concrete) datatypes (D)3. Subsequently, a set
of constructors can be inductively applied over (atomic) concepts to define more complex
ones.

The set of SHOIN (D)-roles is defined by RA ∪ {R− | R ∈ RA} ∪ RD, where R− is
called the inverse role of R. Let A ∈ C, R,S ∈ RA where S is a simple role4, Ti ∈ RD,
d ∈ D, o ∈ IA, c ∈ ID and n ∈ N, then SHOIN (D)-concepts are defined inductively by
the following production rule:

2Intuitively, abstract roles connect two (abstract) individuals/object, as e.g. friends(george,tom), while
concrete roles connect an individual with (concrete) individuals/datavalues, e.g. hasAge(george,“28”)

3In First-Order Logic terminology, concepts are unary predicates (C(x) where x is a variable), and roles
are binary predicated (R(x, y))

4A role is called simple if it is neither transitive nor it has any transitive sub-role. This restriction is
crucial in order to retain decidability [26].
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C,D −→ ⊥ | ⊤ | A | C ⊔ D | C ⊓ D | ¬C | ∀R.C | ∃R.C |≥ pS |≤ pS |
∀T.u | ∃T.u |≥ pT |≤ pT | {o}

u −→ d | {c}

Concepts ∃R.C and ∀R.C are called existential and value restrictions, respectively. Con-
cepts of the form ≤ nR and ≥ nR are called number restrictions, while concepts of the
form {o} nominals.

By restricting n to take only the values 0 and 1, i.e. concepts of the form ≤ 1R, ≥ 1R,
≥ 0R and ≤ 0R, and by removing nominals (similarly with concrete individuals) we obtain
the definition of SHIF(D)-concepts.

Description Logics have a model theoretic semantics, which are defined in terms of in-
terpretations. An interpretation is a tuple I = (ΔI , ΔD, ·I , ·D), where the abstract domain
ΔI is a nonempty set of objects, the datatype domain ΔD is the domain of interpreta-
tion of all datatypes (disjoint from ΔI) consisting of data values and ·I and ·D are two
interpretation functions that map,

• each abstract individual a ∈ IA to an element aI ∈ ΔI ,

• each concrete individual c ∈ ID to an element cD ∈ ΔD,

• each concept name A ∈ C to a subset AI ⊆ ΔI ,

• each datatype d to a subset dD ⊆ ΔD,

• each abstract role R ∈ RA to a relation RI ⊆ ΔI × ΔI and

• each concrete role T ∈ RD to a relation T I ⊆ ΔI × ΔD.

Interpretations can be extended to give semantics to arbitrary SHOIN (D)-concepts.
These are depicted in Table 1, where x, y ∈ ΔI and t ∈ ΔD.

A SHOIN (D) knowledge base (KB) consists of a TBox, an RBox and an ABox. A
SHOIN (D) TBox is a finite set of concept inclusion (also called subsumption) axioms of
the form C ⊑ D, where C,D are SHOIN (D)-concepts. An interpretation I satisfies C ⊑
D if CI ⊆ DI . Note that concept inclusion axioms of this form are called General Concept
Inclusions (GCIs) [3], while if C is atomic, i.e. the subsumption is of the form A ⊑ D, with
A ∈ C we speak of concept specifications. If a TBox only includes concept specifications
then it is called simple. Moreover, if a concept A is defined directly or indirectly with itself
the TBox is called cyclic; in a different case it is called acyclic. A SHOIN (D) RBox is
a finite set of transitive role axioms (Trans(R)), and role inclusion axioms (R ⊑ S). An
interpretation I satisfies Trans(R) if, for all x, y, z ∈ ΔI , {〈x, y〉, 〈y, z〉} ⊆ RI → 〈x, z〉 ∈
RI , and it satisfies R ⊑ S if RI ⊆ SI . A set of role inclusion axioms defines a role
hierarchy. In some cases functional role axioms of the form Func(R) are considered. An
interpretation I satisfies Func(R) if ∀b1, b2 ∈ ΔI .RI(a, b1) ∧ RI(a, b2) → b1 = b2 [3]. As
we will see in the following functional role axioms can be represented by regular concept
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Table 1: Semantics of SHOIN (D)-concepts

Constructor Syntax Semantics
top ⊤ ΔI

bottom ⊥ ∅
general negation ¬C ΔI \ CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

exists restriction ∃R.C {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
value restriction ∀R.C {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
at-most restriction ≤ pS {x | ♯{y | SI(x, y)} ≤ p}
at-least restriction ≥ pS {x | ♯{y | SI(x, y)} ≥ p}
nominal {o} {o}I = {oI}
datatype exists ∃T.d (∃T.u)I = {x | ∃t.〈x, t〉 ∈ T I ∧ t ∈ uD}
datatype value ∀T.d (∀T.u)I = {x | ∃t.〈x, t〉 ∈ T I → t ∈ uD}
datatype at-least ≥ pT (> pT )I = {x | ♯{t | 〈x, t〉 ∈ T I} ≥ p}
datatype at-most ≤ pT (6 pT )I = {x | ♯{t | 〈x, t〉 ∈ T I} ≤ p}
datatype nominal {c} {c}I = {cD}

subsumption axioms. A SHOIN ABox is a finite set of individual axioms (or assertions)
of the form a : C, called concept assertions, or (a, b) : R, called role assertions, or a 6 .= b,
stating that two individuals are different. An interpretation I satisfies a : C if aI ∈ CI , it
satisfies (a, b) : R if 〈aI , bI〉 ∈ RI and it satisfies a 6 .= b, if aI 6 .= bI .

2.3. The Web Ontology Language OWL
OWL is a standard (W3C recommendation) for expressing ontologies in the Semantic

Web [2]. The OWL recommendation actually consists of three languages of increasing ex-
pressive power: OWL Lite, OWL DL and OWL Full. OWL Lite and OWL DL are basically
very expressive Description Logics (DLs); they are almost5 equivalent to the SHIF(D)
and SHOIN (D) DLs [2]. Furthermore, there are some syntactic differences, e.g. OWL has
an RDF/XML syntax as well as an abstract syntax that is slightly different than that of
DLs.. Furthermore, there are several syntactic sugar axioms for encapsulating and hiding
complex DL axioms. OWL Full provides the same set of constructors as OWL DL, but
allows them to be used in an unconstrained way, creating meta-modelling statements [27].
Because of this feature OWL Full has been proved to be undecidable [27]; therefore, when
we mention OWL in this paper, we usually mean OWL DL.

Let C, RA, RD, IA and ID be the sets of class names, object property names, datatype
property names, abstract individuals and concrete individuals, respectively. Note that in
OWL terminology DL roles are just called properties. An OWL DL interpretation is fairly

5They also provide annotation properties, which Description Logics do not.

10



Table 2: OWL Class and Property Descriptions
Abstract Syntax DL Syntax Semantics

Class(A) A AI ⊆ ΔI

owl:Thing ⊤ ⊤I =ΔI

owl:Nothing ⊥ ⊥I = ∅
intersectionOf(C1 C2 . . . ) C1 ⊓ C2 (C1 ⊓ C2)

I = CI
1 ∩ CI

2

unionOf(C1 C2 . . . ) C1 ⊔ C2 (C1 ⊔ C2)
I = CI

1 ∪ CI
2

complementOf(C) ¬C (¬C)I = ΔI \ CI

oneOf(o1 o2 . . . ) {o1} ⊔ {o2} ({o1} ⊔ {o2})I ={o1
I ,o2

I}
restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R value(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(S minCardinality(p)) > pS (> pS)I = {x | ♯{y.〈x, y〉 ∈ SI} ≥ p}
restriction(S maxCardinality(p)) 6 pS (6 pS)I = {x | ♯{y.〈x, y〉 ∈ SI} ≤ p}
oneOf(c1 c2 . . . ) {c1} ⊔ {c2} ({c1} ⊔ {c2})I = {cD1 , cD2 }
restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ T I ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ T I → t ∈ uD}
restriction(T value(c)) ∃T.{c} (∃T.{c})I = {x | 〈x, cD〉 ∈ TI}
restriction(T minCardinality(p)) > pT (> pT )I = {x | ♯{t | 〈x, t〉 ∈ TI} ≥ p}
restriction(T maxCardinality(p)) 6 pT (6 pT )I = {x | ♯{t | 〈x, t〉 ∈ TI} ≤ p}
ObjectProperty(S) S SI ⊆ ΔI × ΔI

ObjectProperty(S′ inverseOf(S)) S− (S−)I ⊆ ΔI × ΔI

DatatypeProperty(T ) T T I ⊆ ΔI × ΔD

standard by Description Logic standards. Thus, again we have a tuple I = (ΔI , ΔD, ·I , ·D),
where the abstract domain ΔI is a nonempty set of objects, the datatype domain ΔD is
the domain of interpretation of all datatypes (disjoint from ΔI) consisting of data values
and ·I and ·D are two interpretation functions that map, abstract individual and concrete
individuals as before, class names as concept names, datatypes as before, object properties
as abstract roles and datatype properties as concrete roles. Then it can be extended
to complex OWL class and property descriptions. Table 2 presents the abstract syntax
of OWL class and property descriptions, their corresponding DL syntax and finally the
semantics of these descriptions which is an immediate result of the mapping to DL concepts
and roles.

There are some remarks regarding Table 2. First, we can see that the one-of constructor
[3] (with DL syntax {o1, . . . , om}) allowed in OWL is a syntactic sugar in the presence of
nominals and disjunction, i.e. {o1, . . . , om} ≡ {o1}⊔ . . .⊔{om}. Since such constructors are
allowed in OWL, such axioms are directly mapped to them. Similarly, the value operator
(called fills constructor in DLs [3] with syntax R : o), is a syntactic sugar in the presence
of nominals and existential restrictions. More precisely, R : o ≡ ∃R.{o}.

Subsequently, OWL allows class and property axioms. As with class and property
descriptions, OWL axioms can be seen as DL axioms. Even axioms that seem to provide
more expressive power to OWL can still be mapped to DL axioms. Table 3 presents the
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Table 3: OWL Class and Property Axioms

Abstract Syntax DL Syntax Semantics

Class(A partial C1 . . . Cn) A v C1 u · · · u Cn AI ⊆ CI
1 ∩ · · · ∩ CI

n

Class(A complete C1 . . . Cn) A ≡ C1 u · · · u Cn AI = CI
1 ∩ · · · ∩ CI

n

EnumeratedClass(A o1 . . . on) A ≡ {o1} t . . .t {on} AI = {oI1 , . . . , oIn}
SubClassOf(C1, C2) C1 v C2 CI

1 ⊆ CI
2

EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn CI
1 = · · · = CI

n

DisjointClasses(C1 . . . Cn) Ci v ¬Cj CI
i ⊆ (¬Cj)

I , 1 ≤ i < j ≤ n

SubPropertyOf(R1, R2) R1 v R2 RI
1 ⊆ RI

2
EquivalentProperties(R1 . . . Rn) R1 ≡ · · · ≡ Rn RI

1 = · · · = RI
n

ObjectProperty(R super(R1) ... super(Rn) R v Ri RI ⊆ RI
i

domain(C1) ... domain(Ck) ∃R.> v Ci RI ⊆ CI
i × ΔI

range(C1) ... range(Ch) > v ∀R.Ci RI ⊆ ΔI × CI
i

[InverseOf(S)] R ≡ S− RI = (S−)I

[Symmetric] R ≡ R− RI = (R−)I

[Functional] > v6 1R ∀x ∈ ΔI .♯{y | 〈x, y〉 ∈ RI} ≤ 1}
[InverseFunctional] > v6 1R− ∀x ∈ ΔI .♯{y | 〈x, y〉 ∈ (R−)I} ≤ 1}
[Transitive]) Trans(R) {〈x, y〉, 〈y, z〉} ⊆ RI → 〈x, z〉 ∈ RI

SubPropertyOf(T1, T2) T1 v T2 TI
1 ⊆ TI

2
EquivalentProperties(R1 . . . Rn) T1 ≡ · · · ≡ Tn TI

1 = · · · = TI
n

ObjectProperty(T super(T1) ... super(Tn) T v Ti TI ⊆ TI
i

domain(C1) ... domain(Ck) ∃T.> v Ci TI ⊆ CI
i × ΔD

range(d1) ... range(dh) > v ∀T.di TI ⊆ ΔI × dD
i

[Functional] > v6 1T ∀x ∈ ΔI .♯{t | 〈x, t〉 ∈ TI} ≤ 1}
Individual(o type(C1) . . . type(Cn) o : Ci oI ∈ CI

i , 1 ≤ i ≤ n
value(R1, o1) . . . value(Rn, on)) (o, oi) : Ri 〈oI , oIi 〉 ∈ RI

i , 1 ≤ i ≤ n
Sameindividual(o1 . . . on) o1 = · · · = on oI1 = · · · = oIn
DifferentIndividuals(o1 . . . on) oi 6= oj oIi 6= oIj , 1 ≤ i < j ≤ n

abstract syntax of OWL class and property axioms. It also presents the corresponding DL
axiom which in turn gives rise to the semantics of the axiom. Again as one can note from
Table 3 enumerated classes, property domain and range axioms, class disjointness axioms
and functional role axioms are just syntactic sugar and can be represented using regular,
but sometimes cumbersome, DL axioms.

3. A Simplistic Fuzzy Extension of the SHOIN (D) DL

In this section we present a (simplistic) fuzzy extension of the f-SHOIN (D) DL. Up
to now several fuzzy extensions of DL languages have been presented in the literature,
advocating for the need for different “fuzzy” features which have been traditionally inves-
tigated and proposed in the Fuzzy Set literature [20]. For example, Straccia proposed the
fuzzification of concept inclusions [11], Bobillo et al. proposed a fuzzy extension of the
nominal constructor creating fuzzy nominals [24], Sánchez and Tettamanzi [21] proposed
the use of fuzzy quantifiers, Hölldobler et al. [28] proposed fuzzy concept modifiers, Kang
et al. proposed comparison expressions [22]. We will not attempt to present and investigate
all these features, thus we are rather going to start with a simplistic extension based only
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on fuzzy assertions (like the one presented in [29]) which is enough to present our main
results, while in subsequent section we will investigate some of these features.

As usual we have an alphabet of distinct concept names (C), abstract role names (RA),
concrete role names (RD), abstract individuals (IA) and concrete individuals (ID). The
set of SHOIN (D)-roles is defined by RA ∪ {R− | R ∈ RA} ∪ RD, where R− is called
the inverse role of R. Let A ∈ C, R,S ∈ RA where S is a simple role6, Ti ∈ RD, d is
a datatype, o, o1, . . . , ok ∈ IA, c, n ∈ (0, 1] and p, k ∈ N, then f-SHOIN (D)-concepts are
defined inductively by the following production rule:

C,D −→ ⊥ | ⊤ | A | C ⊔ D | C ⊓ D | ¬C | ∀R.C | ∃R.C |≥ pS |≤ pS |
∀T.u | ∃T.u |≥ pT |≤ pT | {o} | {o1, . . . , ok} | R : o

u −→ d | {c}

As we can see f-SHOIN (D)-concepts of our simplistic extension are formed by a similar
abstract syntax as that of crisp SHOIN (D)-concepts.

The semantics of fuzzy DLs are provided by a fuzzy interpretation I = (ΔI , ·I) [13]
together with an interpretation of the datatype (concrete) domain D = (ΔD, ·D) [11].
Hence, a fuzzy interpretation is defined by a 4-tuple I = (ΔI , ΔD, ·I , ·D), where the
abstract domain ΔI is a non-empty set of objects, the datatype domain ΔD is the domain
of interpretation of all datatypes (disjoint from ΔI) consisting of data values, and ·I and
·D are two fuzzy interpretation functions, which map

• an abstract individual a to an element aI ∈ ΔI ,

• a concrete individual c to an element cD ∈ ΔD,

• a concept name A to a function AI : ΔI → [0, 1],

• an abstract role name R to a function RI : ΔI × ΔI → [0, 1],

• a datatype d to a function dD : ΔD → [0, 1], and

• a concrete role name T to a a function T I : ΔI × ΔD → [0, 1].

As we see we have used the concept of fuzzy datatypes introduced in [11]. Intuitively, an
object (pair of objects) can now belong to a fuzzy concept (role) to any degree between 0
and 1. For example, HotPlaceI(RomeI) = 0.7, means that RomeI is a hot place to a degree
equal to 0.7. Moreover, fuzzy interpretations can be extended to interpret f-SHOIN (D)-
concepts and roles, with the aid of the fuzzy set theoretic operations, defined in Section
2.1. The complete semantics are depicted in Table 4.

6A role is called simple if it is neither transitive nor it has any transitive sub-role. This restriction is
crucial in order to retain decidability [26]

13



Table 4: Syntax and Semantics of f-SHOIN (D)-concepts

Constructor DL Syntax Semantics

top concept ⊤ ⊤
I
(a) = 1

bottom ⊥ ⊥I(a) = 0
data value c cI = cD

datatype d dI(y) = dD(y)

conjunction C ⊓ D (C ⊓ D)I(a) = t(CI(a), DI(a))
disjunction C ⊔ D (C ⊔ D)I(a) = u(CI(a), DI(a))
negation ¬C (¬C)I(a) = c(CI(a))
nominal {o} {o}I(a) = 1 iff oI = a, {o}I(a) = o otherwise
one-of {o1, . . . , ok} {o1, . . . , ok}I(a) = 1 if a ∈ {oI1 , . . . , oI

k}, 0 otherwise
fills R : o (R : o)I(a) = RI(a, oI)

existential restriction ∃R.C (∃R.C)I(a) = supb∈ΔI t(RI(a, b), CI(b))
value restriction ∀R.C (∀R.C)I(a) = infb∈ΔI J (RI(a, b), CI(b))

at-least restriction ≥ pS (≥ pS)I(a) = sup
b1,...,bp∈ΔI

t(
p

t
i=1

SI(a, bi), t
i<j

{bi 6= bj})

at-most restriction ≤ pS (≤ pS)I(a) = inf
b1,...,bp+1∈ΔI

J (
p+1

t
i=1

SI(a, bi), u
i<j

{bi = bj})

inverse role R− (R−)I(b, a) = RI(a, b)

datatype exists ∃T.d (∃T.d)I(a) = supy∈ΔD
t(TI(a, y), dI(y)),

datatype value ∀T.d (∀T.d)I(a) = infy∈ΔD J (T I(a, y), dI(y))

datatype at-least ≥ pT (≥ pT )I(a) = sup
y1,...,yp∈ΔD

t(
p

t
i=1

RI(a, yi), t
i<j

{yi 6= yj})

datatype at-most ≤ pT (≤ pT )I(a) = inf
y1,...,yp+1∈ΔD

J (
p+1

t
i=1

RI(a, yi), u
i<j

{yi = yj})

datatype nominal {c} {c}I(y) = 1 iff cD = y, {c}D(y) = o otherwise

There are some remarks regarding Table 4. Although, there are several proposals for
providing semantics for number restrictions, some examples are [21, 11, 30, 31, 32], we have
chosen to follow the semantics proposed in [11], later revised in [23]. That is because, as
showed in [14], under these semantics there exist efficient procedures for deciding the key
inference problems of fuzzy DLs, like entailment and subsumption. The key property here
is that the equalities (=) and inequalities ( 6=) of objects of ΔI and ΔD in the semantic
function of number restrictions are considered as crisp. In a case the similarity measure
between objects should have been considered, which we do not know how to handle in rea-
soning tasks such as entailment. Note also that recently there was a further proposal for
refining these semantics [33]. More precisely, in the semantic function of number restric-

tions, the authors have replaced the t-norm product
p
t

i=1
RI(a, yi) with min. The intuition

again is to retain the counting property that provides nice reasoning properties [14].
A fuzzy TBox is a finite set of fuzzy concept axioms. Let C and D be f-SHOIN (D)-

concepts. Fuzzy concept axioms of the form C ⊑ D are called fuzzy concept inclusion
axioms, while fuzzy concept axioms of the form C ≡ D are called fuzzy equivalence axioms.
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A fuzzy interpretation I satisfies C ⊑ D if ∀a ∈ ΔI , CI(a) ≤ DI(a) and it satisfies C ≡ D
if CI(a) = DI(a). Finally, a fuzzy interpretation I satisfies an f-SHOIN (D) TBox T
if it satisfies each axiom in T ; then we say that I is a model of T . Please note that in
this simplistic extension we give a crisp subsumption of fuzzy concepts. These semantics
differ from the ones in [11], where a fuzzy subsumption of fuzzy concepts was provided,
investigated in Section 6.2.

A fuzzy RBox is a finite set of fuzzy role axioms. Let R,S ∈ RA and T,U ∈ RD. Then
fuzzy role axioms of the form Trans(R), are called fuzzy transitive role axioms, while fuzzy
role axioms of the form R ⊑ S or T ⊑ U are called fuzzy role inclusion axioms. A fuzzy
interpretation I satisfies Trans(R) if ∀a, c ∈ ΔI , RI(a, c) ≥ supb∈ΔI{t(RI(a, b), RI(b, c))},
it satisfies R ⊑ S if ∀〈a, b〉 ∈ ΔI × ΔI , RI(a, b) ≤ SI(a, b), and it satisfies T ⊑ U if
∀〈a, y〉 ∈ ΔI × ΔD, T I(a, y) ≤ UI(a, y). Finally, I satisfies an f-SHOIN (D) RBox if it
satisfies each role axiom in R; in this case we say that I is a model of R.

A fuzzy ABox is a finite set of fuzzy assertions. A fuzzy assertion [13] is of the form
(a : C)⊲⊳n, ((a, b) : R)⊲⊳n, where ⊲⊳ ∈ {=,≥, >,≤, <}, a

.= b or a 6 .= b, for a, b ∈ IA. For a
fuzzy interpretation I,

I satisfies (a : C) ≥ n if CI(aI) ≥ n,
I satisfies ((a, b) : R) ≥ n if RI(aI , bI) ≥ n,

I satisfies (a : C) ≤ n if CI(aI) ≤ n,
I satisfies ((a, b) : R) ≤ n if RI(aI , bI) ≤ n,

I satisfies a
.= b if aI = bI ,

I satisfies a 6 .= b if aI 6= bI .

The satisfiability of fuzzy assertions with > and < is defined similarly. A fuzzy interpreta-
tion I satisfies a fuzzy ABox A if it satisfies all fuzzy assertions in A. In this case, we say
that I is a model of A. If A has a model then we say that it is consistent, otherwise it is
inconsistent.

A fuzzy knowledge base Σ is a triple 〈T ,R,A〉, that contains a fuzzy TBox, RBox and
ABox, respectively. A fuzzy interpretation I satisfies an f-SHOIN (D) knowledge base Σ
if it satisfies all axioms in Σ; in this case, I is called a model of Σ.

We conclude this section by showing that fuzzy DLs are a conservative extension of
classical DLs in the sense that if we restrict to the truth set of Boolean logic, i.e. to the
values zero and one, we obtain the classical DLs..

Theorem 3.1. Fuzzy interpretations coincide with crisp interpretations if we restrict to
the membership degrees of 0 and 1.

Proof: The proof is given in the appendix

3.1. Inference Problems of Fuzzy DLs
Similarly to classical DLs, f-DLs also offer a set of inference services. Below, we sum-

marize the most important inference services of fuzzy DLs.
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• KB Satisfiability: An f-SHOIN (D) knowledge base Σ = 〈T ,R,A〉 is satisfiable
(unsatisfiable) iff there exists (does not exist) a fuzzy interpretation I which satisfies
all axioms in Σ.

• Concepts n-satisfiability: An f-SHOIN (D)-concept C is n-satisfiable w.r.t. Σ iff
there exists a model I of Σ in which there exists some a ∈ ΔI such that CI(a) = n,
and n ∈ (0, 1].

• Concept Subsumption: A fuzzy concept C is subsumed by D w.r.t. Σ iff in every
model I of Σ we have ∀d ∈ ΔI , CI(d) ≤ DI(d).

• ABox Consistency: An f-SHOIN (D) ABox A is consistent (inconsistent) w.r.t.
a TBox T and an RBox R if there exists (does not exist) a model I of T and R
which satisfies every assertion in A.

• Entailment: Given an axiom Ψ, we say that Σ entails Ψ, writing Σ |= Ψ, iff every
model I of Σ satisfies Ψ.

• Greater Lower Bound (glb): The greatest lower bound of an assertion Φ w.r.t. Σ
is defined as,

glb(Σ, Φ) = sup{n | Σ |= Φ ≥ n}, where sup ∅ = 0.

As it has been shown in the literature, all of the above inference problems of fuzzy
DLs w.r.t. a knowledge base Σ can be reduced to knowledge base satisfiability [13]. More
precisely, let Σ = 〈T ,R,A〉 be an f-SHOIN (D) KB. Then we have the following equiva-
lences:

C is n-satisfiable w.r.t. Σ iff 〈T ,R,A ∪ {(a : C) ≥ n}〉 is satisfiable
C ⊑ D w.r.t. Σ iff 〈T ,R,A ∪ {(a : C) ≥ n, (a : D) < n}〉

is unsatisfiable for every n ∈ [0, 1]
Σ |= (a : C) B n iff 〈T ,R,A ∪ {(a : C) ¬ B n}〉 is unsatisfiable.

There are some remarks regarding the above reductions. Firstly, note that traditionally
in DLs only the reduction of the entailment of concept axioms and (fuzzy) assertions is
considered. Differently, since in the following we will need to reduce the entailment of
knowledge bases (i.e. of arbitrary axioms) to KB unsatisfiability, in Section 5 we will extend
these results further. Secondly, note that the subsumption problem requires checking for
unsatisfiability for every degree n ∈ [0, 1]. Obviously, this is practically impossible. Straccia
proves [13] that for a specific class of fuzzy DLs, which we call fKD-DLs (see below for a
definition) it suffices to check for the unsatisfiability of the knowledge base only for two
randomly selected values each one from the intervals (0,0.5] and (0.5,1]. More precisely,
C ⊑ D w.r.t. Σ iff the knowledge base 〈T ,R,A∪{(a : C) ≥ n, (a : D) < n}〉 is unsatisfiable
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for each n ∈ {n1, n2}, where n1 ∈ (0, 0.5] and n2 ∈ (0.5, 1]. In Section 5 we will show that
this result does not generalize to fuzzy DLs that use arbitrary fuzzy operators, while it
generalizes to fKD-DLs that use any arbitrary continuous complement. Still in the case
that nominals are allowed (i.e. fKD-SHOIN (D)) more care should paid. In the following
we refer to such reductions as practical reductions.

Example 3.2. Consider our motivating scenario about image analysis. Suppose that im-
ages are about nature (landscapes, seaside, etc.) Suppose that we create the following fuzzy
knowledge base (Σ) in order to use reasoning-based image analysis:

T = {Leafs ≡ LightGreenColored ⊓ RegularTextured,
Log ≡ BrownColored ⊓ SmoothTextured,
Tree ≡ ∃hasPart.(Log ⊓ ∃isBelowOf.Leafs)},

R = {Trans(hasPart)}.

Subsequently, an image analysis/segmentation algorithm (like the RSST algorithm) has
been applied and has segmented the image in several regions. The analysis algorithm also
produces a set of values for each region, which consist of values about their color (in some
color model), texture and shape (from various image specific transforms). These values
can then be fuzzified with the aid of fuzzy partitions [20] creating fuzzy assertions like the
following ones:

A = (o1 : LightGreenColored) ≥ 0.85, (o1 : RegularTextured) ≥ 0.7,
(o2 : BrownColored) ≥ 1.0, (o2 : SmoothTextured) ≥ 0.9,
((o1, o2) : isAboveOf) ≥ 0.9, ((o3, o2) : hasPart) ≥ 0.8}

In order for a fuzzy interpretation I to be a model of T it should hold that:

LeafsI(oI1 ) = t(LightGreenColoredI(oI1 ), RegularTexturedI(oI1 )) = t(0.85, 0.7).

LogI(oI2 ) = t(BrownColoredI(oI2 ),SmoothTexturedI(oI2 )) = t(1.0, 0.9).

Moreover,

TreeI(oI3 ) = supb{t(hasPartI(oI3 , b), (Log ⊓ ∃isBelowOf.Leafs)I(b)}
= supb{t(hasPartI(oI3 , b), t(LogI(b), supc{t(isBelowOfI(b, c), LeafsI(c))}))}
≥ t(hasPartI(oI3 , oI2 ), t(LogI(oI2 ), t((isAboveOf−)I(oI2 , oI1 ), LeafsI(oI1 ))))
≥ t(0.8, t(t(1.0, 0.9), t(0.9, t(0.85, 0.7))))

Finally, depending on which t-norm we use in our application we can infer different values
for oI3 being a tree. For example, if t is the product t-norm then, TreeI(oI3 ) ≥ 0.385, if t
is the Lukasiewicz t-norm then TreeI(oI3 ) ≥ 0.15, while if we use the Gödel t-norm then
TreeI(oI3 ) ≥ 0.7.
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3.2. Concept equivalences of fuzzy DLs
In crisp DLs the semantics of the language forces a number of concept equivalences to

hold. For example, since in Boolean algebra the De Morgan laws are satisfied it holds that
¬(C ⊓D) ≡ ¬C ⊔¬D. In the current section we will investigate the most common concept
equivalences of crisp DLs in the context of fuzzy DLs. Several of these properties might
have already been presented sparsely in various papers, either implicitly or explicitly. Other
might be easily obtained by considering well known results in fuzzy First-Order Logic [25].
Here we attempt to gather the most common ones and explicitly present them in the DL
setting, which we believe is benefitial for the wider probably interested but likely unfamiliar
with fuzzy logic Semantic Web community.

Obviously, in the case of fuzzy DLs concept equivalences greatly depend on the mathe-
matical properties of the fuzzy operators (norms) that are used each time. Hence, different
combinations of norm operations result in f-DLs which satisfy different concept equiva-
lences. For any triple 〈c, t, u〉, due to the standard properties of the fuzzy complement,
t-norm and t-conorm, presented in Section 2.1, the following concept equivalences hold:

¬⊤ ≡ ⊥, ¬⊥ ≡ ⊤,
C ⊓ ⊤ ≡ C, C ⊔ ⊥ ≡ C,
C ⊔ ⊤ ≡ ⊤, C ⊓ ⊥ ≡ ⊥.

If the fuzzy complement is involutive then we also have, ¬¬C = C. Now if the fuzzy triple
satisfies the De Morgan laws (called dual triple), we additionally have,

¬(C ⊔ D) ≡ ¬C ⊓ ¬D and ¬(C ⊓ D) ≡ ¬C ⊔ ¬D.

For example the fuzzy triples, 〈cL, tL, uL〉, 〈cL, tG, uG〉, 〈cL, tP , uP 〉, are all dual triples.
Moreover, for any dual triple 〈c, t, u〉 and S-implication JS the following hold:

¬∃R.C ≡ ∀R.(¬C), ¬∀R.C ≡ ∃R.(¬C),

¬ ≤ pR ≡ ≥ (p + 1)R, ¬ ≥ pR ≡
{

≤ (p − 1)R, p ∈ N∗

⊥, p = 0

For example the quadruple 〈cL, tG, uG,JKD〉, satisfies this equivalence. It is worth noting
that the equivalences, ∃R.C ≡ ¬∀R.¬C and ∀R.C ≡ ¬∃R.¬C hold if additionally the fuzzy
complement is involutive.

Additionally, if the fuzzy triple satisfies the laws of contradiction and excluded middle,
then the following properties of boolean logic hold:

C ⊓ ¬C ≡ ⊥ and C ⊔ ¬C ≡ ⊤.

These laws are quite hard to be satisfied by fuzzy triples. For example, from the above
mentioned triples only the triple 〈cL, tL, uL〉 satisfies these laws. Moreover, if triples satisfy
the distributivity laws, then we have:
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C1 ⊓ (C2 ⊔ C3) ≡ (C1 ⊓ C2) ⊔ (C1 ⊓ C2) and
C1 ⊔ (C2 ⊓ C3) ≡ (C1 ⊔ C2) ⊓ (C1 ⊔ C2).

For example the pair of operators tG, uG is the only one that satisfies these laws. Fur-
thermore, under the semantics of number restrictions [11, 23] and used here, the concept
equivalence ∃R.⊤ ≡≥ 1R, holds. Concluding, we remark that it is known that no combi-
nation of fuzzy operators satisfies all the Boolean properties at the same time.

The above analysis justifies the need for introducing a special notation for distinguish-
ing between fuzzy DLs that use different norm functions. For example, usually in fuzzy
logic [25] the name of the fuzzy implication is used to denote the implication operator
considered in the specific setting, while the other operators are assumed to be the defined
ones. For example, in case J is an S-implication the fuzzy complement and t-conorm are
also defined, since J (a, b) = u(c(a), b), while t is obtained by t(a, b) = c(u(c(a), c(b))),
while if J is an R-implication then the t-norm is known, u is obtained as before but
dually, while the precomplement of J is taken as the fuzzy complement. Here we pro-
pose to use the name of the fuzzy implication as an index, more precisely the notation
fJ -DL in order to distinguish that this is not another DL operator (as capital letters in
DL notation indicate DL constructors). Hence, the notation fKD-SHOIN (D) indicates
the fuzzy SHOIN (D) language which uses the Lukasiewicz complement, the Gödel t-
norm and t-conorm and the Kleene-Dienes fuzzy implication, while by fL-SHOIN (D) we
indicate the fuzzy SHOIN (D) language which uses the Lukasiewicz, t-norm, t-conorm,
negation and fuzzy implication. Moreover, we use fS-SHOIN (D) to denote the whole
family of f-SHOIN (D) DLs that use S-implications and fR-SHOIN (D) for the family of
R-implications. Furthermore, this notation is more modular in the following sense. Some-
times, the precomplement of a fuzzy implication is the Gödel complement, for which no
reasoning algorithm exists. Thus, one usually replaces it with a specific continuous and
involutive complement. In this case we can use the notation, f〈cL,tp,up,Jp〉-L to explicitly
define the fuzzy operators used.

4. A Simplistic Fuzzy Extension of OWL

In this section, based on our simplistic fuzzy-SHOIN (D) extension we similarly present
a simplistic fuzzy extension of OWL DL by adding degrees to OWL facts. We will present
the model-theoretic semantics of the extended language and the syntactic changes that
need to take place both in the abstract syntax as well as the RDF/XML syntax of the
extended language.

4.1. Syntax and semantics of f-OWL
Our fuzzy OWL language shares essentially the same syntax with the crisp OWL lan-

guage as presented in Section 2.3. Hence, one is able to create OWL class descriptions
and OWL class and property axioms in exactly the same way this is done in the OWL
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Table 5: Fuzzy OWL Class and Property Descriptions
Abstract Syntax DL Syntax Semantics

Class(A) A AI : ΔI → [0, 1]

owl:Thing > >I
(a) = 1

owl:Nothing ⊥ ⊥I(a) = 0

intersectionOf(C D . . . ) C u D (C u D)I(a) = t(CI(a), DI(a))
unionOf(C D . . . ) C t D (C t D)I(a) = u(CI(a), DI(a))
complementOf(C) ¬C (¬C)I(a) = c(CI(a))

oneOf(o1 o2 . . . ) {o1} t . . . t {ok} ({o1} t . . . t {ok})I(a) =

ȷ

1, a ∈ {oI1 , . . . , oIk}
0, otherwise

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I(a) = supb∈ΔI t(RI(a, b), CI(b))
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I(a) = infb∈ΔI J (RI(a, b), CI(b))
restriction(R value(o)) ∃R.{o} (∃R.{o})I(a) = RI(a, oI)
restriction(R minCardinality(p)) ≥ pR (≥ pR)I(a) =

sup
b1,...,bp∈ΔI

t(
p
t

i=1
RI(a, bi), t

i<j
{bi 6= bj})

restriction(R maxCardinality(p)) ≤ pR (≤ pR)I(a) =

inf
b1,...,bp+1∈ΔI

J (
p+1
t

i=1
RI(a, bi), u

i<j
{bi = bj})

restriction(R cardinality(p)) ≥ pR u ≤ pR (≥ pR u ≤ pR)I(a) = t((≥ pR)I(a), (≤ pR)I(a))

oneOf(c1 c2 . . . ) {c1} t . . . t {ck} ({c1} t . . . t {ck})I(y) =

ȷ

1, y ∈ {cD1 , . . . , cDk }
0, otherwise

restriction(T someValuesFrom(d)) ∃T.d (∃T.d)I(a) = supy∈ΔD
t(TI(a, y), dI(y))

restriction(T allValuesFrom(d)) ∀T.d (∀T.d)I(a) = infy∈ΔD
J (TI(a, y), dI(y))

restriction(T value(c)) ∃T.{c} (∃T.{c})I(a) = TI(a, cD)
restriction(T minCardinality(p)) ≥ pT (≥ pT )I(a) =

sup
y1,...,yp∈ΔD

t(
p
t

i=1
TI(a, yi), t

i<j
{yi 6= yj})

restriction(T maxCardinality(p)) ≤ pT (≤ pT )I(a) =

inf
y1,...,yp+1∈ΔD

J (
p+1
t

i=1
TI(a, yi), u

i<j
{yi = yj})

restriction(T cardinality(p)) ≥ pT u ≤ pT (≥ pT u ≤ pT )I(a) = t((≥ pT )I(a), (≤ pT )I(a))

language. For example one can provide a visual description of the concept Mountain as
something that is brown, big and coarse. In OWL abstract syntax [2] this definition can
look as, Class(Mountain complete intersectionOf(Brown Coarse Big)).

The differences between crisp OWL and fuzzy OWL raise in the definition of OWL
facts (individual axioms) in order to be able to specify the membership degree and the
type of inequality of an individual (pair of individuals) to a fuzzy class (property). We
refer to such axioms as fuzzy facts. For example, in the previous case one might want to
state that an image region, reg1, is brown to a degree greater or equal than 0.8. As we
will see in the following in f-OWL the abstract syntax of such an axiom is, Individual(reg1

type(Brown) >= 0.8).
Although, the syntax modifications are minor, the semantics of f-OWL are based on

fuzzy interpretations, in order to interpret OWL classes and properties as fuzzy sets and
fuzzy relations. In the case of f-OWL DL these interpretations are fairly standard by
description logic standards. Hence, as introduced in Section 3, a fuzzy interpretation is a
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4-tuple I = (ΔI , ΔD, ·I , ·D) where ΔI , ΔD, ·I and ·D are as in the case of f-SHOIN (D).
An f-OWL interpretation can be extended to give semantics to fuzzy class descriptions

and fuzzy class and fuzzy property axioms. The abstract syntax, the respective fuzzy DL
syntax and the semantics of f-OWL class descriptions are depicted in Table 5. The abstract
syntax, f-DL syntax and semantics of f-OWL class and property axioms are depicted in
Table 6. In Table 6 the notation ([. . .]) is used to indicate that a field is optional. Hence,
specifying a membership degree along with an inequality is optional. This will be further
explained in the next section.

A fuzzy ontology, O, is a set of f-OWL axioms. We say that a fuzzy interpretation I is
a model of O iff it satisfies all axioms in O. A fuzzy ontology O1 entails a fuzzy ontology
O2, written O1 |= O2 if every model of O1 is a model of O2.

4.2. Syntactic Sugar Constructors of Fuzzy OWL
One of the interesting modelling properties of OWL is that it tries to abstract from DL

notation and axioms providing ways for even inexperienced users to create ontologies. For
those reasons OWL offers a set of axioms that are actually syntactic sugar of Description
Logic axioms. For example, OWL offers the ability to declare the range of a property R by
hiding the cumbersome DL syntax. Many such examples we have already seen before. In
classical logics the translation from OWL axioms into DL axioms is generally considered to
be straightforward and actually there exist more than one ways to map an OWL axiom into
a DL axiom, since due to the properties of Boolean algebra several equivalences exist. On
the other hand, the case is quite different for fuzzy OWL and fuzzy DLs. This is obvious
since as we have already discussed not all concept equivalences hold in fuzzy DLs, thus
different ways to translate an f-OWL axiom can lead to different semantic meanings. In
the following we will provide an investigation of the semantics of fuzzy OWL’s syntactic
sugar axioms and we will discuss in which cases these different ways of modelling coincide.

4.2.1. Domain and Range Restrictions
As we have already seen in Section 2.3 property domain axiom are usually translated

into DL axioms of the form ∃R.⊤ ⊑ C, which mean that if 〈a, b〉 ∈ RI then a ∈ CI . If
we use fuzzy semantics then if I is a fuzzy interpretation then I satisfies ∃R.⊤ ⊑ C if
supc∈ΔI t(RI(a, c), 1) ≤ CI(a). Hence, for an arbitrary b ∈ ΔI and due to the boundary
condition of t-norms t(RI(a, b), 1) = RI(a, b) ≤ CI(a). We see that provides a quite
intuitive interpretation, i.e. that the degree that a belongs to CI is at least equal to the
degree that the relation RI(a, b) holds.

The case of range restrictions is more involved. In classical DLs two different but
equivalent translations can be used. On the one hand ObjectProperty(R range(C)) can
be transformed into ⊤ ⊑ ∀R.C, while on the other into ∃R−.⊤ ⊑ C. In the case of fuzzy
DLs these two different axioms do not always give the same intuitive meaning. Let I be
a fuzzy interpretation. As with domain restrictions the second axiom will finally give the
inequality (R−)I(a, b) = RI(b, a) ≤ CI(a) which is again quite intuitive. On the other hand
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Table 6: Fuzzy OWL Axioms

Abstract Syntax DL Syntax Semantics

Class(A partial C1 . . . Cn) A v
n⊓

i=1
Ci AI(a) ≤ t(CI

1 (a), . . . , CI
n (a))

Class(A complete C1 . . . Cn) A ≡
n⊓

i=1
Ci AI(a) = t(CI

1 (a), . . . , CI
n (a))

EnumeratedClass(A o1 . . . ok) A ≡ {o1, . . . , ok} AI(a) = 1 if a ∈ {oI1 , . . . , oIk}, AI(a) = 0 otherwise

SubClassOf(C1, C2) C1 v C2 CI
1 (a) ≤ CI

2 (a)

EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn CI
1 (a) = · · · = CI

n (a)

DisjointClasses(C1 . . . Cn)
Ci u Cj v ⊥ t(CI

i (a), CI
j (a)) = 0, 1 ≤ i < j ≤ n

Ci v ¬Cj CI
i (a) ≤ (¬Cj)

I(a), 1 ≤ i < j ≤ n

SubPropertyOf(R1, R2) R1 v R2 RI
1 (a, b) ≤ RI

2 (a, b)

EquivalentProperties(R1 . . . Rn) R1 ≡ · · · ≡ Rn RI
1 (a, b) = · · · = RI

n(a, b)

ObjectProperty(R super(R1) ... super(Rn) R v Ri RI(a, b) ≤ RI
i (a, b)

domain(C1) ... domain(Ck) ∃R.> v Ci RI(a, b) ≤ CI
i (a)

range(C1) ... range(Ch)
> v ∀R.Ci 1 ≤ J (RI(a, b), CI

i (b))

∃R−.> v Ci RI(a, b) ≤ CI
i (b)

[InverseOf(S)] R ≡ S− RI(a, b) = (S−)I(a, b)

[Symmetric] R ≡ R− RI(a, b) = (R−)I(a, b)

[Functional]
> v6 1R inf

b1,b2∈ΔI
J (

2
t

i=1
RI(a, bi), b1 = b2) ≥ 1

Func(R) RI(a, bi) > 0, RI(a, bj) > 0 → bi = bj

[InverseFunctional]
> v6 1R− inf

b1,b2∈ΔI
J (

2
t

i=1
(R−)I(a, bi), b1 = b2) ≥ 1

Func(R−) RI(bi, a) > 0, RI(bj , a) > 0 → bi = bj

[Transitive]) Trans(R) supb∈ΔI t(RI(a, b), RI(b, c)) ≤ RI(a, c)

SubPropertyOf(T1, T2) T1 v T2 TI
1 (a, y) ≤ TI

2 (a, y)

EquivalentProperties(T1 . . . Tn) T1 ≡ · · · ≡ Tn TI
1 (a, y) = · · · = TI

n (a, y)

ObjectProperty(T super(T1) ... super(Tn) T v Ti TI(a, y) ≤ RI
i (a, y)

domain(C1) ... domain(Ck) ∃T.> v Ci TI(a, y) ≤ CI
i (a)

range(d1) ... range(dh) > v ∀T.di 1 ≤ infy∈ΔD
J (RI(a, y), dIi (y))

[Functional])
> v6 1T inf

y1,y2∈ΔD

J (
2
t

i=1
RI(a, yi), y1 = y2) ≥ 1

Func(T ) TI(a, yi) > 0, TI(a, yj) > 0 → yi = yj

Individual(o type(C1) [⊲⊳] [n1] . . . type(Cm) [⊲⊳] [nℓ] (o : Ci)⊲⊳ni CI
i (oI)⊲⊳ni, mi ∈ [0, 1], 1 ≤ i ≤ ℓ

value(R1, o1) [⊲⊳] [n1] . . . value(Rℓ, oℓ)) [⊲⊳] [nℓ] ((o, oi) : Ri)⊲⊳ni RI
i (oI , oIi )⊲⊳ni, ni ∈ [0, 1], 1 ≤ i ≤ ℓ

value(T1, c1) [⊲⊳] [n1] . . . value(Tℓ, cℓ)) [⊲⊳] [nℓ]) ((o, ci) : Ti)⊲⊳ni TI
i (oI , cIi )⊲⊳ni, ni ∈ [0, 1], 1 ≤ i ≤ ℓ

Sameindividual(o1 . . . oℓ) oi
.
= oj oIj = oIj , 1 ≤ i < j ≤ ℓ

DifferentIndividuals(o1 . . . oℓ) oi 6 .= oj oIi 6= oIj , 1 ≤ i < j ≤ ℓ
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the first axiom gives 1 ≤ infc∈ΔI J (RI(a, c), CI(c)). If J is an R-implication, then by the
properties of R-implications introduced in Section 2.1 and for some arbitrary b ∈ ΔI we
obtain RI(a, b) ≤ CI(b), which coincides with the semantics of the first axiom. But, in case
J is an S-implication no such equivalence can be derived. Needless to say that depending
on the norm operators used, such an axiom might cause R and C to be interpreted as crisp
sets. For example for the Kleene-Dienes S-implication, max(1 − RI(a, d), CI(d)) ≥ 1 iff
either RI(a, d) = 0 or CI(d) = 1. Consequently, it seems that the second translation gives
more intuitive semantics regardless of the fuzzy implication used.

4.2.2. Functional Role Axioms
According to Table 2.3 an OWL functional role axiom of the form ObjectProperty(R

Functional) is translated into the DL axiom ⊤ ⊑≤ 1R. Intuitively, this means that all
objects of ΔI participate in RI with at-most one other object. In the fuzzy case this

axiom gives us the inequation inf
b1,b2∈ΔI

J (
2
t

i=1
RI(a, bi), b1 = b2) ≥ 1. Since we only consider

crisp equalities and inequalities of objects (i.e. no similarity measures), in order for this
inequation to hold we should either have that t(RI(a, b1), RI(a, b2)) = 0 or b1 = b2 for
arbitrary b1, b2 ∈ ΔI . For non-nilpotent t-norms the first implies that either RI(a, b1) = 0
or RI(a, b2) = 0. In other words R is functional if for every a ∈ ΔI there exists at-most
one c ∈ ΔI such that RI(a, c) > 0. On the other hand for nilpotent t-norms it is possible
that there are many ci such that RI(a, ci) > 0 and t(RI(a, ci), RI(a, cj)) = 0, i 6= j as long
as the degrees RI(a, ci) are small enough for the t-norm to be equal to 0. This effect was
first observed for fuzzy DLs under the Lukasiewicz operators (to which all other nilpotent
t-norms are isomorphic) in [33]. Nevertheless, we note that this should not be considered
as a problematic or counterintuitive case but rather as a feature of the fuzzy semantics
provided by such operators. Certainly, a user familiar with classical logics would probably
not want to have this effect, but in a fuzzy setting, this behavior (as the one that we will
see about disjointness axioms next) might be acceptable. Concluding, in order to provide
the ability to use either of these semantics we have also given two different translations for
functional role axioms the one of which directly uses the DL axiom Func(R).

4.2.3. Disjointness Axioms
Now we investigate on disjointness axioms. Observe that we have also given two seman-

tics for disjoint classes. These are based on the two different syntactic forms for representing
concept disjointness in classical Description Logics, namely C ⊓D ⊑ ⊥ and C ⊑ ¬D. But,
while in crisp DLs the semantics of these two syntactic forms coincide, this is not always
true in fuzzy DLs [15]. More precisely, we have the following result.

Lemma 4.1. Let f〈c,t,u,J 〉-OWL, such that 〈c, t, u〉 satisfy the law of contradiction. Then
C ⊓ D ⊑ ⊥, holds if and only if C ⊑ ¬D, holds.

Proof: The proof is given in the appendix
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In case where the law of contradiction does not hold, these definitions have completely
different meanings. Consider for example an axiom of the form DisjointClasses(C D).
Using the first form of Table 6 we have t(CI(a), DI(a)) = 0 for all a ∈ ΔI . Now if t is a
non-nilpotent t-norm we have that t(CI(a), DI(a)) = 0 iff either CI(a) = 0 or DI(a) = 0.
This means that C and D do not “share” any objects even not to a very small degree.
On the other hand with the second definition we have that CI(a) ≤ c(DI(a)) and if for
example c is the Lukasiewicz negation we get CI(a) ≤ 1−DI(a) ⇒ CI(a)+DI(a) ≤ 1. In
other words C and D are considered disjoint even if they share some objects but as long as
these objects do not “strongly” belong (i.e. to a high degree) to both of them. Concluding,
as we can see the first definition gives a more crisp notion of disjointness which is closer to
our usuall intuition, but the second one could be seen as a fuzzy notion of disjointness.

4.2.4. The one-of/enumeration constructor
Finally, as in the case for crisp DLs, we can easily note that both the one-of/enumeration

constructor as well as the hasValue/fills operators are syntactic sugar in the presence of
standard nominals, disjunction and existential quantification. More precisely, ({o1}⊔ . . .⊔
{ok})I(a) = u({o1}I(a), . . . , {ok}I(a)) and due to the boundary condition of t-conorms
and the interpretation of nominals, u({o1}I(a), . . . , {ok}I(a)) = 1 iff there exists at least
one j ∈ [1, k] such that oIj = a or stated otherwise, if a ∈ {o1, . . . , ok} which gives the
semantics of one-of. On the other for hasValue restrictions, ∃R.{o} is interpreted as
(∃R.{o})I(a) = supb∈ΔI t(RI(a, b), {o}I(b)), but due to the semantics of nominals and
the boundary conditions of t-norms the right-hand side can be simplified into RI(a, oI)
since in a different case (i.e. b 6= oI) t(RI(a, b), 0) = 0 which coincides with the semantics
of the fills constructor we have presented.

4.3. Abstract and concrete RDF syntax of f-OWL
In the previous section we showed that in order to represent membership degrees in

fuzzy OWL the abstract syntax has to be extended. More precisely, from Table 6 we can
see that the abstract syntax of the one-of constructor and the OWL individual axioms has
been extended. In the current section we make these extensions formal as well as show
how one could use this abstract syntax to provide an RDF/XML concrete syntax by which
we can concretely represent fuzzy knowledge in real ontologies.

Table 7 presents the abstract syntax of fuzzy facts. We see that the usual definition
of these OWL constructors is extended with the new elements degree and ineqType. The
element ineqType is used to specify the inequality type that is taking place in the instance
relation. Thus, the values of this element are the strings, “>=”, “<=”, “>” and “<” and
“=”. Finally, the element degree is used to specify the membership degree, taken from the
interval [0, 1] that the specified instance relation holds.

As we can see the new elements are optional, i.e. the user might not specify either an
inequality type or a membership degree for the instance relation. In that case it is reason-
able to consider by default that the inequality type is of the form = and the membership
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Table 7: Abstract Syntax of f-OWL
individual ::= ‘Individual(’ [individualID] {annotation}

{‘type’( type ‘)’ [ineqType] [degree]} {value [ineqType] [degree] } ‘)’
ineqType ::= ‘=’ | ‘>=’ | ‘>’ | ‘<=’ | ‘<’
degree ::= real-number-between-0-and-1-inclusive

degree is equal to 1. Moreover, we see that these elements are placed both after the type
element as well as after the value element in the definition of individual axioms. In the
former case we can specify the membership of fuzzy facts involving an individual and a
concept, while in the latter we can specify the membership between a pair of individuals
and a fuzzy role.

Besides the abstract syntax that is intended to be a human readable form of OWL
axioms close to that of DLs, OWL also offers an XML like syntax for representing actual
knowledge and axioms in a concrete form. This syntax follows the ideas of the RDF/XML
syntax that has been proposed for RDF7 [34]. Using our previously extended abstract
syntax we can similarly extend the RDF/XML syntax of OWL in order to represent fuzzy
information. In the following we will mainly use some examples to illustrate how such a
syntax could look.

As with classical OWL and RDF there are two different ways by which facts (individual
axioms) can be encoded. First we can use the abbreviating syntax of RDF/XML for
specifying instance relations. Then, for example the RDF/XML syntax for representing
the fact that Rome is hot to a degree at least 0.7 and close to Athens to a degree exactly
0.65 could look like the following:

<Hot rdf:about="Rome" owlx:ineqType="≥" owlx:degree="0.7">
<isCloseTo rdf:resource="Athens" owlx:degree="0.65"/>

</HotPlace>

where we are using the new elements owlx:ineqType and owlx:degree. On the other hand
we could also use the RDF element rdf:Description to provide a different RDF/XML
form. In this case RDF/XML syntax looks as follows:

<rdf:Description rdf:about="reg-1">
<rdf:type rdf:resource="Blue" owlx:ineqType="≥" owlx:degree="0.9"/>
<isOverlappingWith rdf:resource="reg-2" owlx:ineqType="≥" owlx:degree="0.75"/>

</rdf:Description>

7RDF is another ontology language, weaker than OWL and intended for representing basic ontologies.
Roughly speaking it allows for domain and range restrictions, role inclusion axioms and concept subsump-
tions.
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Concluding, we want to stress out again that the intention of this section is not to pro-
vide the commonly agreed or best way to represent vague information using OWL. This
could only be the result of extensive debates between people from different communities
and taking into account different requirements and ideas. Our work should be understood
as a proof of concept for providing means to represent vague information by extending the
RDF/XML syntax. Furthermore, it could serve as a guideline if a fuzzy OWL standard-
ization group is ever realized. There are actually several other ways to represent vague
information in Semantic Web languages. For example, information could be stored in the
form of annotations or as simply as comments, thus avoiding the burden of extending the
language. This has been done in [35] for representing probabilistic information in OWL 2 (a
forthcoming extension of OWL) and in [36] for representing fuzzy information in SPARQL
(a query language for RDF). Moreover, there are proposals for using the standard build-
ing blocks of the language. For example, in [37] the authors use datatype properties to
store fuzzy information in fuzzy RDF. More precisely, one could define a property like
hasDegree of type float and a property hasIneqType of type string and use them in the
obvious way in individual axioms. In the same spirit the authors in [38] propose the use
of the properties membershipOf, moreOrEquivalent, etc. to represent fuzzy assertions.

In general it is not easy to assess which method is the best, because each one of them has
its pros and cons. For example, with annotations and comments one provides a semanticless
way of representing semantic information. Furthermore, new tools and parsers need to be
implemented which will decompose the annotations and convert them in fuzzy assertions,
but on the other hand there is compatibility with classical tools (parsers, reasoners) which
can simply ignore them and reason as if all degrees were 0 or 1. Regarding using the building
blocks of the language, one is usually unable to avoid unwanted semantic effects. For
example, in [38] the authors treat both concepts and roles as individuals (an effect known
as meta-modelling, i.e. OWL Full) in order to be able to represent a ternary relation such
as a fuzzy assertion (i.e. assertion(a,C, n)). This, certainly destroys compatibility with
crisp reasoners, but existing parsers can be used while only conversion tools implemented.
Certainly in the absence of a standard it is relatively difficult for everyone to agree upon
which syntax to use.

5. From f-OWL Entailment to Fuzzy DL Satisfiability

One of the two major goals of the current paper is to present a way by which f-OWL
inference problems and ontologies can be reduced to f-SHOIN (D) inference problems
and knowledge bases. By this way one could support reasoning in f-OWL by using already
known or implemented reasoning algorithms for fuzzy DLs. Hence, in the current section
we will show how to reduce f-OWL entailment to f-SHOIN (D) satisfiability. As described
in [4] for crisp OWL and SHOIN (D) this process involves two steps. In the first step
OWL is translated into SHOIN (D) thus translating entailment between OWL ontologies
into entailment between SHOIN (D) knowledge bases. Subsequently, since knowledge
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base entailment is not a standard DL inference service this should be further reduced to
knowledge base satisfiability.

5.1. From f-OWL to f-SHOIN (D)
The reduction of OWL class and property descriptions and OWL class and property

axioms can be simply defined by an inductive function over the mappings between f-OWL
abstract syntax and the respective f-DL syntax, as these have been shown in Tables 5
and 6. For example if V is the function then an axiom of the form Class(A partial C1

C2 . . . Cn) is mapped through V to A ⊑ V(C1) ⊓ V(C2) ⊓ . . . ⊓ V(Cn), and subsequently V
again inductively reduces every OWL class description Ci, 1 ≤ i ≤ n into an f-SHOIN (D)-
concept using the mappings between class descriptions and DL classes of Table 5. Actually,
this reduction is identical to the one provided in [4] since the syntactic extensions of the
simplistic extension are only limited to (fuzzy) instance relations.

The aforementioned part of the translation is relatively straightforward. The most
complex part identified in [4], is the translation of individual axioms (facts) because they
can be stated with respect to anonymous individuals. In [4] two translations were provided,
one for OWL DL and one for OWL Lite. This is because the translation of OWL DL uses
nominals which OWL Lite does not support. By closely inspecting the abstract syntax of
fuzzy individual axioms, from Table 6, and the translations in [4], would reveal that the
OWL Lite reduction serves better our needs in the fuzzy case even when we consider the
reduction of OWL DL facts. This is due to the presence of inequality types and membership
degrees. Table 8 defines a mapping (F) that transforms OWL facts to f-SHOIN (D)
assertions.

Table 8: From f-OWL facts to f-DL fuzzy assertions

f-OWL fragment F Translation F(F )
Individual(x1 ⊲⊳ n1...xp ⊲⊳ np) F(a : x1⊲⊳n1), ...,F(a : xn⊲⊳np) where a is new
a : type(C)⊲⊳n (a : V(C))⊲⊳n
a : type(C) (a : V(C)) = 1
a : value(R x)⊲⊳n ((a, b) : R)⊲⊳n, F(b : x) where b is new
a : value(R x) ((a, b) : R) = 1, F(b : x) where b is new
a : o a = o
Sameindividual(o1 . . . on) V(oi) = V(oj) 1 ≤ i < j ≤ n
DifferentIndividuals(o1 . . . on) V(oi) 6= V(oj) 1 ≤ i < j ≤ n

Consider for example, the fact Individual(type(C) value(R Individual(type(D) >= 0.8))
> 0.7). If we apply the mapping F this fuzzy fact is translated to the fuzzy assertions (a :
V(C)) = 1, ((a, b) : R) > 0.7 and (b : V(D)) ≥ 0.8, where a and b are new individuals. First,
we see that the fuzzy fact is stated with respect to two anonymous individuals. Hence, we
have created two new individuals, a and b, which are used in the fuzzy assertions. Moreover,
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Table 9: From entailment to unsatisfiability

Axiom A Transformation G(A)
(a : C)⊲⊳n (a : C)¬⊲⊳n

((a, b) : R)⊲⊳n

{(a : ∀R.¬B) + ⊲⊳u(c(n), c(n)), (b : B)⊲⊳n}, where B is a new concept,
for the case of S-implications, i.e. fS-SHOIN (D)

or
{(a : ∀R.¬B) ≥ 1, (b : ¬B)¬⊲⊳n}, where B is a new concept,

for the fR-SHOIN (D) family of DLs
or

{(a : ∃R.B)¬⊲⊳n, (b : B) ≥ 1} where B is a new concept
a

.= b a 6 .= b
a 6 .= b a

.= b
C ⊑ D {(x : C) ≥ n, (x : D) < n〉}, ∀n ∈ [0, 1]
Trans(R) {(x : ∃R.(∃R.{y})) ≥ n, (x : ∃R.{y}) < n}, ∀n ∈ [0, 1]
R ⊑ S {(x : ∃R.{y}) ≥ n, (x : ∃S.{y}) < n}, ∀n ∈ [0, 1]

¬⊲⊳ is the negation of ⊲⊳, e.g. if ⊲⊳ =≥, then ¬⊲⊳ =<, while
+⊲⊳ is the reflected negation of ⊲⊳, e.g. if ⊲⊳ =≥, then +⊲⊳ =>

since there is no inequality type and membership degree specified for the membership of
the anonymous individual to concept C we have used the default ones, which is the equality
and the degree 1.

Theorem 5.1. The translation from f-OWL DL and f-OWL Lite to f-SHOIN (D) and
f-SHIF(D), respectively, preserves satisfiability. That is, an f-OWL DL (resp. f-OWL
Lite) axiom or fact is satisfied by a fuzzy interpretation I if an only if the translation is
satisfied by I.8

The above theorem can be shown by a simple recursive argument over the semantics of
f-OWL and f-SHOIN (D). It also shows that if O1 and O2 are two fuzzy ontologies and
K1 and K2 are the fuzzy knowledge bases that result by applying the reduction technique
to O1 and O2, respectively, then O1 |= O2 iff K1 |= K2.

5.2. From KB entailment to KB satisfiability
Subsequently, it is easy to see that K1 |= K2 iff K1 |= A for each axiom A of K2.

Hence, as a second step of the reduction we have to reduce f-SHOIN (D) knowledge base
entailment to f-SHOIN (D) unsatisfiability. More precisely, we have to define a translation
G such that K |= A iff K ∪{G(A)} is unsatisfiable. The definition of G is depicted in Table
9.

8Note that we abuse the syntax using I to represent both a fuzzy DL and an fuzzy OWL interpretation.
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There are some remarks regarding the definition of G. The reduction of fuzzy concept
assertions and concept subsumptions have already been shown in [13]. On the other hand,
since here we have to reduce the entailment of knowledge bases we had to consider the
reduction of several non-standard DL axioms to KB satisfiability, like role subsumption,
transitive role axioms and fuzzy role assertions. Firstly, the reduction of role subsumptions
and transitive role axioms is a result of viewing these axioms as the two equisatisfiable
subsumptions of the form ∃R.{y} ⊑ ∃S.{y} and ∃R.∃R.{y} ⊑ ∃R.{y}, respectively. Sec-
ondly, observe that we give serveral reductions for the entailment of fuzzy role assertions
((a, b) : R)⊲⊳n. The reduction in classical OWL follows the use of value restrictions. More
precisely, Σc |= (a, b) : R iff Σc∪{a : ∀R.¬B, b : B} is unsatisfiable for some b not appearing
in Σc. We have tried to extend this result to also use value restrictions in f-DLs. As a
consequences we realized that the reduction should distinguish between f-OWL that uses
R- or S- implications for interpreting value restrictions. On the other hand it seems that
it is still possible to provide a reduction regardless of the fuzzy operators used, by using
existential restrictions as in the third alternative.

Theorem 5.2. Let Σ and Σ′ be f-SHOIN (D) knowledge bases. Then Σ |= Σ′ iff the
f-SHOIN (D) knowledge base Σ ∪ G(A) is unsatisfiable for every axiom A in Σ′.

Proof: The proof is given in the appendix
Regarding the reduction of f-SHIF(D) entailment to f-SHIF(D) satisfiability a num-

ber of issues have to be taken under consideration. More precisely, the f-SHIF(D) lan-
guage does not support nominals, thus, the reduction method for role subsumption and
transitive role axioms, presented in Table 9, cannot be used. This is also true in the case
of crisp OWL Lite [4]. For that purpose a new transformation method has to be devised.
Based on the translation method presented in [4] we can replace each nominal concept in
Table 9 with a new atomic concept B not present in the KB. The new mapping that uses
this new notion will be denoted by G′. This yields a translation method for f-SHIF(D).

Theorem 5.3. Let Σ and Σ′ be f-SHIF(D) knowledge bases derived from OWL Lite
ontologies. Then Σ |= Σ′ iff the f-SHIF(D) knowledge base Σ ∪ {G′(A)} is unsatisfiable,
for every axiom A ∈ Σ′.

Proof: The proof is given in the appendix
Please note that, the approach taken in [4] for the reduction of SHIF(D) entailment

to SHIF(D) satisfiability is different than the approach taken here. More precisely, in
[4], the entailment of an axioms R ⊑ S was reduced to the unsatisfiability of the concept
B ⊓ ∃R.(∀S−.¬B), while the entailment of a transitivity axiom Trans(R), was reduced to
the unsatisfiability of the concept, B ⊓ ∃R.(∃R.(∀R−.¬B)) where, in both cases, B is a
new concept not present in the KB. In the case of f-SHIF(D), a similar reduction is not
possible.
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As we can easily note from the above, in the entailment of concept and role subsumption
and transitive role axioms one has to check for the satisfiability of the ABoxes for all degrees
n ∈ [0, 1]. As we have already discussed Straccia [13] has provided a practical reduction for
checking concept subsumption in fKD-ALC, where it suffices to check for the satisfiability of
two specific ABoxes for two arbitrary degrees n1 ∈ (0, 0.5] and n2 ∈ (0.5, 1]. It is obvious
important to know whether this result can be extended to to fuzzy DLs with arbitrary
operators. Unfortunately, this result cannot be generalized.

Example 5.4 (counterexample). Let the KB Σ consisting just of the TBox T = {C ⊑
F,D ⊔ ¬D ⊑ E} and lets check whether Σ |= C ⊑ E by using this method. Obviously,
the subsumption does not hold. Suppose that we consider the probabilistic sum and the
Lukasiewicz negation as fuzzy operators. In every model I of Σ, we should have (D ⊔
¬D)I(a) ≤ EI(a) ⇒ DI(a) + 1 − DI(a) − (1 − DI(a)) · DI(a)) ≤ EI(a) ⇒ 1 − DI(a) +
(DI(a))2 ≤ EI(a). The function of the left-hand side is minimized at 0.5 and the minimum
is 1 − 0.5 + 0.52 = 0.75, consequently EI(a) ≥ 0.75 for any a ∈ ΔI . Hence, if we consider
the degrees n1 = 0.4 and n2 = 0.6 then obviously (b : E) < n cannot be satisfied in any
model I of Σ for any n ∈ {n1, n2} thus Σ ∪ {(b : C) ≥ n, (b : E) < n}.

The difference with fKD-DLs is that although the minimum and the maximum of the
semantic functions is again at 0.5, the value of the functions do not increase (or decrease)
due to the idempotency of min and max. Nevertheless, even in the case of fKD-SHOIN (D)
the result of Straccia does not generalize straightforwardly. This is because as it is well-
known in the presence of nominals, the ABox should be taken into consideration when
testing for subsumption. In our case the ABox containes fuzzy assertions, thus these
degrees are also expected to be important in the check for subsumption. The following,
(counter)example makes this case explicit.

Example 5.5 (counterexample). Let the KB Σ = 〈{⊤ ⊑ {a}}, ∅, {a : D = 0.8, a : C =
0.4}〉. We want to use the practical reduction from [13] to check whether Σ |= C ⊑ D. The
method sais that we have to check the unsatisfiability of Σ′ = Σ∪{(b : D) ≥ n, (b : C) < n}
for two n ∈ {n1, n2} for some new b. If we select the values n1 = 0.2 and n2 = 0.9, then
both times Σ′ is unsatisfiable. The TBox axiom forces b to be identified with a (since a is
the only object in ΔI , then aI = bI), thus we actually have (a : D) ≥ n and (a : C) < n
and for n1 the second assertion is unsatisfiable, while for n2 the first one.

Consequently, in the presence of nominals and ABoxes we have the following:

Theorem 5.6. Let C and D be two fKD-SHOIN (D)-concepts and let Σ = 〈T ,R,A〉 be
an knowledge base in this language. Then, Σ |= C ⊑ D iff 〈T ,R,A ∪ {{(a : C) ≥ n, (a :
D) < n}〉 is unsatisfiable for each n ∈ {n′, 1 − n′ | (α⊲⊳n′) ∈ A, where α ∈ {a : C, (a, b) :
R}},∪{0, 0.5, 1}.
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For the rest of fuzzy DLs, in order to provide practical reasoning, one can formalize the
reasoning problem as an optimisation problem [10, 39] under certain constraints in order
to determine the solvability or unsolvability of the system and finally the entailment or
non-entailment of the axiom. The reader is referred to [39] for more information on this
reduction.

The reduction of OWL entailment to f-SHOIN (D) satisfiability, presented in this
section, together with the recent results on reasoning with very expressive fuzzy DLs [14, 16]
and with general inclusion axioms [15], implies that at the current moment we can fully
support reasoning for the fKD-OWL DL ontology language, i.e. for fuzzy OWL that uses
the Lukasiewicz complement, the Gödel t-norm and t-conorm and the Kleene-Dienes fuzzy
implication. A reasoning algorithm for a slightly less expressive fragment of fKD-OWL,
i.e. the reasoning algorithm for in the FiRE fuzzy reasoning engine [40] and some results
regarding its usefulness in multimedia analysis tasks [5] and ontology mapping validation
[7] have been investigated.

6. Extending the Simplistic f-OWL Extension

6.1. Fuzzy Nominals and fuzzy one-of
Fuzzy nominals and the fuzzy one-of constructor were first introduced by Bobillo et

al. [24]. As the authors note, with such a constructor one can create fuzzy concepts by
enumerating their members together with their degrees of membership in an analogous
way as one can enumerate the elements of a crisp set in classical DLs with the one-of
constructor. For example, we can describe the concept of German speaking countries as:

GermanSpeaking ≡ {(germ, 1), (aus, 1), (switz, 0.67)}.

More formally, if o, o1, . . . , ok ∈ IA, c, c1, . . . , ck ∈ ID, n, n1, . . . , nk ∈ (0, 1] and p, k ∈ N,
then also the following are f-SHOIN (D)-concepts:

{o, n}, {(o1, n1), . . . (ok, nk)}
{c, n}, {(c1, n1), . . . (ck, nk)}

Table 10 summarizes the semantics of the new constructors. The semantics of fuzzy
nominals result easily by considering the semantics of fuzzy one-of [24] if we consider n = 1.
In [16], in order to distinguish this fuzzy SHOIN (D) extension with the we called the
language f-SHOfIN (D).

By using f-SHOfIN (D) as a logical base one can extend our simplistic extension of
f-OWL to also allow for fuzzy nominals and the one-of constructor. Table 11 summarizes
the abstract syntax, respective fuzzy DL syntax and semantics of the relevant axioms.

As one can note we have not included a fuzzy extension of hasValue restrictions. We
argue that it is currently not very clear if such axioms should use fuzzy nominals. As we
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Table 10: Syntax and Semantics of f-SHOfIN (D)-concepts

Constructor DL Syntax Semantics

nominal {o, n} {o, n}I(a) =

ȷ

n, a = oI

0, otherwise
individual one-of {(oi, ni)} {(o1, n1), . . . , (ok, nk)}I(a) = sup

a=oI
i ,1≤i≤k

ni

datatype nominal {c, n} {c, n}I(y) =

ȷ

n, y = cD

0, otherwise
datatype one-of {(ci, ni)} {(c1, n1), . . . , (ck, nk)}I(y) = sup

y=cD,1≤i≤k

ni

Table 11: Class descriptions and axioms of f-OWL with fuzzy one-of
Abstract Syntax DL Syntax Semantics

oneOf((o1, n1) (o2, n2) . . . ) {(oi, ni)} {(oi, ni)}I(a) = sup
a=oI

i ,1≤i≤k

ni

oneOf((c1, n1) (c2, n2) . . . ) {(ci, ni)} {(ci, ni)}I(y) = sup
y=cD,1≤i≤k

ni

EnumeratedClass(A (o1, n1) . . . (ok, nk)) A ≡ {. . . , (oi, ni), . . .} AI(a) = sup
a=oI

i ,1≤i≤k

ni

have already seen this OWL constructor originates from the fills constructor. Intuitively,
an axiom of the form A ⊑ R : o means that every object a ∈ AI is also connected with
the specific object oI through RI . Stated otherwise oI fills RI for every a ∈ AI . In
the presence of existential restrictions this constructor becomes a syntactic sugar and the
axioms can be written as A ⊑ ∃R.{o}. In fuzzy DLs the concept R : o is a fuzzy set
with membership function (R : o)I(d) = RI(d, oI) (as we have defined in Table 4), which
is quite different from the semantics that result by a concept of the form ∃R.{o, n} with
membership function supc t(RI(d, c), {o, n}I(c)) = t(RI(d, c), n).

In the following we provide an investigation about the syntactic sugar constructors of
fuzzy one-of/enumeration, similarly as we have done in previous sections about for example
domain and range restrictions.

As we have shown before (Section 4) the one-of constructor becomes a syntactic sugar
in the presence of nominals and disjunctions even in the simplistic extension of f-OWL.
Now in the case of fuzzy nominals and fuzzy one-of, things are slightly more complicated.
Actually, we can distinguish the following cases:

1. If our f-OWL langauge uses the Gödel t-conorm for interpreting conjunctions, then
the fuzzy one-of operator can be expressed in terms of fuzzy nominals and disjunction,
since obviously, k is finite and thus sup is actually max.

2. If we enforce the Unique Names Assumption (UNA), i.e. that each individual in the
ABox and each nominal represents a different object in the domain of interpretation
(an assumption that we remark is mainly not assumed in DLs), then again it is the
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case that:
{(o1, n1), . . . , (ok, nk)} ≡ {o1, n1} ⊔ . . . ⊔ {ok, nk}

regardless of the t-conorm used. This is because for each a ∈ ΔI , a would be
equivalent to only one of oIi , say with oIℓ , thus {oi, ni}I(a) = 0 for 1 ≤ i 6= ℓ ≤ k and
{oℓ, nℓ}I(a) = nℓ. Hence, {(o1, n1), . . . , (ok, nk)}I(a) = max(0, . . . , nℓ, . . . , 0) = ℓ,
while on the other hand due to the boundary conditions of t-conorms, ({o1, n1} ⊔
. . . ⊔ {ok, nk})I(a) = u(0, . . . , nℓ, . . . , 0) = ℓ.

3. In case we do not have UNA and we use superidempotent t-conorms, then the two
forms do not coincide. Needless to say the semantics that result by fuzzy nominals
and disjunctions may result to strange effects, as e.g. if a = oI1 = oI2 , then ({o1, n1}⊔
{o2, n2})I(a) = u(n1, n2) > n1, n2, i.e. although we are actually referring to one
object of the domain its degree in the concept strictly increases.

In a similar way as above in order to represent such concepts in f-OWL one has to
extend its abstract and concrete RDF/XML syntax. More precisely, the abstract syntax
can be extended to the following:

description ::= ‘oneOf(’ { individualURI [degree] }‘)’
dataRange ::= ‘oneOf(’ { dataLiteral [degree] }‘)’
axiom ::= ‘EnumeratedClass(’ classID [‘Deprecated’] { annotation }

{ individualID [degree] } ‘)’

while for example, the concept of German speaking countries could be represented in
RDF/XML as follows:

<owl:Class rdf:ID="GermanSpeaking">
<owl:oneOf rdf:parseType="Collection">
<Country rdf:about="#Germany"/>
<Country rdf:about="#Austria"/>
<Country rdf:about="#Switzerland" owlx:degree="0.67"/>

</owl:oneOf>
</owl:Class>

The mapping of the new features of f-OWL into fuzzy DLs is again quite straightforward
(following the same principles as mapping the simplistic f-OWL to f-SHOIN (D)) if we
use f-SHOfIN (D) as the underlying fuzzy DL. Nevertheless, it is important to investigate
wheter a practical reduction for checking subsumption of concepts that potentially involve
fuzzy nominals exists in fKD-SHOfIN (D). As we have already seen a practical reduction
in the presence of nominals is already “problematic” since the degrees that appear in the
ABox are expected to be important in the check for subsumption. Here, degrees can even
appear in concepts due to the presence of fuzzy nominals. Thus, in this case even in the
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absence of an ABox, one has to reason over the degrees that possibly appear in the fuzzy
nominals. Let for example, ∅ |= {o, 0.6} ⊑ {o, 0.4}. Clearly this entailment does not hold,
nevertheless in order not to report a false positive subsumption, the degrees considered in
the reduced KB {a : {o, 0.6} ≥ n, a : {o, 0.4} < n} should be the degrees n1 = 0.6 and
n2 = 0.4 of which the first choice leads to a satisfiable ABox thus correctly identifying the
non-subsumption.

Nevertheless, there is still some problems with this approach. Consider, for example
the subsumption check Σ |= C ⊔{o, 0.4} ⊑ {o, 0.8}. This inference obviously does not hold
but with the above approach we would falsely report that it does, since {(a : C⊔{o, 0.4}) ≥
n, (a : {o, 0.8}) < n} is unsatisfiable for both n ∈ {0.4, 0.8}. The issue here is that we do not
take correctly into account the semantics of the right-hand side nominal. More precisely,
observe that for any fuzzy nominal {o, n2} in the right-hand side of a subsumption, the
assertion produced by the reduction, (a : {o, n2}) < n2, is always trivially unsatisfiable. To
remedy this effect instead of 0.8, we could use the degree 0.8+ ɛ, where ɛ is a small number
that can be calculated easily by ordering the degrees of every fuzzy nominal (together
with the degrees {0, 0.5, 1}) and by taking the half of the smallest difference. Then, {(a :
C ⊔ {o, 0.4}) ≥ 0.8 + ɛ, (a : {o, 0.8}) < 0.8 + ɛ} is satisfiable.

Corollary 6.1. Let C and D be two fKD-SHOfIN (D)-concepts and let Σ = 〈T ,R,A〉
be an knowledge base in this language. Then, Σ |= C ⊑ D iff 〈T ,R,A∪ {{(a : C) ≥ n, (a :
D) < n}〉 is unsatisfiable for each n ∈ XΣ where XΣ is defined as follows:

XΣ = {0, 0.5, 1} ∪
{n, 1 − n | (α⊲⊳n) ∈ A, where α ∈ {a : C, (a, b) : R} ∪
{ni | for every {. . . , (oi, ni), . . .} appearing in T ,A or D} ∪
{ni + ɛ | for every {. . . , (oi, ni), . . .} appearing in D}

6.2. Fuzzy Subsumption Axioms
Straccia [18] proposed the extension of concept and role inclusion axioms defining what

is called fuzzy subsumption axioms. If C,D are f-SHOIN (D) concepts and n ∈ (0, 1],
then 〈C ⊑ D,n〉 is a fuzzy subsumption axiom; similarly with roles. Intuitively, these
axioms say that the degree of subsethood of C to D is at-least equal to n, thus allowing
a form of fuzzy subsethood. The semantics of such axioms are provided by viewing an
inclusion axiom C ⊑ D as a First-Order formula ∀x.C(x) → D(x) and interpreting ∀ as
inf and → with a fuzzy implication. In other words we say that a fuzzy interpretation I
satisfies 〈C ⊑ D,n〉 iff infa∈ΔI J (CI(a), DI(a)) ≥ n.

Several authors [41, 42, 43] have tried to axiomatize the notion of fuzzy subsumption
in the Fuzzy Set literature. Most of them give different semantics to fuzzy inclusions,
but it seems that fuzzy implications, and more particularly R-implications, are somehow
the intersection of all the above approaches. On the other hand S-implications might
lead to counterintuitive results, as noted in [24]. For example, if we consider the Kleene-
Dienes fuzzy implication then infa∈ΔI J (CI(a), CI(a)) = max(1 − CI(a), CI(a)) = 0.5,
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which means that a concept C only hafly subsumes itself. Moreover, an axiom of the form
〈TallPerson ⊑ Human, 1〉, which states that every tall person is a human (and obviously no
degree in the subsumption is required) forces TallPerson and Human to be interpreted as
crisp concepts, since max(1 − TallPersonI(a), HumanI(a)) = 1 iff 1 − TallPersonI(a) = 1 or
HumanI(a) = 1, although TallPerson is obviously a fuzzy concept. This would not be a
problem with R-implications since J (a, b) = 1 iff a ≤ b, i.e. in this case TallPersonI(a) ≤
HumanI(a), which gives the semantics of the standard subsumption we defined in Section
3. Nevertheless, even the use of R-implications can lead to undesired situations. More
precisely, R-implications are not very fine grained in the following sense: Consider three
concepts C,D and E with CI(ai) = 0.3, DI(ai) = 0.9, for 1 ≤ i ≤ 10, CI(a11) = 0.3,
DI(a11) = 0.2 and EI(aj) = 0.2 for 1 ≤ j ≤ 11. Then infb J (CI(b), DI(b)) = J (0.3, 0.2) =
infb J (CI(b), EI(b)), i.e. although all but just one object of ΔI have a significantly greater
membership degree in DI compared to CI the degree of subsethood of C to D is the same as
that of C to E, even though in this case all objects belong to EI to a less degree than they
belong to CI . Concluding, we note that although most works in [41, 42, 43] do allow for
the use of some R-implications for interpreting fuzzy inclusion all of them usually advocate
for the use of other types of fuzzy operators, and more precisely for fuzzy aggregation type
operators [20] which provide a more fine grained approach. Unfortunately, we currently
don’t know how to reason with fuzzy inclusion axioms that are defined by such operators.

Now from a practical point of view it is also not very clear how fuzzy subsumption
axioms could or should be used in practice. It is definitely almost impossible to expect
from average users that have basic understanding of OWL constructors to start writting
fuzzy subsumption axioms (even if such a functionality was provided by tools). This
would require deep understanding of the semantics and the different properties of fuzzy
implications, as well as the consequences that such an axiom would have to the knowledge
base. For example, inconsistencies could arise very easily, as e.g. having 〈C ⊑ D, 0.6〉 ∈
T and asserting a : C = 0.8, a : D = 0.3 (just test for the Lukasiewicz implication
and for many more). The latter one is generally a problematic point since even fuzzy
assertions are usually expected to result automatically by a fuzzy partitioning system [20]
that would map e.g. height measurments in a database about persons into concepts such
as TallPerson, MediumHightPerson, etc. rather than manually, so the chances of running
into such situations is high. We also argue that these degrees have a more “statistical”
meaning since they are applied over classes and result by looking over all members of a
class rather than a specific assertion, so they are difficult to be asserted. This is also
advocated by the work of Young [43] that connects fuzzy subsethood with a notion of
entropy and probability. Nevertheless, these axioms could be understood quite naturally
as (fuzzy) mappings between concepts. More precisely, in [7] we have applied such axioms
on the domain of ontology mapping/alignment to formalize mappings between different
but overlapping ontologies and perform mapping validation. For example, if O1 and O2

are two different (created by different persons) ontologies about university courses then
a (semi)automatic mapping algorithm could identify the mapping 〈O1 : Msc Thesis ⊑
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O2 : Master Thesis, 0.8〉. Then based on this mapping we can translate (crisp) assertions
a : Msc Thesis in O1 into (fuzzy) assertions a : Master Thesis ≥ 0.8 in O2 via the mapping
and then use fuzzy reasoners to perform mapping validation [7]. A similar treatment of
fuzzy inclusions as fuzzy mappings (but for a different application domain) was also adopted
in [6].

We could potentially extend f-OWL with the ability to state fuzzy subsumptions. Nev-
ertheless, since all OWL axioms are interpreted as DL axioms it is not clear where or if this
extension should at some point stop. More precisely, besides extending the subClassOf,
complete and partial axioms, one could also even extend domain, range, functionality
and disjointness axioms since all these are translated into DL inclusion axioms. Never-
theless, the extension of the most relevant OWL constructors as well as the extension of
the abstract syntax are shown in Table 12, where modality represents either the keyword
partial (defining subsumption) or complete (defining equivalence) and description is
an OWL class description.

Table 12: f-OWL extensions with fuzzy subsumption

Constructor DL Syntax Semantics

Class(A partial C1 . . . Ck n) 〈A ⊑
k

⊓
i=1

Ci, n〉 infa J (AI(a),
k
t

i=1
CI

i (a)) ≥ n

Class(A complete C1 . . . Ck n) 〈A ≡
k

⊓
i=1

Ci, n〉 infa J (AI(a),
k
t

i=1
CI

i (a)) = n

SubClassOf(C1, C2) 〈C1 ⊑ C2, n〉 infa J (CI
1 (a), CI

2 (a)) ≥ n

axiom ::= ‘Class(’ classID modality { annotation } { description } [degree] ‘)’
axiom ::= ‘SubClassOf(’ description description [degree] ‘)’

The translation of the extended f-OWL axioms into f-SHOIN (D) is quite straight-
forward if we consider f-SHOIN (D) with fuzzy subsumption axioms as the underlying
fuzzy DL. On the other hand for the reduction of KB entailment to unstatisfiability we can
distinguish two cases. If we define fuzzy subsumption with the aid of S-implications, then
due to their definition, 〈C ⊑ D,n〉 can be seen as (a : ¬C ⊔ D) ≥ n, for every a. Thus,
the entailment of a concept subsumption can be seen as an entailment of a (simple) fuzzy
assertion.

Corollary 6.2. Let C and D be two fS-SHOIN (D)-concepts and Σ an fS-SHOIN (D)
KB. Then, Σ |= 〈C ⊑ D,n〉 iff Σ′ = Σ ∪ {(a : ¬C ⊔ D) < n} is unsatisfiable for some new
a not in Σ.

Observe that this is also a practical reduction, since we only need to check the unsatisfi-
ability of Σ’ for just one degree n, which is in turn even more optimal that the simpistic
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case of fKD-SHOIN (D), where we need to check in the best case for two degrees9. This is
again a result of defining fuzzy subsumption with the aid of S-implications, which actually
gives them a more concepts-like meaning. We can parallelize this with crisp DLs where
checking for C ⊑ D is reduced into unsatisfiability of a : ¬(¬C ⊔ D) for some new a.

For the case of R-implications we have the following: A fuzzy interpretation I satisfies
〈C ⊑ D,n〉 if infa J (CI(a), DI(a)) ≥ n. Since this holds for inf it would hold for any
arbitrary b, i.e. J (CI(b), DI(b)) ≥ n ⇒ t(CI(b), n) ≤ DI(b). The latter inequation
resembles the semantics of the classical fuzzy subsumption. Thus, we can provide the
following:

Corollary 6.3. Let C and D be two fR-SHOIN (D)-concepts and Σ an fR-SHOIN (D)
KB. Then, Σ |= 〈C ⊑ D,n〉 iff Σ ∪ {(b : C) ≥ m1, (b : D) < m} under t(m1, n) = m for
every m ∈ [0, 1].

This is actually a generalization of the reduction shown in Table 9, since for the simplistic
case n = 1, thus, t(m1, 1) = m1 = m which gives the normal reduction. Nevertheless, still
in a practical setting (i.e. in a reasoning algorithm) one has to formalize the problem as
e.g. in [39].

At this point we would like to conclude our investigations over fuzzy extensions of
OWL. As we have remarked several times one might argue that there are more (fuzzy)
features proposed for fuzzy DL languages in the literature which are missing from our
presentation. Some examples are concept modifiers [12], fuzzy quantifiers [21] and compar-
ison expressions [22]. As we have emphasized from the beginning our intention is neither
to perform an overview of all these features and provide an overall fuzzy-OWL extension
covering everthing that exists in the literature nor to advocate in favour or against any of
these that we have not included here. Our goal is to investigate various points that have
not been addressed before regarding fuzzy extensions of OWL, even in the very simplistic
fuzzy extension that we presented in Section 4. These include the semantics of syntactic
sugar axioms as well as the reduction of f-OWL entailment to that of f-DL satisfiability.
This analysis shows that carefull selection of operators and mapping to expressive fuzzy
DLs is needed in order to provide the intended semantics. Subsequently, we have extended
our investigations to two popular features from the fuzzy DL literature and more precisely
to fuzzy nominals and fuzzy one-of. We have seen that even for such seamingly harmless or
natural extensions several issues arise, when it comes to the mapping of fuzzy enumarations
into fuzzy DL axioms or the (practical) reduction of entailment to unsatisfiability, even for
fuzzy DLs such as fKD-DLs which are known to have quite similar properties with classical
DLs regarding reasoning mechanisms.

9Recall that if nominals and an ABox are present then we need to check for far more degrees
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7. Conclusions

Imprecise and vague knowledge is apparent in many real life applications and domains.
Some examples are multimedia analysis [5], Semantic Portals [6], ontology mapping [7],
Semantic Web Services matching [8] and many more. Representing and reasoning with
such type of information is expected to play a significant role in assisting these applications
provide better results. To this extent we have investigated fuzzy extensions of the OWL
web ontology language, creating fuzzy OWL (f-OWL). This extension builds upon previous
results that have been achieved in the field of fuzzy Description Logics [10, 12, 11, 23, 24].
Firstly, we have presented a simplistic fuzzy extension of OWL which is based only on fuzzy
instance relations. For this extension we have presented the semantics, abstract syntax
and an RDF/XML syntax of fuzzy OWL. Moreover, we have investigated properties of
the semantics, like the connection between crisp and fuzzy interpretations, as well as the
semantics and properties of syntactic sugar axioms of f-OWL like concept disjointness,
property range axioms, functional role axioms and the one-of/enumeration constructor.
Finally, we have presented a transformation technique that reduces the problem of f-OWL
ontology entailment to the problem of f-SHOIN (D) knowledge base satisfiability. To this
extend we have investigated the reduction of the entailment of several f-SHOIN (D) axioms
into KB satisfiability which have not been considered before. Consequently, this reduction
implies that we can provide reasoning support over f-OWL ontologies by applying reasoning
over the reduced f-SHOIN (D) knowledge bases. Subsequently, we have extended the
simplistic f-OWL with two features and more precisely with fuzzy enumerations and fuzzy
subsumption axioms. For both these features we investigate their semantics, we show the
extended abstract syntax and a possible RDF/XML syntax, and finally the recuction to
f-DL KB satisfiability.

Nevertheless, much work needs to be done until we provide full support for handling
and managing vague information in Semantic Web applications. First of all there needs to
be support of the new features of f-OWL as well as other fuzzy features from specialized
editing tools. This will help the easy and rapid development of fuzzy knowledge bases,
which would lead to wider acceptance from the research community. This is actually very
difficult at the current point since no f-OWL standard extension exists. Additionally, there
is a number of open research problems related to fuzzy DLs. More precisely, implementing
and optimizing fuzzy Description Logic reasoners is also a very important issue. Moreover,
the development of tableaux reasoning algorithms for expressive fuzzy DL systems other
than fKD-DLs is also another open research problem. Finally, we also note that in the
current work we have not provided any treatment of a fuzzy extension of the upcomming
OWL2 w3C standard (an extension of OWL). A first account of fuzzy OWL2 can be found
in [44] as well as a fuzzy extension of the SROIQ language (the underlying DL of OWL2)
in [45].
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A. Proofs of Theorems and Lemmas

Proof of Theorem 3.1. The proof of this theorem can be shown by applying induction
on the structure of concepts and showing that if CI(a) = 1, then a ∈ CI . Most of the
cases follow easily if we consider the boundary conditions of the fuzzy operators and the
fact that we are restricted only to degrees zero and one. More precisely, if a, b ∈ {0, 1},
then t(a, b) = 1 iff a = b = 1, u(a, b) = 1 iff either a = 1 or b = 1, J (a, b) = 1 iff either
a = 0 or b = 1 for both S and R-implications and c(a) = 1 iff a = 0, giving the semantics
of the classical operators. Moreover, from AI(a) = 1, where A is an atomic concept and
RI(a, b) = 1 it obviously follows that a ∈ AI and 〈a, b〉 ∈ RI . Similarly, AI(a) = 0 in
classical notion is a 6∈ A. Finally, for inverse roles due to semantics RI(a, b) = (R−)I(b, a).
Thus if RI(a, b) = 1 = (R−)I(b, a), then 〈a, b〉 ∈ RI and also 〈b, a〉 ∈ (R−)I . ¤

Proof of Lemma 4.1. Suppose that C ⊓ D ⊑ ⊥, holds for all fuzzy interpretations
I. This means that ∀x ∈ ΔI .t(CI(x), DI(x)) ≤ 0. Since, the fuzzy triple satisfies the
law of contradiction we have ∀x ∈ ΔI .t(CI(x), DI(x)) ≤ t((¬D)I(x), DI(x)) and due to
the monotonicity property of t-norms we get ∀x ∈ ΔI .CI(x) ≤ ¬DI(x). Hence, we can
abstract from interpretations and in general write that C ⊑ ¬D, holds.

Now suppose that C ⊑ ¬D, for all I. This means that ∀x ∈ ΔI .CI(x) ≤ (¬D)I(x).
Similarly, as above, we can get, ∀x ∈ ΔI .t(CI(x), DI(x)) ≤ t((¬D)I(x), DI(x)), and
finally, ∀x ∈ ΔI .t(CI(x), DI(x)) ≤ 0, for all I. Again, in abstract notation we can simply
write, C ⊓ D ⊑ ⊥. ¤

Proof of Theorem 5.2. Given that Σ |= Σ′ iff Σ |= A for each axiom A in Σ′ we only need
to show that Σ |= A iff Σ ∪ G(A) is unsatisfiable for any given axiom A. For that purpose
we will examine each axiom presented in Table 9. In the following C,D are concepts, R,S
are roles, a, b are individuals and x, y are fresh individuals.

• Σ |= (a : C)⊲⊳n iff Σ ∪ {(a : C)¬⊲⊳n} is unsatisfiable. We will only consider the case
with ⊲⊳ =≥. All other cases can be shown similarly. If Σ |= (a : C) ≥ n then in
every model of Σ it holds that CI(aI) ≥ n, thus we can not find an interpretation
where CI(a) < n, and as a result Σ ∪ {(a : C)¬ ≥ n}, with ¬ ≥≡<, is unsatisfiable.
For the converse, if I is a model of Σ in which CI(a) < n, then I also satisfies
(a : C) < n ≡ (a : C)¬ ≥ n and thus, Σ ∪ {(a : C)¬ ≥ n} is satisfiable.
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• Σ |= ((a, b) : R)⊲⊳n iff Σ∪{(a : ∀R.¬B)+ ⊲⊳u(c(n), c(n)), (b : B) ≥ n} is unsatisfiable
when the fuzzy OWL language uses an S-implications, while Σ |= ((a, b) : R)⊲⊳n
iff (a : ∀R.¬B) ≥ 1, (b : ¬B)¬⊲⊳n is unsatisfiable when the fuzzy OWL uses an R-
implication. Without loss of generality we will prove only the case where ⊲⊳ =≥. If
Σ |= ((a, b) : R) ≥ n, then in every model I of Σ it will hold that RI(aI , bI) ≥ n.
Then we have two cases:

1. Let the family of fS-OWL. Then from the above we obtain c(RI(aI , bI)) ≤ c(n).
In order for I to be a model of the first ABox, I should also satisfy b : B ≥ n
i.e. BI(bI) ≥ n ⇒ (¬B)I(bI) ≤ c(n). Consequently,

u(c(RI(aI , bI), (¬B)I(bI)) ≤ u(c(n), c(n)) ⇒
inf

bI∈ΔI
u(c(RI(aI , bI), (¬B)I(bI)) ≤ u(c(n), c(n)) ⇒

(∀R.¬B)I(aI) ≤ u(c(n), c(n)).

Summing up there exists no interpretation I that is a model of Σ, and it satisfies
both b : B ≥ n and (a : ∀R.¬B) > u(c(n), c(n)), (+ ≥=>).

2. Let the family of fR-OWL. In order for I to be a model of the second ABox it
should satisfy the assertion (b : ¬B) < n and thus (¬B)I(bI) < n. Since for R-
implications JR(n1, n2) = 1 iff n1 ≤ n2, then since (¬B)I(bI) < n ≤ RI(aI , bI)
we have J (RI(aI , bI), (¬B)I(bI)) < 1, hence also inf would be lower than 1.
Concluding b : ¬B < n and a : ∀R.¬B ≥ 1 cannot be satisfied simultaneously
in models of Σ.

3. Similarly as above, I should satisfy (b : B) ≥ 1, i.e. BI(bI) ≥ 1, thus
t(RI(aI , bI , BI(bI))) ≥ t(n, 1) = n. Since b is an arbitrary object, this would
also hold for the supremum. Concluding, there is no interpretation I that can
satisfy (a : ∃R.B) < n.

For the converse we proceed by reduction to absurd. Let I be a model of Σ and that
the ABoxes, for the respective cases of fuzzy implications, are unsatisfiable, but to
the contrary let RI(aI , bI) < n, i.e. Σ 6|= ((a, b) : R) ≥ n. Now we have two cases:

1. First consider S-implications. From RI(aI , bI) < n we obtain c(RI(aI , bI)) >
c(n). Now I can be extended such that BI(bI) = n, thus it satisfies (b : C) ≥ n,
but additionally (¬B)I(bI) = c(n) ≥ c(n). Moreover, for every other w ∈ ΔI we
can set (¬B)I(w) = 1. Note that this is possible since B is a new concept in the
knowledge base. Consequently, max(c(RI(aI , bI)), (¬B)I(bI)) > u(c(n), c(n)),
but it also holds that max(c(RI(aI , w)), (¬B)I(w)) = 1 > u(c(n), c(n)). Con-
cluding, I is a model of Σ which satisfies {(a : ∀R.¬B) + ⊲⊳u(c(n), c(n)), (b :
B) ≥ n}, absurd.

2. Now consider R-implications. Then I can be extended in order to satisfy (b :
B) > c(n) and more precisely to hold that BI(bI) = n1 > c(n) ⇒ (¬B)I(bI) =
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c(n1) < n. Additionally, we also set RI(aI , bI) = n2 < n with c(n1) ≥ n2, bu
also (¬B)I(w) = 1 for every other w ∈ ΔI . Then, (¬B)I(bI) ≥ RI(aI , bI), and
(¬B)I(w) ≥ RI(aI , w) for every w. Thus, infz∈ΔI J (RI(aI , z), (¬B)I(z)) = 1
and I is a model of Σ that satisfies (a : ∀R.¬B) ≥ 1, (b : B) + ⊲⊳c(n), absurd.

3. Similarly, as above.

• Σ |= a
.= b iff Σ∪{a 6 .= b} is not satisfiable. If Σ |= a

.= b, then in every model I of Σ,
aI = bI , so I cannot satisfy a 6 .= b. For the converse, if Σ∪ {a 6 .= b} is not satisfiable,
then in every model I of Σ, aI = bI , so Σ |= a

.= b.

• Σ |= a 6 .= b iff Σ ∪ {a = b} is not satisfiable. This case can be show similarly to the
previous one.

• Σ |= C ⊑ D iff Σ′ = Σ ∪ {(x : C) ≥ n, (x : D) < n}, for all n ∈ (0, 1] is not
satisfiable. If Σ |= C ⊑ D then for all models I of Σ, ∀x ∈ ΔI .CI(x) ≤ DI(x), so
Σ′ is unsatisfiable, otherwise there would exist some I with w ∈ ΔI and n′ ∈ (0, 1]
s.t. CI(w) = n′ ≥ n′ > DI(w), which leads to absurd. For the converse suppose
that I is a model of Σ, Σ′ is unsatisfiable, but to the contrary C 6⊑ D. Then there
exists some w ∈ ΔI s.t. CI(w) > DI(w). Extending I to I’ s.t. xI′

= w and
CI′

(xI′
) = n ∈ (0, 1] we get a model of Σ and {(x : C) ≥ n, (x : C) < n}. So I’ is a

model of Σ′.

• Σ |= Trans(R) iff Σ′ = Σ ∪ {(x : ∃R.(∃R.{y})) ≥ n, (x : ∃R.{y}) < n} is not
satisfiable, for all n ∈ (0, 1]. Suppose that Σ |= Trans(R). Then in every model
I of Σ it holds, ∀x, y ∈ ΔI .RI(x, y) ≥ supz∈ΔI t(RI(x, z), RI(z, y)). Based on the
boundary condition of the t-norm operation this inequation can be rewritten as,

∀x, y ∈ ΔI .t(RI(x, y), 1) ≥ sup
z∈ΔI

t(RI(x, z), t(RI(z, y), 1)).

Using the semantics of nominals we finally obtain

∀x, y ∈ ΔI .t(RI(x, y), {y}I(y)) ≥ sup
z∈ΔI

t(RI(x, z), t(RI(z, y), {y}I(y))).

The t-norm operation of the right-hand side is also the supremum of the t-norm
operations, t(RI(z, w), {y}I(w)), for all w ∈ ΔI , because if w 6= y then due to
the semantics of nominals we would have {y}I(w) = 0 and thus t(a, 0) = 0. This
supremum if obviously an existential restriction on z. Similarly we get an existential
restriction for x in the left side as well as in the right side of the inequation. Thus,
we get ∀x, y ∈ ΔI .(∃R.{y})I(x) ≥ (∃R.(∃R.{y})I(x). Hence, every model I of Σ
does not satisfy {(x : ∃R.(∃R.{y})) ≥ n, (x : ∃R.{y}) < n} for any n ∈ (0, 1].

For the converse suppose that I is a model of Σ, Σ′ is unsatisfiable but to the contrary
there are some a, c ∈ ΔI for which RI(a, c) < supb t(RI(a, b), RI(b, c)). Working in
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a similar way as above we get (∃R.{c})I(a) < (∃R.(∃R.{c}))I(a). Extending I to I’
such that xI′

= a and yI
′
= c and (∃R.(∃R.{c}))I′

(a) = n, for some n ∈ (0, 1], we
can devise an interpretation that satisfies Σ′, for some n ∈ (0, 1], which is absurd.

• Σ |= R ⊑ S iff Σ′ = Σ ∪ {(x : ∃R.{y}) ≥ n, (x : ∃S.{y}) < n} is unsatisfiable, for
all n ∈ (0, 1]. Suppose that Σ |= R ⊑ S. Then in every model I of Σ we have that
∀x, y ∈ ΔI .RI(x, y) ≤ SI(x, y). Working in a similar way as in the previous case we
have the following deduction steps:

∀x, y ∈ ΔI .RI(x, y) ≤ SI(x, y) ⇒
∀x, y ∈ ΔI .t(RI(x, y), 1) ≤ t(SI(x, y), 1) ⇒

t(RI(x, y), {y}I(y)) ≤ t(SI(x, y), {y}I(y)) ⇒
supz∈ΔI t(RI(x, z), {y}I(z)) ≤ supz∈ΔI t(SI(x, z), {y}I(z)) ⇒

(∃R.{y})I(x) ≤ (∃S.{y})I(x).

Thus, there is no interpretation I’ that satisfies, Σ′.

For the converse, suppose that I is a model of Σ, Σ′ is unsatisfiable, but to the
contrary R 6⊑ S. This means that there exist a, b ∈ ΔI s.t. RI(a, b) > SI(a, b).
Working in a similar way we can obtain (∃R.{b})I(a) > (∃S.{b})I(a). Now extending
I to I ′ such that xI′

= a, yI
′
= b and (∃R.{b})I′

(xI′
) = n, for some n ∈ (0, 1] we get

(∃R.{y})I′
(xI′

) ≥ n > (∃S.{y})I′
(xI′

), which is a model of Σ′, leading to absurd. ¤

Proof of Theorem 5.3. We will work in a similar way as in the previous proof.

• Σ |= R ⊑ S, iff Σ′ = Σ∪{(x : ∃R.B) ≥ n, (x : ∃S.B) < n}, where B is a new concept
not present in Σ. In every model I of Σ we have that ∀a, b ∈ ΔI .RI(a, b) ≤ SI(a, b).
By using the monotonicity property of t-norms we get ∀a, b ∈ ΔI .t(RI(a, b), BI(b)) ≤
t(SI(a, b), BI(b))s and since this holds for all b ∈ ΔI it would also hold for the
supremum, thus

∀a, b ∈ ΔI . supb t(RI(a, b), BI(b)) ≤ supb t(SI(a, b), BI(b)) ⇒
∀a, b ∈ ΔI .(∃R.B)I(a) ≤ (∃S.B)I(a).

Since this holds for all I, {(x : ∃R.B) ≥ n, (x : ∃S.B) < n} is unsatisfiable. For
the converse case suppose that I is a model of Σ, Σ′ is unsatisfiable, but to the
contrary there are some a, b ∈ ΔI , RI(a, b) = p1 > p2 = SI(a, b). We have that
RI(a, b) = t(RI(a, b), 1). Extend I to b such that BI(b) = 1 and BI(c) = 0, for
all c 6= b. Observe that the reason why we can perform such an extension is be-
cause B does not appear anywhere in the KB so its membership function BI is not
restricted by any axiom in Σ. Then we have t(RI(a, b), 1) = t(RI(a, b), BI(y)) =
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supc∈ΔI t(RI(a, c), BI(c)) = (∃R.B)I(a). Similarly, p2 = (∃S.B)I(x). Then we can
extend I to I’, such that xI′

= a, yI
′
= b and n = (∃R.B)I(xI′

), thus constructing
an interpretation which is a model of Σ′ for n = p1.

• Σ |= Trans(R) iff Σ′ = Σ ∪ {(x : ∃R.(∃R.B)) ≥ n, (x : ∃R.B) < n} is unsatisfiable,
for all n ∈ (0, 1]. Suppose that Σ |= Trans(R). Then in every model I of Σ it holds
that, ∀x, y ∈ ΔI .RI(x, y) ≥ supz t(RI(x, z), RI(z, y)). Based on the monotonicity
property of t-norms we get, t(RI(x, y), BI(y)) ≥ supz t(RI(x, z), t(RI(z, y), BI(y))).
Since this holds for all x, y ∈ ΔI it would also hold for the supremum of y, hence,
supy t(RI(x, y), BI(y)) ≥ supz t(RI(x, z), supy t(RI(z, y), BI(y))), which can be fi-
nally written as

(∃R.B)I(x) ≥ sup
z

t(RI(x, z), (∃R.B)I(z)) = (∃R.(∃R.B))I(x).

Since this holds for all models I, Σ′ is unsatisfiable. For the converse case suppose
that I is a model of Σ, Σ′ is unsatisfiable, but to the contrary there are some a, b ∈ ΔI ,
such that

sup
w

t(RI(a,w), RI(w, b)) = p1 > p2 = RI(a, b).

We have that RI(a, b) = t(RI(a, b), 1). Extend I to b such that BI(b) = 1 and
BI(w) = 0, for all w 6= b. Then we have t(RI(a, b), 1) = t(RI(a, b), BI(b)) =
supw t(RI(a, w), BI(w)) = (∃R.B)I(a). Similarly, p2 = (∃R.(∃R.B))I(a). Then
we can extend I to I’, such that xI′

= a, yI
′

= b and n = (∃R.B)I(xI′
), thus

constructing an interpretation which is a model of Σ′ for n = p1. ¤
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gödel semantics, International Journal of Approximate Reasoning.

46


