
Towards Ontology-driven Requirements
Engineering

Katja Siegemund1, Edward J. Thomas2, Yuting Zhao2, Jeff Pan2, and Uwe
Assmann1

1 Technische Universität Dresden, Germany
2 University of Aberdeen, UK

Abstract. Requirements Engineering has a huge impact on success or
failure of a software project. However, the acquisition, specification and
evolution of goals and requirements from different stakeholders or sources
often leads to incomplete, ambiguous, and faulty requirements. There-
fore, the ability to detect and repair inconsistent and incomplete require-
ments is crucial to the successful modelling of requirements specifications.
Ontologies provide the expressivity to sufficiently capture requirements
and reasoning tasks can be performed to check the consistency and com-
pleteness of the requirements model. This paper presents a Meta Model
for ontology-driven goal-oriented Requirements Engineering. Ontology
consistency checking and rule driven completeness tests are combined to
measure the validity and coverage of the evolving requirements model.
Experiences from a first evaluation are described.

Key words: Requirements Engineering, Ontologies, Reasoning

1 Introduction

Usually, Requirements Engineering (RE)—i.e., the identification, specification
and documentation of requirements—is the first task of a software development
process. Results are documented in a Requirement Specification often treated as
a contract between customer and developer. The importance of RE was already
identified in several studies (e.g. [1]). Thus, an improved RE contributes to safer
and better-quality software, safes time and money and also decreases the risk of
overran budgets and project failures.

An important challenge for requirements engineering is to cope with incon-
sistencies or incompleteness in requirements specifications. Such inconsistencies
result from the acquisition, specification, and evolution of goals and require-
ments from multiple stakeholders and sources [2]. It is frequently the case that
changes of requirements have a particularly significant impact on the consis-
tency of specifications. In order to regain consistency, requirements are removed
from the specification which often leads to incompleteness. Zowghi et. al. ([3])
describes this vicious circle as a causal relationship between consistency, com-
pleteness and correctness. From a formal point of view, correctness is usually
meant to be the combination of consistency and completeness. Therefore, the



2 Towards Ontology-driven Requirements Engineering

ability to detect and repair inconsistent and incomplete requirements is crucial
to the successful development of requirements specifications and will lead to a
more correct RSB.

The paper is structured as follows: after some background information on RE
in Section 2, we briefly sketch our solution approach in Section 3. In Section 4 we
introduce Goal-Oriented Requirements Engineering and exemplify a way towards
ontology-driven goal-oriented RE. Section 5 describes the implementation of the
Requirements Ontology and the realisation of the completeness and consistency
checks. First evaluation results are presented in Section 6. Finally, the paper
concludes with an outlook and future work in Section 7.

2 Technical Background

The following sections give a brief overview about the main problems of RE
addressed in this approach.

Completeness. Good requirements are meant to be consistent, necessary, un-
ambiguous, and verifiable [4,5]. Additionally, they should be complete [6]. Miss-
ing or incomplete requirements propagate through the entire system development
and lead to incomplete or incorrect designs, architectures, implementations and
tests. Today, it is reasonably well known that missing or incomplete requirements
lead to faulty software designs, implementations and tests resulting in software
of improper quality or safety risks. Project cost and time overruns due to miss-
ing requirements and underestimated budgets may even cause a project to be
aborted. Davis in [7] states completeness to be the most difficult of these (above
mentioned) specification attributes to define and incompleteness the most diffi-
cult violation to detect. Complete metadata for requirements, that is data about
that requirement rather than data listed in the requirement [6]), ensure complete-
ness. Although some approaches exist that aim to ensure complete requirements
(e.g. [8]), up to now there is no absolute way to determine the completeness of
requirements in advance. It is reasonably well known, that requirement [specifi-
cations] will never be totally complete, finished or finalized as long as the system
is in service and must evolve [6]. This may be a reason for today tools not to
address this field. However, it is at least possible to improve and validate the
completeness of information about these requirements (metadata). Though cur-
rent RE tools provide means for capturing requirements, they fail in providing
sufficient support for metadata about requirements and leave it to the require-
ments engineer to define them. Another shortcoming of RE tools is the lack
of tests for completeness, that is, checking whether all important metadata are
available. This way, the requirement engineer would detect missing but relevant
information easily.

Consistency. The vicious circle of completeness, consistency and correctness
shows the importance of a consistent Requirement Specification in order to im-
prove its correctness. Nuseibeh and Russo in [9] argue that detecting and re-



Ontology-driven Requirements Engineering 3

pairing of inconsistent requirements is crucial to a successful development of re-
quirement specifications. Inconsistent specifications restrain deriving useful in-
formation. Following [9] and [3] the reasons for inconsistent requirements are
changes of requirement during software development. Various approaches have
been proposed to handle inconsistent goals and requirements during Require-
ments Engineering. Most of them use formal logics to detect and handle such
inconsistencies. Yang et. al. separate consistency checking in ontology-based re-
quirements elicitation methods into two steps: (1) verifying the domain knowl-
edge for consistency and (2) checking whether the requirements model keeps
consistent under the restriction of a consistent domain model [10].

Nuseibeh and Russo provide a formal technique for detecting and repair-
ing inconsistencies, based on a specific type of reasoning, called abduction. If a
particular consistency rule is violated, their proposed abductive reasoning tech-
nique identifies (evolutionary) changes to perform on the specification, such that
a particular consistency rule is no longer violated [9].

Other approaches treat the detection of conflicts between requirements often
only regarding refinement relationships or conceptual overlapping (e.g. [11]).
Moreover, most techniques consider binary conflicts only, that is, conflicts among
two requirements. Although these approaches and solutions exist, up to now
hardly any RE tool makes use of them.
Another problem are the numerous and often crosscutting3 interrelationships
among requirements that are not considered at all. Thus, there is no systematic
support for detecting and resolving this kind of inconsistencies. One notable
exception is [2]. To address these problems, our approach aims to detect such
inconsistencies between various RE objects and provide solutions for repairing
them.

Deficiencies of RE Methods. Analysis of available RE Methods and ap-
proaches exposed a number of problems and shortcomings described above. Ad-
ditionally, some have also been reported in other approaches. The deficiencies of
current RE methods and tools can be summarized as follows:

– Requirement knowledge is not sufficiently covered. Intentions, risks, obstacles and
decisions are not documented during RE and thus, are not available at later stages
during software development.

– Relationships among requirements are inadequately captured and are often limited
to binary relations between requirements instead of defining which kind of relation
is meant (e.g. excluding, alternative, generalization).

– Requirement problems (e.g. conflicts, unstated information) are detected too late
or not all.

– Completeness and consistency are not verified.

– Models for RE need richer and higher-level abstractions [13].

3 Requirements are scattered through the whole system. The may appear in Use-
Cases or Test-Cases and be a part of metrics. Additionally, crosscutting requirements
provide a description of the overlap between requirements - the first step to managing
any inconsistency that arises at such overlap [12].



4 Towards Ontology-driven Requirements Engineering

3 Solution Approach

Ontologies provide a formal representation of knowledge and the relationships
between concepts. Thus, they are well suited to tackle the above mentioned
problems and shortcomings of Requirements Engineering. The Web Ontology
Language in particular, which is standardised by W3C, supports the open world
assumption, allowing incomplete knowledge to be reasoned over. This charac-
teristic of the language makes it suitable for use in Requirements Engineering.
The separation of the concepts of consistency and completeness mean that an
evolving requirements model can be checked for consistency, without the incom-
pleteness of the model causing a problem. In contrast, closed world systems such
as relational databases make no distinction between incomplete and inconsistent
knowledge; any fact not known is assumed to be false.

The idea presented in this paper is to use an ontology for structuring the
concepts, requirements and relationships captured during requirements elicita-
tion. Here, goals play a crucial role for reaching a high level of completeness (see
Section 4.1). This domain independent ontology can be instantiated with the re-
quirement artefacts (goals, requirements, obstacles, etc.) for a particular project.
This forms the Requirement Specification Base. TBox Reasoning techniques are
applied for consistency checking. To validate the consistency, and subsequently
the completeness of requirements we propose query answering techniques to de-
tect incompleteness based on predefined completeness rules. The novel of this
approach is twofold: (1) the Ontology-based Requirements Meta Model with a
huge set of relevant meta data and requirement relationships and (2) the consis-
tency and completeness rules for validating the Requirement Specification Base
and providing concrete suggestions on how to solve causes for inconsistency and
incompleteness. This approach allows for requirements reasoning based on for-
mal semantics and thus, aims to resolve many of the shortcomings observed in
other approaches.

4 Related Work

This section describes the main concepts of goal-oriented RE approaches, related
work and sketches the way to our solution towards ontology-driven goal-oriented
RE.
Conventional Requirements Engineering in its early times concentrated on what
the system should do and how it should do it. This lead to fairly low-level re-
quirements on data, operations, etc. [14]. Goals have become more and more
popular for the early phases of Requirements Engieering (e.g. [15], [13], [16]).
Yue showed in [17] that goals in requirements models provide a criterion for
requirements completeness.
Goal-oriented Requirements Engineering must not be understood as a differ-
ent or new form of Requirements Engineering. It is rather a supplement of the
RE process, in the meanwhile self widespread. Goal-driven concepts have been
adopted in many Requirements Engineering frameworks in numerous domain



Ontology-driven Requirements Engineering 5

and stages of Requirements Engineering. This indicates that goals are a core
concept for RE in general. Thus, we decided to adapt to this methodology and
support not only a general RE method, but also a goal-oriented RE. The next
section explains the main advantages and concepts of goal-oriented Requirements
Engineering. Subsequently, we describe our approach to enable ontology-driven
goal-oriented requirements engineering.

4.1 Goal-Oriented Requirements Engineering (GORE)

As already manifested in its name, GORE puts much emphasize on goals which
will be used to identify, describe and correlate requirements. Lamsweerde defines
goals as ”declarative statements of intent to be achieved by the system under
consideration” [18]. Goals are formulated in terms of prescriptive assertions (as
opposed to descriptive ones) [19]; they may refer to functional or non-functional
properties and range from high-level concerns to lower-level ones [20]. Goals
explore why certain requirements are necessary for the system to be. Thus, they
capture stable information and provide means to separate stable from unstable
information which enables a better reuse. There are several reasons to extend RE
with the identification and formulation of goals. Lamsweerde describes in ([20])
the importance of goals for RE. Some of the main benefits of goal-orientation
are:

– Goals provide a meaningful criterion for sufficient completeness of a require-
ment specification. ”A requirement specification can be denoted as complete
with respect to a set of goals if all the goals can be proved to be achieved from
the specification and the properties known about the domain considered.”
[17]

– Specification of pertinent requirements, that are requirements that serve at
least one of the identified goals [17].

– Goals may be satisfied by different alternative requirements. Thus, relation-
ships between goals and requirements can help to choose the best one.

– Concrete requirements may change over time whereas goals pertain stable.
Thus, stable information can be separated from volatile one.

– Goals drive the identification of requirements.

4.2 Enabling Ontology-Driven Requirements Engineering

Knowledge-driven techniques seem promising to overcome some of the short-
comings of current RE-practices. Kossmann et. al. defines Knowledge-driven
Requirements Engineering when Requirements Engineering is guided not only
by a process but as well by knowledge about the process and the problem domain
[21].

In order to use knowledge-driven techniques, it is necessary to apply knowl-
edge repositories that can be easily updated and utilised. Furthermore, inferenc-
ing and decision support should be possible to apply on such a repository.



6 Towards Ontology-driven Requirements Engineering

Ontologies are useful for representing and interrelating various knowledge.
Since RE involves knowledge capturing and analysis, there is a clear synergy
between the ontological modelling of a domain and the modelling that a Re-
quirements Engineer will perform during the requirements process [22]. Due to
this overlap, numerous works dating back have addressed the use of ontologies in
RE, e.g. [23], [24]. All formalisms for RE need a particular conceptualisation, and
almost all of them are reducible to first order logic [22]. Thus, they have much
in common with ontologies that are constructed by using a formal language.
Since the semantic web emerged, there has been a renewed interest in ontolo-
gies. There is an increasing amount of research devoted to utilising semantic web
technologies in RE (e.g. [25], [21]) and software engineering in general.

However, most of them concentrate only on specific requirement artefacts,
e.g. goals, requirements or use-cases and do not support reasoning over relations
between all concepts. Sancho et. al. ([26]) describe a method for ontology-aided
performance engineering. They propose the structure of an ontological database
to relate Performance Engineering issues among themselves and with other non-
functional requirements. The NFR/i* Framework first proposed in [27] focuses
on qualitative reasoning for goal contribution and evaluation of alternative goal
refinements. The KAOS Framework ([28]) concentrates mainly on goal satisfac-
tion. Lamsweerde describes in [29] an interesting method for reasoning about
alternative requirements and inspired our work regarding some of the require-
ment relationships and ontology properties. Lamsweerde introduces influence
relations among requirements, stating whether a requirement has a positive or
negative influence on another. By applying formal reasoning techniques it be-
comes possible to identify alternative requirements for those with a negative
impact.
Other approaches aim to address a broader field of Requirements Engineering.
The OntoRem approach ([21]) describes the development of a meta model for
general RE concepts. Lee et. al. present an Ontology-based active Requirements
Engineering Framework (Onto-ActRE) based on GORE [30]. While relationships
of requirements with other concepts, such as goals and risks, are supported, they
do not consider the variety of relations between requirements.

5 Ontology-Driven Requirements Engineering

This section describes the main architecture decisions, concepts and relationships
of the Requirements Ontology (the Requirements Meta Model), the rules for
verifying the consistency and completeness of requirements metadata.

5.1 Requirements Ontology

In Figure 5.1 we present the architecture of ODRE. A so-called Requirement
Meta Model is generated from the knowledge of the requirements analysis and
builds the TBox of the Requirements Ontology. It formalizes the RE concepts,
as well as relationships between requirement artefacts. This domain independent



Ontology-driven Requirements Engineering 7

Requirement	  
Engineering	  
background	  
knowledge	  

Requirements	  
Specifica9ons	  
of	  a	  project	  

Requirements	  
Specifica9ons	  
of	  a	  project	  

Requirements	  
Specifica9ons	  
of	  a	  project	  

Completeness	  
checking	  rules	  

Consistency	  
checking	  rules	  

Requirement	  
Meta	  Model	  

Tbox	  

ABox	  

Queries	  for	  checking	  
completeness	  

Queries	  for	  checking	  
consistency	  

Fig. 1. The architecture of ODRE (Ontology-Driven Requirement Engineering)

ontology TBox can be instantiated with the requirement artefacts for a partic-
ular project. This way, the ABox is generated from the results of requirement
analysis of an application project. It builds the requirement Specification Base.
Once the Requirement Elicitation has been completed and the Requirements
Ontology is filled with all information, we execute consistency and completeness
queries, generated from consistency checking rules (cf. Section 5.2) and com-
pleteness checking rules (cf. Section 5.3), respectively. These rules are used to
enable the validation of the Requirements Specification Base of the project. The
following sections present the rules for completeness and consistency checking
and exemplarily explain how they have been implemented so far.

The Requirements Meta Model was mainly inspired by a UML Meta Model
for GORE presented in [31]. Especially the requirement relationships have been
adapted, comprehensively extended and transferred to ontological concepts. Fur-
thermore, we adapted the categorization of non-functional requirements pub-
lished by ISO/IEC 9126 standard to comply to this well-established and ac-
knowledged categorization.
In our approach, a huge number of GORE concepts are modelled as OWL
Classes, while relations, relationships and most of the meta data are modelled
as object properties. The Ontology consists of 102 classes, 39 object properties
and 6 data properties, implemented with Protege 4.0. The ontology is available
at http://purl.org/ro/ont.

The class Artifact is the most fundamental concept of this ontology. It
subsumes the concepts Problem and RequirementArtifact. Requiremen-
tArtifact encapsulates the concepts Challenge, Goal, Story and Re-
quirement.

As already described in section 5 requirement artifacts have various relation-
ships among each other. These relationships are mainly modelled as object prop-



8 Towards Ontology-driven Requirements Engineering

Fig. 2. Extract of the main concepts in the Requirements Ontology

erties. For example a requirement may negatively contribute to a goal, others
positively. To capture this valuable information, we provide the object proper-
ties isNegativeContribution to and isPositiveContributionTo between
goals and requirements. This data is used for later queries and supports the user
in recognizing the quality of his decisions regarding goal satisfaction. Functional
and non-functional requirements are identified by means of Scenarios and Use
Cases. Use Cases and Scenarios can be related to requirements via the object
property isRelatedTo. The class Attribute contains different attributes all
requirements can be associated with, e.g. Priority and Cost. Additionally,
this class has the subclass State. The requirement status will be automatically
assigned after verification. Thus, the state can become Checked, Invalid, etc.
We put much emphasis on the modelling of relationships between requirements.
Therefore, we provide eight object properties to capture alternative, coexistent,
excluding and conflicting requirements and to denote generalizations, special-
isations and refinements of requirements. Decisions in the elicitation process
may possibly derive in conflicts. These conflicts will have an impact on further
decisions regarding requirements, Use Cases and the final design of the soft-
ware. Thus, it is important to document such conflicts. This is realised by the
OWL property ”isInConflictWith”. Additionally, conflicts help in identify-
ing inconsistencies between Project Work and Requirements. Finally, the class
Refinement and RefinementReason as well as three associated object prop-
erties are used to track refinement changes (source and target) of goals and
requirements. Furthermore, enabling the user to describe the reason for such a
refinement eases further decisions and enables the traceability of them.



Ontology-driven Requirements Engineering 9

5.2 Rules for Consistency Checking

We base our notion of consistency and completeness on the violation of con-
sistency and completeness rules. Therefore, we predefined two set of rules in
natural language and realised the appropriate checks by querying techniques.
We will have a brief look on the concrete realisation of these rules separately for
consistency and completeness.

The consistency rules check for valid relations between the requirement ar-
tifacts, e.g. whether a goal is indeed connected with at least one requirement.
Moreover, requirement relationships are verified in order to prevent concurring
requirement, conflicts, and so on. We predefined six consistency rules containing
the rule that has to be met, the output if it is violated and possible solutions.

To realise these rules in the requirements ontology, we have encoded them as a
set of DL axioms which guarantee that if these rules are fulfilled, the ontology will
be logically consistent. Any deviation from the rules will result in an inconsistent
ontology. One such rule is modelled in as follows:

ChosenRequirement v ¬∃isExclusionOf.ChosenRequirement
This means that no requirement that was specified to exclude any other
requirement can be included in one and the same requirement subset.

Other consistency rules are specified in a similar way. The mapping between
the axioms in the ontology and the rules is given in the ontology using annotation
properties on the particular axioms. If one of these axioms is violated, we can
use an explanation service to find which axioms caused this violation. The rea-
soner can determine the axioms in the inconsistency justification that represent
a consistency rule. The additional axioms are used to find which individuals had
caused the error. This allows us to explicitly mention the invalid requirements in
the error message that is displayed to the user. For inconsistencies we distinguish
errors and warnings. Errors must be resolved by the requirements engineer and
warnings should be resolved. A template is used to define generic error messages
for each consistency rule. For inconsistencies we distinguish errors and warnings.
Errors must be resolved by the requirements engineer and warnings should be
resolved. A template is used to define generic error messages for each consistency
rule and suggestions to resolve found inconsistencies.

Example We assume the following individuals and relationships as an extract
of the ontology resulting from the Requirement Analysis:

isExclusionOf(Functional Requirement5, Functional Requirement7)
ChosenRequirement(Functional Requirement5)
ChosenRequirement(Functional Requirement7)

This set of axioms results in an inconsistency with regard to the previously
defined consistency rule. If one requirement excludes another, they cannot both
be included in the set of requirements chosen for the final model.



10 Towards Ontology-driven Requirements Engineering

We use the approach described above to derive errors and warnings displayed
to the user. To support the requirements engineer in error elimination, the sys-
tem suggests a list of possible solutions. The concrete error message and the
suggestion to resolve our inconsistency is shown below:

Excluding requirements must not be included in one chosen
requirement subset.

Error.
“The following requirements exclude others: Functional Requirement5.”
“Please choose one of the following options:”

Suggestion.
Exclude the following requirements from the chosen requirement set:
Functional Requirement5
Find alternatives for: Functional Requirement5 or
Revise the requirement relationships of (Functional Requirement5, Func-
tional Requirement7).

After the Requirements Engineer has done the appropriate actions to remove
errors and warnings, the requirement subset has to be checked for consistency
once more. In case the set is now consistent, all requirements will be automat-
ically asserted “Checked” and “Valid” in the Ontology. If not, another revision
and check becomes necessary until the the Requirement Specification Base is
consistent or the analyst refuses to do any further action. In the latter case, all
the requirements will be asserted “Checked” as well, but all invalid requirements
will be asserted “Invalid”. This way it is possible to display all invalid require-
ments and change them manually or check for options without being forced to
run too many consistency checks. However, it is always possible to have another
consistency check.

5.3 Rules for Completeness Checking

We defined 43 Completeness Rules to check the completeness of the requirement
artifacts, e.g. whether goals, requirements, use-case descriptions and so on have
been specified and if all required attributes and relations have been specified.
According to Firesmith ([6]) the most important metadata to capture is:

– Project-Unique Identifier (PUID)
– Prioritization
– Rationale
– Source
– Status (may include more than one kind of status)
– Verification Method

These metadata were integrated in our completeness rule set and extended
by further completeness criteria regarding the existence of requirement artifacts
and their relations among each other. An extract of these rules is shown below:



Ontology-driven Requirements Engineering 11

Every Functional Requirement (FR) must define whether it is manda-
tory or optional.
IF FR is not mandatory AND not optional
THEN print error: “You did not specify whether the following FRs are manda-
tory or optional”
“Please specify whether the following FRs are mandatory or optional: [FR n].”

Every FR must specify AT LEAST ONE property hasRequiremen-
tRelationship.
IF FR has NOT specified a property “hasRequirementRelationship”
THEN print error: “You did not specify any requirement relationship for the
Functional Requirements [FR n].
Please check the relationships for the following Functional Requirements: [FR n].”

Example We assume an extract of the following individuals and relationships:

isRelatedTo(Goal2, UseCase7)
NonFunctionalRequirement(NonFunctionalRequirement1)
isOptional(NonFunctionalRequirement1, true)
FunctionalRequirement(FunctionalRequirement1)

This raises the following error messages and suggestions for our completeness
rules:

Every Requirement must state whether it is mandatory or op-
tional.
Error.
“You did not specify whether the following FR are mandatory or op-
tional: FunctionalRequirement1.”
“Please specify this attribute for the FR: FunctionalRequirement1.”

Every FR must specify AT LEAST ONE requirement relation-
ship.
Warning.
“You did not specify any requirement relationship for the following FR:
FunctionalRequirement1.”
“Please check whether there exists any relationship to another require-
ment for the FR FunctionalRequirement1.”

The completeness rules have been realised as SPARQL queries. If the patterns
encoded in the rule match the entailed ontology, then the particular completeness
rule being tested failed, and the requirements model is deemed incomplete. The
results of the query identify those parts of the ontology which are incomplete.
Since we are looking for incomplete requirements, we had to allow the query to
work in a closed world environment. This requires the use of negation as fail-
ure in the query, which is available in the draft SPARQL 1.1 specification using
the “NOT EXISTS” keyword and functionality. Generally, OWL uses the open
world assumption (OWA), which states that every fact not known is undefined,



12 Towards Ontology-driven Requirements Engineering

therefore it is difficult to find incomplete requirements, as these requirements are
treated as present but unknown by an OWL reasoner. The SPARQL 1.1 specifi-
cation supports querying under OWL, and it supports negation in queries, which
is treated as negation as failure by the SPARQL specification. In this case, we
used the SPARQL 1.1 support in the TrOWL reasoner (REF) to support our
implementation. The implementation of these database style constraints is sim-
ilar to that described by Sirin and Tao in [32]. Therefore, we use a combination
of open world and closed world assumption. OWA allows us to check the logical
consistency of incomplete requirements without being forced to have a complete
set of metadata. Closed world reasoning using negation as failure is employed
when the Requirements Engineer decides to check completeness during RE or
he decides to complete RE and finalises the requirements.

Verification of the Requirement Specification Base

We implemented the ontology using Protege 4.0, and created the completeness
constraints as queries in SPARQL, using the SPARQL 1.1 OWL profile and
support for negation as failure against OWL knowledge bases. The reasoner and
query engine used is the TrOWL tractable reasoner4. This is particularly well
suited to this application, as once a consistent and complete set of requirements is
loaded, it is possible to make a SPARQL endpoint available permanently to allow
traceability links to be established between the artifacts in the requirements
ontology and the rest of the software engineering life cycle. The TrOWL reasoner
also supports explanation of consistency checks for OWL-DL ontologies, and
supports justification of query answers. The additional functionality for rewriting
the reasoning explanations and justifications into english has been implemented
into the RELib package.

6 Evaluation

ODRE has primarily been evaluated within the MOST Project5. The evaluation
criterion for the discussed ontology are that (i) all requirement artefacts should
be possible to capture, (ii) all inconsistencies and incomplete metadata are de-
tected and (iii) all requirement metadata are finally complete and consistent.
During development, we have simulated its usage by instantiating it against few
case studies of the project, i.e. semantic modeling of network physical devices
([33]) and validating Component-Based Implementations of Business Processes
([34]).

After instantiation, we evaluated our implementation by performing the com-
pleteness and consistency checks over this ontology. The evaluation was per-
formed on a 2GHz dual core MacBook Pro. The evaluation was an excellent test
of the ability of our approach to deal with incomplete and inconsistent specifi-
cations. The ontology was then stored in the Quill OWL2-QL repository using

4 Available at http://trowl.eu
5 Marrying Ontologies with Software Technology, http://www.most-project.eu/



Ontology-driven Requirements Engineering 13

Semantic Approximation [35] and the completeness checks were performed. The
Case Study ontology failed 14 of the 37 tests included in the RELib test suite,
and a total of 132 different individual problems were identified. Thus, the evalu-
ation proved the detection of incomplete and inconsistent requirement artefacts,
which was one of our main goals. The total time required to test the complete-
ness constraints and generate the English explanations from the justifications
provided by the reasoner was 808ms. The performance of the system is therefore
good enough to be used as part of an ongoing cycle of testing and revision of
the ontology. However, in order to prove the applicability of our Ontology-driven
Requirements Engineering method and the impact of reasoning over requirement
data, another and exceeded evaluation will be conducted in the near future. In
this evaluation we will not only test the quality of the developed requirement
artefacts, but also the effort and time needed for specification until a certain
predefined level of completeness and consistency is reached.

7 Outlook and Conclusion

In this paper we have presented an approach to capturing and validating a set of
software project requirements using OWL ontologies and reasoning technology.
The approach combines the open world reasoning capabilities of OWL to allow
the consistency of incomplete requirements to be validated during the require-
ments engineering process, and extends OWL with closed world constraints to
further check the completeness of the requirements model against several well-
established metrics such as ISO/IEC 9126.

We have implemented our approach and have performed an in-depth evalua-
tion using an extant set of project requirements. This evaluation has shown that
the approach is capable of dealing with a reasonably complex set of requirements
from a real-world problem, and can quickly identify where these requirements
are inconsistent or incomplete. The performance is such that it can be integrated
into the requirements engineering workflow without becoming a burden on the
requirements engineer.

Further work in this area concentrates on guidance of the requirements engi-
neering process and traceability through other stages of the software development
cycle. We developed a guidance ontology for our approach which is connected to
the Requirements Ontology. This enables user guidance through the prescribed
process of requirements engineering. This guidance includes not only a task list
for the user but also incorporates the described consistency and completeness
checks at the appropriate time as well as real-time display of detected errors and
suggestions for resolving them. All these features have been integrated into a
Eclipse Plugin and can be accessed through a yet rudimentary java user inter-
face.

The completed requirements ontology can be integrated with other ontologi-
cal models which cover other aspects of the software development process, links
between the artefacts in the requirement ontology and those artefacts generated
at later stages can therefore be queried later for traceability purposes.



14 Towards Ontology-driven Requirements Engineering

References

1. Tracy Hall, Sarah Beecham, and Austen Rainer. Requirements Problems in
Twelve Software Companies: An Empirical Analysis. IEE Proceedings - Software,
149(5):153–160, 2002.

2. Axel van Lamsweerde, Robert Darimont, and Emmanuel Letier. Managing con-
flicts in goal-driven requirements engineering. IEEE Transactions on Software
Engineering, 24:908–926, 1998.

3. Didar Zowghi and Vincenzo Gervasi. The Three Cs of Requirements: Consistency,
Completeness, and Correctness. In Proceedings of 8th International Workshop on
Requirements Engineering: Foundation for Software Quality, (REFSQ’02), 2002.

4. Donald Firesmith. Specifying Good Requirements. Journal of Object Technology,
2:77–87, 2003.

5. Ian Sommerville and Pete Sawyer. Requirements Engineering: A Good Practices
Guide. John Wiley & Sons, 1997.

6. Donald Firesmith. Are Your Requirements Complete? Journal of Object Technol-
ogy, 4(1):27–44, 2005.

7. Alan M. Davis. Software Requirements: Analysis and Specification. Prentice Hall
Press, Upper Saddle River, NJ, USA, 2nd edition edition, 1993.

8. Ronald S. Carson. Requirements Completeness: A Deterministic Approach, 1995.

9. Bashar Nuseibeh and Alessandra Russo. Using Abduction to Evolve Inconsistent
Requirements Specifications. In The Use of Logical Abduction in Software Engi-
neering 25, 1999.

10. Yang Ying-ying, Li Zong-yon, and Wang Zhi-xue. Domain knowledge consistency
checking for ontology-based requirement engineering. In CSSE ’08: Proceedings of
the 2008 International Conference on Computer Science and Software Engineering,
pages 302–305, Washington, DC, USA, 2008. IEEE Computer Society.

11. Xuefeng Zhu. Inconsistency Measurement of Software Requirements Specifications:
An Ontology-Based Approach. In ICECCS ’05: Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems, pages
402–410, Washington, DC, USA, 2005. IEEE Computer Society.

12. Bashar Nuseibeh. Crosscutting Requirements. In AOSD ’04: Proceedings of the
3rd international conference on Aspect-oriented software development, pages 3–4,
New York, NY, USA, 2004. ACM.

13. John Mylopoulos, Lawrence Chung, and Eric Yu. From Object-oriented to Goal-
oriented Requirements Analysis. Communications of the ACM, 42(1):31 – 37, 1999.

14. Alexei Lapouchnian. Goal-oriented Requirements Engineering: An Overview of the
Current Research, 2005.

15. Annie I. Antón. Goal-Based Requirements Analysis. In ICRE ’96: Proceedings of
the 2nd International Conference on Requirements Engineering (ICRE ’96), page
136, Washington, DC, USA, 1996. IEEE Computer Society.

16. L. Liu and E. Yu. From requirements to architectural design - using goals and
scenarios, 2001.

17. K. Yue. What does it mean to say that a specification is complete? Proc. IWSSD-4,
Fourth International Workshop on Software Specification and Design, 1987.

18. Axel van Lamsweerde. Requirements Engineering in the year 00: A Research Per-
spective. In International Conference on Software Engineering, pages 5–19, 2000.

19. Pamela Zave and Michael Jackson. Four dark corners of requirements engineering.
ACM Transactions on Software Engineering and Methodology, 6(1):1–30, 1997.



Ontology-driven Requirements Engineering 15

20. Axel van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour.
In RE ’01: Proceedings of the Fifth IEEE International Symposium on Require-
ments Engineering, page 249, Washington, DC, USA, 2001.

21. M. Kossmann, R. Wong, M. Odeh, and A. Gillies. Ontology-driven Requirements
Engineering: Building the OntoREM Meta Model. In Information and Communi-
cation Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd Inter-
national Conference on, pages 1 – 6, 2008.

22. Glen Dobson and Peter Sawyer. Revisiting ontology-based requirements engineer-
ing in the age of the semantic web. In Dependable Requirements Engineering of
Computerised Systems at NPPs, 2006.

23. John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Te-
los: Representing Knowledge About Information Systems. ACM Trans. Inf. Syst.,
8:325–362, 1990.

24. Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed Re-
quirements Acquisition. Sci. Comput. Program., 20:3–50, 1993.

25. Haruhiko Kaiya and Motoshi Saeki. Ontology based requirements analysis:
lightweight semantic processing approach. In Proc. Fifth International Confer-
ence on Quality Software (QSIC 2005), 2005.

26. Pere P. Sancho, Carlos Juiz, Ramon Puigjaner, Lawrence Chung, and Nary Sub-
ramanian. An approach to ontology-aided performance engineering through NFR
framework. In WOSP ’07: Proceedings of the 6th international workshop on Soft-
ware and performance, pages 125–128, New York, NY, USA, 2007. ACM Press.

27. J. Mylopoulos, L. Chung, and B. Nixon. Representing and using nonfunctional
requirements: A process-oriented approach. IEEE Trans. Softw. Eng, 18(6):483–
497, 1992.

28. R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. Grail/kaos: an
environment for goal-driven requirements engineering. In Proceedings of the 19th
international conference on Software engineering, ICSE ’97, pages 612–613, New
York, NY, USA, 1997. ACM.

29. Axel van Lamsweerde. Reasoning about alternative requirements options. In
Alexander Borgida, Vinay K. Chaudhri, Paolo Giorgini, and Eric S. K. Yu, ed-
itors, Conceptual Modeling: Foundations and Applications, volume 5600 of Lecture
Notes in Computer Science, pages 380–397. Springer, 2009.

30. Seok Won Lee and Robin A. Gandhi. Ontology-based Active Requirements Engi-
neering Framework. 2006.

31. Rodrigo Cerón, Juan C. Dueñas, Enrique Serrano, and Rafael Capilla. A meta-
model for requirements engineering in system family context for software process
improvement using cmmi. In PROFES, pages 173–188, 2005.

32. Evren Sirin and Jiao Tao. Towards integrity constraints in owl. In Rinke Hoekstra
and Peter F. Patel-Schneider, editors, OWLED, volume 529 of CEUR Workshop
Proceedings. CEUR-WS.org, 2009.

33. Krzysztof Miksa, Marek Kasztelnik, Pawel Sabina, and Tobias Walter. Towards
semantic modeling of network physical devices. In MoDELS Workshops, volume
6002 of Lecture Notes in Computer Science, pages 329–343, 2009.

34. Jens Lemcke, Andreas Friesen, and Tirdad Rahmani. Validating component-based
implementations of business processes. In Electronic Business Interoperability:
Concepts, Opportunities and Challenges, chapter 7, pages 124–151. IGI Global,
2011.

35. J. Z. Pan and E. Thomas. Approximating OWL-DL Ontologies. In the Proc. of the
22nd National Conference on Artificial Intelligence (AAAI-07), pages 1434–1439,
2007.


