
Reasoning Driven Configuration of
Linked Data Content Management Systems

Stuart Taylor, Nophadol Jekjantuk, Chris Mellish, and Jeff Z. Pan

dot.rural Digital Economy Hub,
University of Aberdeen,

Aberdeen AB24 5UA, UK
WWW home page: http://www.dotrural.ac.uk

Abstract The web of data has continued to expand thanks to the prin-
ciples of Linked Data, increasing its impact on the web both in its depth
and range of data sources. However tools allowing ordinary web users to
contribute to this web of data are still lacking. In this paper we propose
Linked Data CMS, an approach allowing existing web content manage-
ment system (CMS) software to be configured to display a web site based
on a group of ontology classes, by making use of a configuration to map
ontological entities to CMS entities. We have implemented a prototype
of our Linked Data CMS approach using the popular Drupal CMS. This
approach provides the tools for semantic web application developers to
rapidly develop an entire website based on linked data, while allowing or-
dinary web users to contribute directly to the web of data using familiar
CMS tools.

Keywords: linked data, ontologies, content management systems

1 Introduction

There are many mature development platforms that are well suited to tra-
ditional data-based applications and which could benefit from integration with
Linked Data [1]. In particular, nowadays web content is frequently authored by a
user using some form of Content Management System (CMS), where the content
may be structured or relatively unstructured (e.g. wikis and blogs). Integrating
Linked Data into the CMS paradigm could not only allow users unfamiliar with
the complexities of semantic web technologies to consume Linked Data [2], but
also to produce it in a familiar way based on structured data already held in a
CMS. This would greatly benefit the web in terms of reuse and aggregation of
data held within CMSs.

In this paper, we introduce the notion of a Linked Data Content Management
System (Linked Data CMS). A Linked Data CMS performs similar operations to
a traditional CMS but whereas a traditional CMS uses a data model of content
types stored in some relational database back end, a Linked Data CMS deals
with performing CRUD operations on linked data held in a triple store, in the

2

context of a content management system. High quality Linked Data is provided
in ways compatible with W3C standards such as RDF [3] and SPARQL. We
make the additional assumption that the Linked Data to be managed is described
by a (possibly very lightweight, but possibly also arbitrarily complex) ontology
described in OWL, which is underpinned by description logics [4]. To facilitate
the Linked Data CMS we then define a mapping between certain structures
of the OWL classes and entities into a traditional CMS. We call this mapping
Class Based Browsing because the ontology classes are the central entities in
our mapping. Because complete and correct retrieval of information from an
ontology is more complex than simple database lookup, we also introduce a
process of Reasoning Driven Configuration, which configures the class based
browsing and Linked Data CMS based on the source ontological schema. In
reasoning driven configuration, an ontology reasoner, such as the highly efficient
reasoner TrOWL [5], is used to automate the process of configuring the CMS.

In the paper, Section 2 briefly surveys Linked Data, ontologies and CMS, as
well as the previous work that has attempted to integrate them. In Section 3
we present a formalisation of the entities that are maintained in a traditional
CMS. Section 4 describes the mapping from ontology entities to CMS entities
and the abstract configuration process that creates a Linked Data CMS from
an ontology. Section 5 describes how the information used in the mapping can
itself be represented in an ontology and the configuration achieved by standard
(meta-) ontology reasoning. Finally in Section 6 we discuss the implementation
of a prototype of our class based browsing and reasoning driven configuration
approach using the Drupal CMS, and in Section 7 we present a proof of concept
with a case study for the CURIOS project, which deals with managing cultural
heritage linked data using the Drupal Linked Data CMS.

2 Background

2.1 Linked Data

Linked Data was coined by Tim Berners-Lee [6], describing a set of conventions
for publishing RDF [7] datasets on the web. The main ideas are to use HTTP
URIs to refer to things, allowing these URIs to be dereferenced in order to
discover further related information, in W3C standard formats such as RDF and
OWL [8]. These datasets should also refer to further datasets where necessary so
that other related resources can be found. This has led to a vast increase in the
number of RDF Linked Data datasets being published on the web [9]. In 2011,
the Linked Data cloud totalled approximately 31.6 billion RDF triples [10].

2.2 Ontologies

High quality Linked Open Data (data which would be given four “stars” by
Berners-Lee [6]) is made available using W3C standards such as RDF. These
formats use vocabularies to describe the entities in the world. Descriptions of the

3

vocabularies are themselves in RDF, ideally should themselves be open and can
be expressed in various ways, the most general ways being the different versions
of the OWL Web Ontology Language [11]. Vocabulary descriptions expressed in
OWL are called ontologies. Since an OWL description can include not only a
description of a vocabulary but also the uses of that vocabulary to state facts
about individual things, in general one can think of any high quality Linked
Data as being specified simply by an OWL ontology.

In this paper, we assume the use of OWL DL ontologies, which are based on
ideas from the Description Logic (DL) [12] family of knowledge representation
languages. An OWL DL ontology O consists of a set of classes C, object proper-
ties OP, datatype properties DP, individuals I, and the axioms describing the
relationships between them.

The axioms in the OWL DL ontology are divided into the TBox T (termino-
logical box; or schema) and the ABox A (assertional box; or data). TBox axioms
make statements about how classes and properties relate to each other, e.g.,

Person u PostgraduateDegree v ⊥

(“nothing can be both a Person and a PostgraduateDegree”). On the other hand,
ABox axioms make statements about class and property membership, e.g.,

Person(Jek), knows(Stuart, Jek)

(“Jek is a Person and Stuart knows Jek”). In the following we consider an OWL
DL ontology as a tuple O = 〈C,OP,DP, I,A, T 〉; we use these names to refer
to the sets of ontology entities throughout the remainder of the paper.

2.3 Content Management Systems

In this paper we focus solely on Web Content Management Systems. A Web
Content Management System is a system that allows website maintainers and
contributors to manage the content of a website via a central graphical user inter-
face, without relying on any significant knowledge of the underlying technologies
involved in running the website.

In addition to managing page content, a CMS can typically model various
content types. These content types define specialisations of a web page, e.g.,
a content type for a blog post will require some additional attributes such as
author and a topic or category. Most modern CMSs allow the user to define
custom content types, which can consist of the page structure, page attributes,
layout and style.

2.4 Semantic Web Content Management

There has been much interest in integrating CMS and Semantic Web technolo-
gies. Semantic MediaWiki (SMW) [13] is a semantic extension of MediaWiki1,

1 MediaWiki is a popular wiki-engine used throughout the web, most notably it is
used by http://www.wikipedia.org/

4

which allows users to semantically annotate wiki mark-up in the content of wiki
articles, using OWL classes and properties. This approach allows the content of
the wiki to be queried using SPARQL and reused by other semantic web tools,
however it does not support presenting existing Linked Data within the wiki, and
therefore is limited to managing the Linked Data (OWL assertions) generated
only from its own wiki articles.

The BBC’s Dynamic Semantic Publishing (DSP) architecture [14] was de-
signed to allow BBC journalists to annotate news articles2 with metadata from
a domain ontology. DSP both consumes and produces Linked Data, however
the approach is geared towards producing articles with annotations to a fixed
ontology, or one that is managed outside of the CMS.

Semantic Drupal3 [15] is of particular interest, since it provides a platform
to combine Drupal with the Semantic Web. The Drupal Semantic Web Group4

focus on the integration between Drupal and Semantic Web technologies such as
RDF, RDFa and SPARQL, and have successfully produced a number of Drupal
extensions addressing these areas. Semantic Drupal allows site administrators
to export data from nodes as RDF. In this approach, content types and fields
are given mappings to specified classes and properties. In general however this
approach does not allow management of existing Linked Data with the Drupal
CMS, since it is intended only to export Drupal data to Linked Data and import
existing Linked Data to Drupal’s database.

Some of the limitations of consuming Linked Data in Content Management
Systems are overcome by Clark [16] with the SPARQL Views Drupal module.
This approach essentially adds a SPARQL query builder to the powerful Views
module5. This module allows site administrators to specify a view of a set of
fields via a GUI. This specification is then used to generate the appropriate
SPARQL query to instantiate the view and therefore not relying on any SPARQL
knowledge by the user. The strength of SPARQL Views is in its utilisation of the
Views module’s powerful GUI building capabilities, allowing users to building
complex GUIs without requiring any web programming knowledge. However,
this approach is intended to be read only, i.e., views only display the results
from SPARQL queries, but do not allow the corresponding SPARQL endpoint
to be updated. Another limitation of this approach, is that when the number of
required SPARQL Views resource types increases, e.g., when building views for
a large set of OWL classes (where each class would typically be specified as an
individual resource type) the task of initially building and maintaining the set
resource types and associated views becomes a serious burden for the user. For
example, an ontology with 10 classes, each with 10 properties would correspond

2 DSP was first used to build the BBC World Cup 2010 website http://news.bbc.

co.uk/sport1/hi/football/world_cup_2010/default.stm
3 A series of guides for configuring Drupal 7 as “Semantic Drupal” can be found at
http://semantic-drupal.com/

4 The Drupal Semantic Web Group can be found at http://groups.drupal.org/

semantic-web
5 Drupal Views module: http://drupal.org/project/views

5

to 10 resource types, 100 fields with 100 RDF mappings and at least one single
view for each resource type.

The approaches presented in this section go a long way to integrating the ad-
vantages of modern Content Management Systems with Linked Data. However
so far no approach for general Linked Data content management exists. In this
paper we propose an extension to existing content management systems which
allows the full management of ontology instances data; i.e., create, retrieve, up-
date, delete. We propose to automate the process of configuring the CMS based
on the target ontology schema.

3 Formalisation of CMS Entities

Here we propose a straightforward way of formally describing the entities of a
traditional content management system. The idea is to capture the features of
the CMS that can be used to represent ontology entities in our Linked Data
CMS.

Definition 1. A CMS is a tuple S = 〈T, F,R, P 〉 where T is set of page tem-
plates, which define the structure of particular types of page in the CMS (i.e.,
sets of fields and relationships); F is a set of fields, which are used to display
literal values; R is a set of relationships, which define links to another pages in
the CMS; P is a set of page instances, which use a page template to display some
specific information.

Definition 2. A field is a single f = 〈flab〉 ∈ F , where flab is a human readable
label for the field.

Definition 3. A relationship is a pair r = 〈rlab, rT 〉 ∈ R, where rlab is the
relationship label; rT ∈ T is a template for the pages for the objects of the
relationship.

Definition 4. A page template for a CMS 〈T, F,R, P 〉 is a tuple

t = 〈tlab, tF , tR〉 ∈ T

where tlab is the page template label; tF is a set of fields, such that tF ⊆ F ; tR
is a set of relationships, such that tR ⊆ R.

A page template consists of a set of fields, and a set of relationships. It is used as
a template for creating page instances in the CMS (i.e., a page instance has the
same fields and relationships as its page template). Page templates also contain
the information on how to render page instances, however we don’t include the
display concerns this paper. A page instance is an instantiated page template,
for a particular set of field and relationship values:

Definition 5. A page instance for a CMS 〈T, F,R, P 〉 is a tuple

p = 〈plab, pT , pF , pR〉 ∈ P, where

6

– plab is the page title;
– pT is a page template t = 〈tlab, tF , tR〉 ∈ T ;
– pF is a set of pairs 〈fi, fval〉 where fi ∈ tF and fval is a literal value (the

field value);
– pR is a set of pairs 〈ri, rval〉, where ri ∈ tR, rval ∈ P and the page template

of rval is the same as the template specified in ri.

3.1 CMS Entity Example

We can now show how the CMS entities defined in the previous section could be
used to describe a CMS about people. This example is for a CMS S containing
pages about a person May, with two children Pam and Chris. It can be described
using our CMS entities as follows:

S = 〈{person}, {name, dob}, {parentOf}, {may, pam, chris}〉;

where person, name, dob, parentOf , may, pam, chris are entities defined below.
The page template person is defined using the fields and relationships in S,

and the page instance may would be populated with the data about May:

person = 〈“Person Page”, {name, dob}, {parentOf}〉;
may = 〈“May’s Page”, person,mayF ,mayR〉;
mayF = {〈name, “May”〉, 〈dob, “1972-01-05”〉};
mayR = {〈parentOf, pam〉, 〈parentOf, chris〉};

where pam and chris are page instances for Pam and Chris respectively, which
are defined using the person page template in a similar manner as for may. The
fields and relationships are defined as:

name = 〈“Full Name”〉;
dob = 〈“Date of birth”〉;

parentOf = 〈“Children”, person〉.

4 Linked Data Content Management

4.1 Class Based Browsing

Our approach focuses on browsing ontological entities in a CMS, based on onto-
logy classes. The idea is that a particular set of classes from an ontology’s class
hierarchy is selected to provide views of their instances in the CMS. The Linked
Data CMS configuration (which we refer to as the configuration) is a set of these
classes, along with some metadata to allow the Linked Data CMS to configure
the CMS entities in S described in the previous section. We call the combination
of these classes and associated metadata browsing classes.

7

Definition 6. A Linked Data CMS configuration for an ontology O with com-
ponents 〈C,OP,DP, I,A, T 〉 is a pair C = 〈B, lab〉, where B is a set of browsing
classes and lab : (C ∪OP ∪DP ∪ I)→ String is a function that maps ontology
entities to human-readable labels.

Definition 7. A browsing class in a configuration 〈B, lab〉 for the ontology O =
〈C,OP,DP, I,A, T 〉 is a tuple

b = 〈bC , bDP , bOP , bω〉 ∈ B, where

– bC is the base OWL class ∈ C;
– bDP is a set of datatype properties ⊆ DP , such that ∀p : p ∈ bDP : O |=

bC v domain(p);
– bOP is a set of object properties ⊆ OP , such that ∀p : p ∈ bOP : O |= bC v

domain(p);
– bω is a function that assigns to each object property p ∈ bOP a class c ∈ C,

such that O |= range(p) v c and ∃b′ ∈ B : c = b′C .

A browsing class contains an ontology class (called the base class) and some
associated metadata which is used as a view of a set of individuals in the CMS.
This includes the datatype and object properties that have been chosen for
presentation for instances of the base class. The Linked Data CMS mapping
uses the set of browsing classes to create the set of page templates in the CMS
that correspond to the chosen base classes.

4.2 Linked Data CMS mapping

Given an ontology O and a configuration C = 〈B, lab〉 for O, the algorithm in
Figure 1 can be used to construct a CMS. Because the definition of a Linked
Data CMS mapping makes use of the notion of entailment (“|=”) from O, onto-
logy reasoning is required to validate a potential configuration (test that all the
conditions are satisfied). We address the issue of validation in section 5.2 below.

The Linked Data CMS mapping can be summarised as follows. First a field
is created for each datatype property in any bDP . A template t can indirectly
contain other templates, via tR, and so templates and relationships are created
in two phases. The first phase creates the outer structure of each template and
stores these structures in Temp[], which associates an ontology class with the
template that will represent it. The second phase fills in the links between tem-
plates, via the relationships, updating the template structures in place. Where a
relationship is required to hold a template, a pointer to the relevant template is
retrieved from Temp[]. Finally the page instances are created, in a similar two
phases, since a page instance p can indirectly contain another page instance, via
pR. Here Page[] is used to keep a mapping between ontology individuals and the
page instances that will be used for them.

The CMS configuration process implemented in this algorithm is reasoning-
driven because the page instances depend on what is entailed by the ontology,
and in general a reasoner is needed to establish this.

8

Inputs: An ontology O and a configuration C = 〈B, lab〉 for O
Output: A CMS 〈T, F,R, P 〉

Temp[]: A hash table from concepts to templates, initially empty
Page[]: A hash table from individuals to pages, initially empty
r: a relationship
T, F,R, P :- sets of templates, fields, relationships and pages

F := {〈lab(p)〉 : b ∈ B, p ∈ bDP };
R := φ;
T := φ;
// Initialise template structures
For each b ∈ B

Temp[bC] := 〈lab(bC), {〈lab(p)〉 : p ∈ bDP }, φ〉;
// Finalise templates and relationships
For each b ∈ B

For each p ∈ bOP

For each b′ ∈ B
If b′C = bω(p) then

r := 〈lab(p), T emp[b′C]〉;
R := R ∪ {r};
Temp[bC]R := Temp[bC]R ∪ {r};

T := T ∪ {Temp[bC]};
// Initialise page strructures
P := φ;
For each b ∈ B

For each a such that O |= bC(a)
Page[a] := 〈lab(a), T emp[bC],

{〈lab(p), v〉 : p ∈ bDP ,O |= p(a, v)}, φ〉;
// Connect pages
For each b ∈ B

For each a such that O |= bC(a)
For each p ∈ bOP

For each v such that O |= p(a, v)
r := 〈lab(p), T emp[bω(p)]〉;
Page[a]R := Page[a]R ∪ {〈r, Page[v]〉};

P := P ∪ {Page[a]};
Return 〈T, F,R, P 〉;

Figure 1. Linked Data CMS Mapping Algorithm

9

The Linked Data CMS mapping also allows page instances to be used as
update views, i.e. entities in the CMS can be mapped to entities in the ontology
by looking at the browsing classes. Finally, we can define the Linked Data CMS.

Definition 8. A Linked Data CMS is the combination of an ontology O, a
configuration C = 〈B, lab〉 and the resulting CMS S = 〈T, F,R, P 〉 once the
Linked Data CMS mapping has been applied.

4.3 Class Based Browsing Example

We now revisit the CMS entity example presented in Section 3.1 and show how
this CMS structure can be created from an example ontology O using our Linked
Data CMS approach.

The ontology O consists of:

Person(may); name(may, “May”); dob(may, “1972-01-05”);

Person(pam); name(pam, “Pam”); parentOf(may, pam);

Person(chris); name(chris, “Chris”); parentOf(may, chris);

rdfs:label(may,may); rdfs:label(pam,pam); rdfs:label(chris, chris).

We have omitted the rdfs:label axioms for classes and properties, however we
assume they have been defined in the same way as for the individuals.

We can define a configuration C = 〈B, lab〉 as follows.

B ={〈Person, {name, dob}, {parentOf}, {〈parentOf,Person〉}〉}.
lab(x) =l : O |= rdfs:label(x, l).

Although these labels are not the same as those used in Section 3.1, lab(x)
could easily be defined to produce labels based on the type of x, e.g., if x is
a class, then lab(x) = concat(l, “ Page”) : O |= rdfs:label(x, l); where concat is
the string concatenation function. However, for ease of presentation we use the
simpler definition of lab(x) in this example.

Now the Linked Data CMS mapping is applied to C to produce a CMS S as
follows. First the basic CMS structure and fields are created:

S =〈T, {name, dob}, R, P 〉;
name =〈name, “name”〉; dob = 〈dob, “dob”〉;

A page template is then created for each browsing class in B and the relationships
are created to connect these together:

person =〈“Person”, {name, dob}, {parentOf}〉;
T ={person};

parentOf =〈“parentOf”, person〉;
R ={parentOf}

10

Then for each new page template, a page instance is created for each individual
in the ontology that has a corresponding browsing class:

P ={may, pam, chris};
may =〈“may”, person,mayF ,mayR〉;
pam =〈“pam”, person, {〈name, “Pam”〉}, ∅〉;
chris =〈“chris”, person, {〈name, “Chris”〉}, ∅〉;
mayF ={〈name, “May”〉, 〈dob, “1972-01-05”〉};
mayR ={〈parentOf,pam〉, 〈parentOf, chris〉}.

In this example we have created the CMS entities in S to reproduce the CMS
structure described in Section 3.1, based on the ontology O and configuration C.
This example illustrates that given an ontology and a fairly simple configuration,
a significant CMS can be created in a straight forward manner. The ontology
in this example was small (since we only used three individuals) however using
our approach we can increase the number of page instances at no extra cost to
the user, since the complexity of defining a configuration is only related to the
number of classes chosen for display.

5 Representing the Browsing Classes

In the previous section, we described the configuration, the central part of the
Linked Data CMS, as a formal entity. This entity is referred to by the mapping
algorithm which, using ontology reasoning as needed, constructs the CMS from
the information in the ontology. In this section, we propose the use of a meta
ontology to represent the configuration. This has the advantage that validation
of the configuration can be done by standard meta ontology reasoning.

OWL 2 supports a very basic, but decidable, approach to metamodeling
called “punning”, which means that the sets of names for classes, properties and
individuals do not have to be disjoint. Punning allows one to, for instance, treat
:Eagle as separately denoting both a class of Birds and an individual of the
class :Species. This can be quite useful for some sorts of modelling. However,
there is no logical relation between classes, individuals or properties with the
same name. The semantics of punning is based on contextual semantics [17].
There are some restrictions on punning - the same identifier (IRI) cannot be use
to denote both a class and a datatype property, also datatype properties and
object properties cannot have the same name.

5.1 The Linked Data CMS Using a Meta Ontology

A Linked Data CMS consists of a configuration meta-ontology6 Oconfig which
is applied to a domain ontology Odomain in order to map entities in the domain

6 The meta-ontology schema can be found at: http://www.abdn.ac.uk/~csc363/

ldcms/ldcms.owl

11

ontology to entities in a CMS, such as Drupal. Oconfig has as individuals a set of
classes C, object properties OP and datatype properties DP from Odomain; and
a set of browsing classes B. Each browsing class b ∈ B is an ontology individual
in the meta-ontology describing how a particular base class bc (OWL class in
the domain ontology) should be rendered by the CMS.

The following example shows part of Oconfig for a configuration with a single
browsing class in Turtle syntax:

: PersonPage rd f : type cms : BrowsingClass ;
r d f s : l a b e l ‘ Person Page ’ ;
cms : baseClass domain : Person ;
cms : r e l a t i o n s h i p [

rd f : type cms : Re la t i on sh ip ;
r d f s : l a b e l ‘ Child Of ’ ;
cms : t a r g e t domain : Person ;
cms : property domain : ch i ldOf] ;

cms : r e l a t i o n s h i p [
rd f : type cms : Re la t i on sh ip ;
r d f s : l a b e l ‘ Lived At ’ ;
cms : t a r g e t domain : Res idence ;
cms : property domain : l ivedAt] ;

cms : f i e l d [
rd f : type cms : F i e ld ;
r d f s : l a b e l ‘ Fu l l Name’ ;
cms : property domain : name] .

5.2 Validating the Linked Data CMS

Given the definition of browsing class in Section 4.1, a configuration such as
the above must satisfy a number of constraints. For instance, each relationship
target must be a base class in the configuration and the base class should include
the range of the relationship property. In the above, we need, for instance, to
have:

Odomain |= range(livedAt) v Residence

A browsing class can be validated using the following SPARQL query where
bc is the browsing class to be validated. If the ASK query returns false, then
the browsing class is invalid.

Val idate r e l a t i o n s h i p aga in s t domain onto logy .
p r e f i x cms : <http ://www. abdn . ac . uk/˜ csc363 / ldcms/ ldcms . owl#>
ASK {

Query c o n f i g u r a t i o n meta−onto logy .
SERVICE <http :// spa rq l . example . org :3030/ c o n f i g /query> {
<bc> a cms : BrowsingClass ;

cms : r e l a t i o n s h i p [
cms : property ?P ;

12

cms : t a r g e t ?C] .
[] a cms : BrowsingClass ;

cms : baseClass ?C .
}
Query domain onto logy .
SERVICE <http :// spa rq l . example . org :3030/ datase t /query> {

?P r d f s : range [r d f s : subClassOf ?C] .
}

}

In this query a SPARQL 1.1 Federated Query [18] is used to query Oconfig

hosted at the SPARQL endpoint http://sparql.example.org:3030/config/

query and Odomain at the SPARQL endpoint http://sparql.example.org:

3030/dataset/query. The query against Oconfig makes use of the entailments
of Odomain when validating the relationship target in specified in the browsing
class <bc>.

6 Drupal Linked Data CMS

We have implemented our Linked Data CMS approach using the Drupal plat-
form. Drupal 7 was chosen due to having RDF support built into the core system
and many contributed modules. Our Linked Data CMS approach is implemented
as a Drupal module which builds on a number of existing semantic web based
modules. In this section we provide an overview on how our approach has been
implemented within Drupal.

In our Drupal implementation we allow the user to specify the configuration
in much the same manner as described in Section 4.1. The configuration is used
to create entities in Drupal using the Views, Panels and SPARQL Views modules
to represent the page templates. At runtime the page instances are generated on
the fly by the SPARQL Views module (see Section 2.4). We configure Drupal
with three main types of page template: (i) the listings view, which allows users to
browse and search ontology individuals; (ii) the details view, which allows users
to view all the fields and relationships for a particular individual (Figure 2); (iii)
the update view, which allows users to create, update and delete individuals in
the ontology.

The SPARQL Views module allows users to map Drupal fields to RDF pre-
dicates and then build a view based on those fields. The field mappings are
grouped into SPARQL Views Resource Types, each intended to represent a par-
ticular type of RDF resource. In the background SPARQL Views generates a
SPARQL query based on the RDF mapping and Views specification. The view
can be configured by users selecting the appropriate fields, filters (usually based
on URL parameters), relationships to other SPARQL Views resources and dis-
play configuration.

Whereas maintaining a set of SPARQL Views by hand can be very complex
(section 2.4), in essence our Linked Data CMS automatically configures a set
of SPARQL Views Resources and Views based on an OWL ontology and user

13

Figure 2. Drupal Linked Data CMS: Details View

specification of how that ontology should be represented in Drupal; along with
an additional set of pages allowing those resources to be maintained (create /
update / delete). The browsing classes identified by the user, along with their
associated datatype and object properties are mapped to resource types, fields
and relationships respectively. A default SPARQL Views view is then created for
each browsing class (listings and details views), this view can then be modified
by the user using the standard Views interface.

Our Drupal module uses the configuration to create an entire Drupal site
using SPARQL Views, based on the ontology and configuration specified by the
user. This approach also centralises the maintenance of the structure of the CMS
w.r.t. the ontology, e.g., if a new browsing class is required, the user can update
the configuration and then execute the Linked Data CMS mapping algorithm
to create the required Drupal entities. Additionally our approach can handle
changes to the schema of the ontology. For example if a change in the ontology
occurs, such as a domain/range, additional classes or a change of URIs, then the
configuration can be used to synchronise CMS with the ontology schema.

Drupal site administrators can also maintain the Drupal Linked Data CMS
generated by the configuration in the same way as a regular Drupal site. Spe-
cifically once the configuration mapping has been applied, site administrators are

14

free to change the labels, fields, RDF mappings, page layouts and so on using
the administration interface provided by the various Drupal modules.

7 Proof of Concept: Cultural Heritage Linked Data

We have used our Linked Data CMS approach to build a system that manages a
repository of cultural heritage linked data. The Hebridean Connections cultural
repository is a repository about people, their relationships, their occupations,
the places they have lived, events they have been involved in and even the
historical artefacts they have interacted with. The repository was originally a
database of information collected by several historical societies in the Western
Isles of Scotland. It has been recreated as an OWL ontology by the CURIOS
project [19] at dot.rural in the University of Aberdeen7.

7.1 Cultural Heritage Ontology

As an OWL ontology, the repository consists of approximately 32,000 individu-
als, 520 classes, 250 object properties, 55 datatype properties. The ontology
schema uses an OWL 2 RL [20] level of OWL expressivity, where most of the
expressive power is used to express relationships between object properties.

This ontology makes use of domain, range, functional, reflexive, symmetric
and transitive property axioms, while having a relatively simple set of atomic
classes. Using our reasoning driven configuration, the Linked Data CMS has been
configured with 16 browsing classes, with 106 datatype and object properties
from the ontology. The browsing classes contain a total of 211 field assignments
(datatype properties) and 118 relationship assignments (object properties)8. The
expressivity of the Hebridean Connections fits within the OWL 2 RL profile,
allowing for efficient runtime reasoning performance.

The browsing classes used for the ontology have been selected at a fairly high
level close to the top of the classification hierarchy. Some examples of the brows-
ing classes are: Person, Occupation, Residence, Business; each class subsumes a
number of more specific classes which we have also used to configure search fil-
ters in the CMS. The browsing classes and their sub-classes appear in the ranges
of the object properties used as relationships in the Linked Data CMS.

In this case study we use the Fuseki SPARQL server [21], since it can be integ-
rated with Jena API reasoners and supports SPARQL 1.1 [18]. We use SPARQL
1.1 for all communication with the endpoint (query and update services). This
allows the selection of any SPARQL 1.1 compatible endpoint for the system.

8 Conclusion

In this paper, we have presented a general approach to automatically setting up
a standard web content management system to manage semantic web data based

7 CURIOS Project Homepage: http://www.dotrural.ac.uk/curios/
8 An assignment is an occurrence of a field or relationship being used in a browsing

class

15

on an OWL ontology and a user specification of the views of the ontology to be
presented (the configuration). The entities generated by the mapping algorithm
(Section 4.2) rely on ontology entailments [4], which are used to automatically
infer additional relationships between pages in the CMS. The validation of the
user specification and the generation of the CMS are both reasoning-driven, in
that they make essential use of ontology reasoning [2].

The approach relies on using a particular method of managing ontology data
in the content management system, called class based browsing. Using our ap-
proach the gap between linked data and popular the CMS tools currently in use
on the web is greatly reduced, allowing ordinary web users to contribute directly
to the semantic web using familiar CMS tools. We showed how our Linked Data
CMS approach can be implemented in the Drupal CMS by building on top of
some popular Drupal modules. An additional advantage of this implementation
is that once the class based browsing has been configured in Drupal, users can
still use all of the standard Drupal tools to customise the Linked Data CMS.
Finally, we presented an instantiation of the Linked Data CMS with cultural
heritage data. As for future work, we plan to investigate how to consider other
user requirements [22] of ontology enabled software [23], when setting up content
management systems.

Acknowledgement This work is partially supported by the RCUK dot.rural
Digital Economic Hub and the EU K-Drive (286348) projects.

References

1. Hogan, A., Pan, J.Z., Polleres, A., Ren, Y.: Scalable OWL 2 Reasoning for Linked
Data. In: Reasoning Web. Semantic Technologies for the Web of Data. Lecture
Notes in Computer Science 6848 Springer, ISBN 978-3-642-23031-8. (2011)

2. Pan, J.Z., Thomas, E., Ren, Y., Taylor., S.: Tractable Fuzzy and Crisp Reasoning
in Ontology Applications. In: IEEE Computational Intelligence Magazine. (2012)

3. Heino, N., Pan., J.Z.: RDFS Reasoning on Massively Parallel Hardware. In: Proc.
of the 11th International Semantic Web Conference (ISWC2012). (2012)

4. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD
thesis, School of Computer Science, The University of Manchester, Oxford Rd,
Manchester M13 9PL, UK (2004)

5. Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: Tractable OWL 2 Reasoning Infrastruc-
ture. In: the Proc. of the Extended Semantic Web Conference (ESWC2010). (2010)

6. Berners-Lee, T.: Linked-data design issues. W3C design issue document (June
2009) http://www.w3.org/DesignIssue/LinkedData.html.

7. Manola, F., Miller, E.: RDF Primer (2004) W3C Recommendation, http://www.
w3.org/TR/rdf-primer/.

8. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S., eds.:
OWL 2 Web Ontology Language: Primer. W3C Recommendation (2009) Available
at http://www.w3.org/TR/owl2-primer/.

9. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J.
Semantic Web Inf. Syst. 5(3) (2009) 1–22

10. Cyganiak, R.: The linking open data cloud diagram. http://richard.cyganiak.

de/2007/10/lod/ (2011) Accessed: 2012-10-16.

16

11. Motik, B., Patel-Schneider, P.F., Grau, B.C.: OWL 2 Web Ontology Lan-
guage: Direct Semantics (2009) W3C Recommendation, http://www.w3.org/TR/
owl2-direct-semantics/.

12. Baader, F., Horrocks, I., Sattler, U.: Description Logics for the Semantic Web. KI
– Künstliche Intelligenz 16(4) (2002) 57–59

13. Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic MediaWiki. In Cruz, I.F.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L., eds.: International Semantic Web Conference. Volume 4273 of Lecture Notes in
Computer Science., Springer (2006) 935–942

14. Rayfield, J.: Dynamic semantic publishing. In Maass, W., Kowatsch, T., eds.:
Semantic Technologies in Content Management Systems. Springer (2012) 49–64

15. Corlosquet, S., Delbru, R., Clark, T., Polleres, A., Decker, S.: Produce and consume
Linked Data with Drupal! In Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K., eds.: International Semantic Web
Conference. Volume 5823 of Lecture Notes in Computer Science., Springer (2009)
763–778

16. Clark, L.: SPARQL Views: A Visual SPARQL Query Builder for Drupal. In
Polleres, A., Chen, H., eds.: ISWC Posters&Demos. Volume 658 of CEUR Work-
shop Proceedings., CEUR-WS.org (2010)

17. Motik, B.: On the Properties of Metamodeling in OWL. Journal of Logic and
Computation 17(4) (2007) 617–637

18. SPARQL: SPARQL 1.1 overview (2012) W3C Working Draft,
http://www.w3.org/TR/sparql11-overview/.

19. Mellish, C., Wallace, C., Tait, E., Hunter, C., Macleod, M.: Can digital technologies
increase engagement with community history? In: Digital Engagement 2011. (2011)

20. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language – Profiles. Technical report, W3C (2009)

21. Seaborne, A.: Fuseki: serving RDF data over HTTP. http://jena.apache.org/

documentation/serving_data/ (2011) Accessed: 2012-10-27.
22. Siegemund, K., Zhao, Y., Pan, J.Z., Assmann., U.: Measure Software Requirement

Specifications by Ontology Reasoning. In: Proc. of the 8th International Workshop
on Semantic Web Enabled Software Engineering (SWESE2012). (2012)

23. Pan, J.Z., Staab, S., Amann, U., Ebert, J., Zhao, Y.: Ontology-Driven Software
Development. Springer (ISBN: 978-3-642-31225-0) (2013)

