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Abstract

Recent advances of large pre-trained lan-
guage models have motivated significant break-
throughs in various Text-to-SQL tasks. How-
ever, a number of challenges inhibit the deploy-
ment of SQL parsers in commercial applica-
tions. In this paper, we focus on two such chal-
lenges: decoding speed and multilingual input,
and introduce FastRAT, a model that includes
(i) a decoder-free framework to quickly gener-
ate SQL queries from natural language ques-
tions based on SQL Semantic Predictions, (ii) a
cross-lingual multi-task pre-training scheme,
and (iii) a method, based on distant supervision,
to extend a semantic parser to new languages.

We apply FastRAT on CSpider and Spider, two
challenging zero-shot semantic parsing bench-
marks. Our system achieves an average of
10x decoding speedup over a set of compet-
itive baselines based on auto- or semi-auto-
regressive decoding. In the cross-lingual CSpi-
der dataset, our approach achieves an exact
query match accuracy score of 61.3, outper-
forming the relevant competition. In the mono-
lingual task, it maintains competitive perfor-
mance by exhibiting < 5% accuracy drop com-
pared to disproportionately slower solutions.

1 Introduction

The task of Text-to-SQL semantic parsing is to
transform natural language questions into SQL
queries. The resulting queries can be executed by
the corresponding database instance, in order for
appropriate results to be returned to the end-user,
who might not be familiar with SQL or the schema
of the given database (Zelle and Mooney, 1996;
Dong and Lapata, 2016). Given their accessibility
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benefits, Text-to-SQL applications have become
increasingly popular recently, with many corpora-
tions developing Business Intelligence platforms.

Despite the market potential, existing solutions
are usually based on larger language models, and
have notable limitations—they tend to work only
for simple queries and data sources, and exhibit
relatively slow processing times. Furthermore,
while database schemata are often in English, data
records might be in other languages, and users
might need to query them in languages other than
English.

In an effort to alleviate the shortcomings of Text-
to-SQL solutions, increasingly difficult datasets
and benchmarks have been developed (Zhong et al.,
2017; Yu et al., 2018; Min et al., 2019; Dou et al.,
2023; Zhang et al., 2023). The efforts to explore the
generalisability of such Text-to-SQL systems have
recently culminated with the introduction of mul-
tiple database datasets, which distinguish between
training and evaluation databases. As a result, mod-
els are expected to be tested on databases they have
not met during training. We refer to this setup as
cross-database semantic parsing.

Research efforts for addressing the challenges
introduced by this cross-database setting have
converged to the general encoder-decoder frame-
work (Dong and Lapata, 2016; Kočiský et al., 2016;
Wang et al., 2020a; Rubin and Berant, 2021). In
this framework, the encoder (i.e. usually based
on a pre-trained language model) processes the
input natural language question along with the cor-
responding database (i.e. database schema with or
without its relevant values), whereas the decoder
seeks to decode the SQL query (Wang et al., 2020a;
Rubin and Berant, 2021; Cao et al., 2021).

A substantial amount of work has focused on
the monolingual cross-database setup, where both
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the natural language and the database schema are
in English, by (i) increasing the size or complex-
ity of architectures (Wang et al., 2020a; Cao et al.,
2021; Shaw et al., 2021) or (ii) introducing series
of pre-training stages (Yu et al., 2021). The compu-
tational cost of such approaches tends to increase,
with a few approaches investigating how improved
execution times can facilitate their deployability in
production environments (Lukovnikov and Fischer,
2021; Rubin and Berant, 2021).

In this paper, we altogether delete the decoder,
which is traditionally responsible for the largest
amount of the necessary computational workload
(Akoury et al., 2019), and treat the generation of
the SQL query as a one-step multi-label classifi-
cation task. We use the RAT-SQL encoder (Wang
et al., 2020a), a popular choice among state-of-the-
art models employed for cross-database semantic
parsing,1 and we introduce an SQL generator ca-
pable of quickly forming the expected SQL query
given a set of semantic predictions on top of the
input database schema’s elements.

Another factor that prohibits the deployability
of state-of-the-art systems is their reliance on the
monolingual setting, where both the natural lan-
guage questions and the database schema are in
the same language. While schema information of
non-English databases is often available in English,
there are several challenges in transferring a mono-
lingual system to the cross-lingual setup, where the
natural language question is in a different language
than the database. Most existing cross-lingual so-
lutions have focused on shared database seman-
tic parsing setups where evaluation databases are
known during training (Sherborne et al., 2020; Xia
and Monti, 2021; Sherborne and Lapata, 2022).

In this paper, we address the above challenges,
enabling Text-to-SQL semantic parsing in the cross-
lingual and cross-database setup in a fast and scal-
able way, and facilitating the deployment of rele-
vant solutions in business intelligence products. We
apply our model (FastRAT) on CSpider and Spider,
two challenging zero-shot semantic parsing bench-
marks. Our system achieves an average of 10 times
decoding speedup over competitive baselines based
on auto- or semi-auto-regressive decoding. Inter-
estingly, FastRAT, a 673M-parameter architecture,
is able to outperform the multi-billion-parameter
ChatGPT system across both benchmarks, while

1https://yale-lily.github.io/spider and https:
//taolusi.github.io/CSpider-explorer/

being significantly less computationally expensive
than it. In particular, on a cross-lingual dataset,
our approach achieves an exact query match ac-
curacy score of 61.3, outperforming the relevant
competition.

2 Background

Our method draws inspiration from work on fast
decoding and cross-lingual semantic parsing.

2.1 Fast Decoding

Text-to-SQL semantic parsing problems are quite
often solved with architectures that follow the
sequence-to-sequence paradigm. Such models in-
clude an encoder, which reads and encodes the in-
put, and a decoder, which predicts the correspond-
ing output, often sequentially. Depending on the
size and complexity of the models, the encoding
and decoding process can be long; however, admit-
tedly, decoding is the most time-consuming part.

The main reason for the time inefficiency of
decoders is the fact that decoding is usually per-
formed in an auto-regressive manner: one token at a
time, in a specified direction. Auto-regressive mod-
els are based on the idea that, in order to predict
the k-th element of a sequence, a model will need
to have first predicted and consulted the previous
k − 1 elements. Interestingly, due to the intuitive
information flow, auto-regressive models generally
achieve better performance compared to their non-
auto-regressive counterparts (Akoury et al., 2019).

A more efficient decoder would be one that is
able to predict more than one token or element per
decoding timestep t. Zhu et al. (2020); Lukovnikov
and Fischer (2021) reduce the number of decoding
timesteps by using insertion-based tree decoding.
The most recent work following this paradigm is
the work by Rubin and Berant (2021). The authors
propose a semi-auto-regressive semantic parser,
SmBoP, that works in a bottom-up fashion by con-
structing, for each timestep t, the top-scoring sub-
trees of height less than or equal to t. Since SmBoP
operates in a bottom-up fashion, all sub-trees of a
certain height can be computed in parallel, thus
reducing the computational complexity of the de-
coding task. While SmBoP substantially improves
decoding times over auto-regressive models, its av-
erage runtime is still quite high to meet deployment
standards. For reference, in a well-known Text-to-
SQL dataset (Yu et al., 2018), SmBoP needs an
average of 9 timesteps to decode SQL queries.
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Taking the semi-auto-regressive idea to its
extreme, one can have a completely non-auto-
regressive decoder that generates the whole out-
put in one timestep. Inspired by recent work (Yu
et al., 2021), instead of predicting SQL queries as
sequences of tokens, we predict sets of SQL Se-
mantic Prediction (SSP) labels associated with each
table and column name of the input database. Sub-
sequently, using a simple algorithm, we translate
the set of SSP labels into an SQL query.

2.2 Cross-lingual Semantic Parsing

The efforts of the scientific community to build sys-
tems for cross-lingual semantic parsing have led
to the development of a series of relevant bench-
mark datasets (Min et al., 2019; Dou et al., 2023;
Zhang et al., 2023). Most recent approaches for
cross-lingual semantic parsing have sought to lo-
calise parsers to new target languages using back-
translations (Sherborne et al., 2020) or machine
translation (Xia and Monti, 2021; Shi et al., 2022).
Such solutions precondition access to high-quality
machine translation or source-target language align-
ment systems. However, under realistic circum-
stances, the resulting data diverges from actual test
cases, leading to poor generalisation. More re-
cently, Sherborne and Lapata (2022) proposed a
multi-task encoder-decoder model to transfer pars-
ing knowledge to additional languages using only
English logical form paired data and in-domain
natural language corpora in the target languages.

While this approach has shown promising results
for shared-database semantic parsing, challenges
associated with linking column mentions to unseen
databases are not addressed in the cross-lingual
setup. In this work, we introduce a unified frame-
work, based on distant supervision, for generating
high-quality, aligned logical form queries in SQL
and questions in a target language. This frame-
work does not assume the existence of any machine
translation systems, thus preserving the resulting
data from any relevant inefficacies. Furthermore,
inspired by Sherborne and Lapata (2022), we pro-
pose a new multi-task training scheme which offers
tighter interaction between the input language and
the schema representations.

3 Our Approach

Let q = q1, q2, . . . , qQ be the sequence of tokens
of a natural language question, t = t1, t2, . . . , tT
tables, and c = c11, c

1
2, . . . , c

1
C1
, . . . , cTCT

columns

of a database D related to q, where C1, . . . , CT ∈
N are the indices of the last column of table t1 and
tT respectively.

3.1 Query Decoding with SSP Labels

We follow the formulation of the auxiliary SSP
task, introduced by Yu et al. (2021). In this task,
given a database schema and a natural language
question, the goal is to compute the SQL operation
in which each column of the input schema would
participate in the expected SQL query. An idealised
example of the task of assigning SSP labels to the
columns of an input schema and of their relevance
to the expected SQL query is presented in Table 7
of Appendix A.

Our architecture consists of a pre-trained lan-
guage model which takes as input the concatena-
tion of the input natural language question with the
column and table names of a database schema of
interest. In contrast to Yu et al. (2021), we extend
the SSP task across the entire schema, and compute
relevant SQL operations across both column and
table names. Furthermore, we treat learning this
version of the task as the final training step required
by our system, and not as an additional pre-training
phase. Consequently, we minimise any potential
task-relevance gaps that can be introduced by pre-
training and fine-tuning architectures in tasks of
different natures. Our system is capable of effi-
ciently decoding the SQL query that answers the
input question q, by using the set of SSP labels that
are computed for each element of the input schema.

3.1.1 From SQL to SSP Labels
Columns and tables (schema elements) appear in
SQL queries in specific contexts: each occurrence
of a schema element appears in a specific SQL
keyword or clause, along with an aggregate (e.g.
COUNT or MAX) or an operator (e.g. = or !=), possi-
bly within a sub-query. Each schema element oc-
currence can be translated into a string or snippet,
that contains the basic information about where this
element appears in the SQL query. Such informa-
tion is encoded in SSP labels by design: each label
is the concatenation of the snippets corresponding
to instances of a particular column or table name
in the SQL query.

Occurrence snippets are composed of three ele-
ments: (i) the nest which indicates in which sub-
query the schema element appears (empty for the
main query), (ii) the SQL keyword/clause that is in-
volved (SELECT, FROM, WHERE etc), and (iii) the var-



ious arguments providing additional information,
such as aggregate or comparison operators. For in-
stance, in Figure 1, column furniture_id of table
clients appears in the sub-query indicated by the
“OP_SEL” nest. This column appears in the WHERE
statement of the SQL query, and its comparison op-
erator is “=”. Consequently, the occurrence snippet
for the furniture_id column is “OP_SEL WHERE
=”. The SSP label for furniture_id is then the
concatenation of all its occurrence strings; in this
case only “OP_SEL WHERE =”.

SQL
SELECT * , T1.tables , count(T2.chairs)
FROM room as T1 JOIN furniture as T2 ON
T1.place = T2.place WHERE T2.owner IN (
SELECT owner FROM clients WHERE
furniture_id = 5 ) ORDER BY T1.tables DESC

SSP labels
__all__ : SELECT none
room : FROM
.chairs : SELECT count
.owner : WHERE IN
furniture : FROM
.tables : SELECT none ORDER BY none DESC
clients : OP_SEL FROM
.owner : OP_SEL SELECT
.furniture_id : OP_SEL WHERE =

Figure 1: Example of the SSP labels that describe a
particular SQL query.

We model the various possible sub-queries con-
figurations that can appear in an SQL query using
the following keywords in the nest: (i) OP_SEL for
sub-query, (ii) INTERSECT for an occurrence in a
query after an intersect, (iii) UNION for an occur-
rence in a query after a union and (iv) EXCEPT for
an occurrence in a query after an except. Keywords
can be chained together when needed. For exam-
ple, an occurrence of a column in a sub-query after
an intersect operation would result in the inclusion
of the following nest snippet in its corresponding
occurrence string: “INTERSECT OP_SEL”.

Once the nest of an occurrence string is deter-
mined, we add the keyword/clause (i.e. SELECT,
FROM, WHERE, HAVING, GROUP_BY and ORDER_BY) in
which it appears. Each operator might be followed
by extra keywords:

• For SELECT, we add the aggregation operator
that is applied to the column (e.g., SELECT
count for the room.chairs column in Fig-
ure 1). In case no aggregator is applied, we
add the “none” keyword.

• FROM does not require extra information. Note

that FROM can only appear in the SSP label of
a table name.

• For HAVING, we add the relevant aggregate
and comparison operator (e.g., “=”, “<”, etc).

• For WHERE, we add the comparison operator,
and an “OR” keyword if there is an “OR” condi-
tion next to the occurrence in the SQL query.

• For GROUP_BY, we add the aggregator.

• For ORDER_BY, we add the relevant aggrega-
tor, the order type (“ASC” or “DESC”) and the
keyword “LIMIT”, if applicable.

3.1.2 From SSP Labels to SQL
Given a set of SSP labels, it is straightforward to
uncover the basic structure of the corresponding
SQL query, and find the appropriate places of the
column and table mentions.

We start by the nests appearing in the SSP la-
bels, as they indicate the overall structure of the
SQL query. For each sub-query identified, we ex-
tract from the SSP labels the columns that appear
in it, and place them in the right position (using
operators SELECT, WHERE, etc), respecting the SQL
format.

Since SSP labels do not provide details about the
position of sub-queries, we construct all possible
SQL queries by placing each sub-query in all appro-
priate HAVING and WHERE statements. This process
however does not build JOIN statements, since SSP
labels do not contain column-joining operations.

3.1.3 Table Joining Algorithm
The most challenging part of decoding is finding
the correct joins for the tables involved. We have
developed an algorithm capable of generating com-
plex join statements and finding tables that are re-
quired to construct SQL queries in which tables
might not necessarily appear in any other places
apart from the JOIN operators.

The algorithm (i.e. Algorithm 1) starts by adding
all tables that should appear in the FROM statement
into a list Lt. It then builds a set of tables Ls, of
which the join statements are known: it begins by
adding tables such that each table can be directly
joined with another one in Ls using a foreign key
(lines 5–8). Then, it attempts to complete the JOIN
statement as follows: for each table ti left to join,
it finds a table tj in the database schema that can
be joined to ti and tj can be joined to a table in Ls

(lines 10–13). A more detailed description of the
involved steps is provided in Appendix B.



Algorithm 1: Joining algorithm for finding
the appropriate join statement given a set
of tables.

1 Step 1: Initialise Lt with all the tables
appearing the the query;

2 Step 2: Find the direct joining statements;
3 Initialise Ls = [ti] with a random table

ti from Lt;
4 Delete ti from Lt;
5 while tb ∈ Lt s.t Ta ⇌ Tb for ta ∈ Ls

do
6 Add tb to Ls;
7 Delete tb from Lt;
8 end
9 Step 3: Find the join statements that require

additional tables;
10 while tb ∈ Lt s.t Ta ⇐⇒ Tb for ta ∈ Ls

do
11 Add tb and all intermediate tables to

Ls;
12 Delete tb from Lt;
13 end
14 Return Ls

3.2 Pre-training Data Construction
Most Text-to-SQL models are trained and tested
on a single language. However, the commercial
need to deploy similar models for more than one
language is very common. While architectures
can be reused, adapting an existing model to a
new language requires large amount of data in that
language, which can be cumbersome to find in
multiple languages. As an example, a popular pre-
training dataset for Text-to-SQL (Yu et al., 2021)
has 400k examples; obtaining a good translation of
it would take a substantial budget and some months
of annotation work. Our approach to efficiently
create a dataset in a new language works as follows:

• Starting from a dataset containing tuples of the
form (natural language question, SQL query)
we obtain templates for both elements, result-
ing in a small dataset of tuples of the form
(natural language template, SQL template).

• We translate the natural language templates
to the new language, resulting in a dataset of
(natural language template in new language,
SQL template) tuples.

• We sample databases, table and column names
from data in the new language, and populate

multiple instances of each template.

Table 1 shows this process for a single example.

en NL question How many department heads have
an age over 40?

SQL SELECT COUNT(*) FROM head
WHERE age > 40

en NL template COUNT(*) T0 have C0 OP0 VAL0

SQL template SELECT COUNT(*) FROM T0
WHERE C0 OP0 VAL0

zh NL template VAL0 C0 OP0 的 T0 有多少?

SQL template SELECT COUNT(*) FROM T0
WHERE C0 OP0 VAL0

zh NL question 40岁以上的部门主管有多少？

SQL SELECT COUNT(*) FROM head
WHERE age > 40

Table 1: Example of how data instances consisting
of natural language question (in en) and SQL query
can be translated into a new language (i.e. zh) using
our approach. C0, T0, OP0, VAL0 are placeholders for
columns, tables, operators, and values respectively.

Abstracting away from the templates and consid-
ering the grammar that can create natural language
and SQL templates, one can think of this approach
as a synchronous context-free grammar that has
rules to produce text and corresponding SQL in
two languages. An example of such grammar is
shown in Table 8 of the Appendix.

In our experiments, we manually translate the
rules of the grammar released by Yu et al. (2021) to
Chinese. In our translated grammar version, there
are 328 natural language production rules, corre-
sponding to 88 SQL templates; each SQL template
is paired with 1–18 natural language templates. We
generate the final version of the dataset by adding
terminal rules with names from new databases.

This approach, inspired by distant supervision
(since it creates a weakly labelled dataset from
existing data), requires substantially lower effort
and resources than translating the whole dataset.

3.3 Pre-training Strategy
The cross-lingual capabilities of our model are pow-
ered by a multi-task pre-training process. Start-
ing off with an already pre-trained model (such as,
XML-RoBERTa; Conneau and Lample 2019), we
continue pre-training with a compound loss consist-
ing of two terms: one for Semantic SQL Prediction
(SSP) and one for Language Prediction (LP). A
schematic representation of our pre-training frame-
work can be seen in Figure 2 of the Appendix.



Semantic SQL Prediction (SSP) This objective
encourages the model to implicitly learn associa-
tions between table and column names and their
mentions in the text. Specifically, we prepend all
columns with a delimiter ⟨/s⟩ in the input, and ap-
ply a sequence of {Linear, GELU, and LayerNorm}
layers on top of the encoder representations for
each ⟨/s⟩. The loss term for this task, LSSP, is the
cross-entropy loss of the SSP label predictions.

Language Prediction (LP) Aiming to reduce the
distance between the distributions of different lan-
guages in the encoder representations, we include a
loss term for language prediction of the natural lan-
guage question. Specifically, we classify between
the available languages using the representation
generated for the first token ⟨s⟩ of the input. The
loss term for this task, LLP, is the cross-entropy
loss of the language prediction.2

We combine the two above-mentioned loss terms
to get the loss which we use to pre-train our model,

Ltotal = LSSP − LLP. (1)

During pre-training, our model tries to minimise
the above cost function. During fine-tuning, LLP is
omitted, and the system is optimised using LSSP.

4 Experiments

We experiment on two SQL semantic parsing
datasets, seeking to explore the effectiveness of
our approach on both a monolingual and a cross-
lingual setup. Specifically, we report experiments
on CSpider (Min et al., 2019) and Spider (Yu et al.,
2018), which contain database schema information
and examples in Chinese and English respectively.
Since CSpider is a translated version of the Spider
dataset, the characteristics of the two with respect
to structure and number of examples are identical.

Both datasets contain 8, 659 examples of ques-
tions and SQL queries along with their relevant
SQL schemata (i.e. 146 unique databases). Since
the test splits are only available through the evalua-
tion servers associated with the datasets, we focus
our evaluation on the development set, which is
used as a test set in our experiments. This split con-
sists of 1, 034 examples of questions on 20 unique
databases that are not seen during training. Consis-
tently with the CSpider3 and Spider4 leaderboards,

2Similarly to Sherborne et al. (2020), we reverse the gradi-
ent of the LP network in the backward pass, to encourage our
model to learn language invariant representations.

3https://taolusi.github.io/CSpider-explorer/
4https://yale-lily.github.io/spider

we report results using exact match accuracy.5

4.1 Experimental Setup

FastRAT provides a strong decoding subsystem,
but has no specific implementation for a text and
schema encoder. As such, in order to instan-
tiate an end-to-end system, we mount FastRAT
to the RAT-SQL encoder.6 We couple this en-
coder with XLM-RoBERTa (i.e. XLM-RoBERTa-
large) to create a cross-lingual semantic parser,
and with BERTLARGE to create a monolingual se-
mantic parser. The selection of BERTLARGE and
XLM-RoBERTa-large is in line with the pre-trained
language models that were used by the RAT-SQL
baseline (Wang et al., 2020a), and the GraPPa pre-
training framework (Yu et al., 2021). For the exper-
iments on CSpider, we simply opt for an equivalent
multilingual version, and XLM-RoBERTa appears
to achieve better performance for natural language
understanding tasks than multilingual BERT (Con-
neau and Lample, 2019; Conneau et al., 2019).

Hyper-parameters used for pre-training and fine-
tuning are listed in Appendix E.

Pre-training We pre-train our model using the
pre-training setup described in Section 3.3, on a
dataset generated as described in Section 3.2. The
resulting data is constructed using the pairs of trans-
lated NL and SQL templates, which we populate
with data (column and table names, and other rel-
evant values) from DuSQL (Wang et al., 2020b)
databases, since their schemata are in Chinese. The
mono-lingual variants (tested on Spider) are pre-
trained using the official GraPPa pre-trained model
provided by Yu et al. (2021). In all scenarios,
fine-tuning is performed exclusively on the target
dataset: CSpider and Spider for the cross-lingual
and mono-lingual variants respectively.

Baselines We compare the performance of our
system to that of the following architectures:

• RAT-SQL (Relation-Aware Transformer;
Wang et al. 2020a) is a strong baseline for
SQL semantic parsing. The relation-aware
self-attention mechanism of RAT-SQL has
been used in the architecture of several subse-
quent parsers, including our own.

5Exact match accuracy scores are computed using the
framework provided by: https://github.com/taoyds/
test-suite-sql-eval.

6https://github.com/microsoft/rat-sql.
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• SmBoP (Semi-autoregressive Bottom-up Se-
mantic Parsing; Rubin and Berant 2021) is a
semi-auto-regressive semantic parser, which
constructs SQL bottom-up, parallelising the
calculation of sub-trees in the same height.

4.2 Performance on Semantic Parsing

The performance of FastRAT and baseline sys-
tems on the cross-lingual setup, using the CSpider
dataset, can be seen in Table 2. Our best model vari-
ant, FastRAT+SSP+LP outperforms all variants of
the baseline systems. Although the vanilla version
of FastRAT (without our pre-training step) is not
the strongest method, the contribution of our pre-
training scheme is verified, since FastRAT+SSP
and FastRAT+SSP+LP outperform RAT-SQL and
SmBoP variants with the same pre-training.

Conversely, the monolingual results in Table 3
show that RAT-SQL and SmBoP, both specifically
designed as monolingual models, outperform Fas-
tRAT, although the performance of the latter is
comparable with the baselines. The RAT-SQL en-
coder relies on matching mentions of tables and
columns in the natural language question to the
accompanying schema, a task which is simpler in
the monolingual setup, where both question and
schema are in the same language. Nonetheless, in
the cross-lingual setup, the effect of schema link-
ing becomes much more sparse. We believe that
this explains the performance difference of RAT-
SQL across CSpider and Spider, and how its per-
formance relates to our scores. Interestingly, SSP
pre-training7 results in improvements for all three
models.

4.2.1 Ablation
The last columns of Tables 2 and 3 show the con-
tribution of each of the components of FastRAT. It
can be seen that adding SSP pre-training increases
the exact match scores by more than 5 points in
both the monolingual and the cross-lingual setup.
Moreover, in the cross-lingual setup, language pre-
diction pre-training seems to benefit all models and,
when used with FastRAT, results in a system which
outperforms all baselines.

4.2.2 Evaluation on Known Databases
While the original data splits of Spider and CSpider
seek to assess the models’ capability to generalise

7We use the GraPPa model provided by Yu et al. (2021),
which performs pre-training with both SSP and Masked Lan-
guage Modelling (https://github.com/taoyds/grappa).

System Variant
XLM +SSP +SSP+LP

RAT-SQL 47.8 55.1 56.4
SmBoP 56.4 57.4 57.7

FastRAT 54.3 59.9 61.3

RoBERTaSeq2SQL 66.2

Table 2: Exact match accuracy for the cross-lingual
setup, on the development split of CSpider. “XLM” (i.e.
XLM-RoBERTa-large) refers to the vanilla variant of
each system, “+SSP” includes SSP pre-training, and
“+SSP+LP” includes SSP and LP pre-training. The last
row is the state-of-the-art system according to CSpider
leaderboard (accessed 19 Sep. 2023).

System Variant
BERTLARGE +SSP

RAT-SQL 69.7 73.6
SmBoP 63.4 72.1

FastRAT 63.2 69.1

CatSQL + GraPPa 78.6

Table 3: Exact match accuracy for the monolingual
setup, on the development split of Spider. “BERT” col-
umn refers to the vanilla variant of each system, while
“+SSP” to adding SSP pre-training to each model.The
last row is the state-of-the-art system according to the
Spider leaderboard (accessed 19 Sep. 2023).

to unseen databases, this is not the only possible
scenario in industrial applications. A realistic de-
ployment scenario can involve users or developers
of a semantic parser, who are able to provide the
system with a number of training examples for a
particular database, which can be used to further
refine the model to the schema of interest.

In order to test our approach in such a setup, in
line with previous research on a compositional gen-
eralisation of semantic parsers (Shaw et al., 2021),
we experiment on a number of different data splits
of the Spider dataset: (i) based on source length
(Len), (ii) based on Target Maximum Compound
Divergence (TMCD), (iii) based on templates gen-
erated by anonymising integers and quoted strings
(Template), and (iv) a random split (Random) . In
all four splits, databases are shared between the
train and development sets. Results can be seen in
Table 4, which also includes the performance of
two other models, (T5-Base, and NQG-T5-Base)
for reference. It can be seen that FastRAT’s perfor-

https://github.com/taoyds/grappa


mance follows from the difficulty of the data splits
(lowest scores for Len split, higher for Random,
and better performance on TMCD than Template).

System Rand. Templ. Len TMCD

T5-Base 82.0 59.3 49.0 60.9
NQG-T5 81.8 59.2 49.0 60.8

FastRAT 80.4 62.1 50.0 65.4

Table 4: Exact query match accuracy reported on dif-
ferent splits of the Spider dataset. “T5-Base” is a T5
sequence-to-sequence semantic parser, and “NQG-T5”
(base) a model that uses a flexible quasi-synchronous
grammar; data splits and results for T5 and NQG-T5
obtained from previous work (Shaw et al., 2021).

4.2.3 Comparing against ChatGPT

We include a comparison of our system against
Liu et al. (2023), that explores a way of leveraging
ChatGPT for zero-shot semantic parsing. Table 5
summarises the results. Since larger pre-trained lan-
guage models tend to under-perform in the exact
match accuracy setting (Liu et al., 2023), we also
include the relevant execution accuracy scores. We
can see that the exact-match-accuracy performance
of FastRAT is superior across all settings. Interest-
ingly, FastRAT (which has only 673M parameters
compared to multi-billion-parameter, GPT mod-
els), outperforms ChatGPT even with respect to
execution accuracy.

System Exact Match Execution

CSpider

ChatGPT 32.6 65.1
FastRAT 61.3 67.7

Spider

ChatGPT 37.9 70.1
FastRAT 69.1 73.2

Table 5: Exact match and execution accuracy scores,
on the development splits of CSpider (top) and Spi-
der (bottom). The FastRAT version that has been
employed for Spider has been subjected to SSP pre-
training whereas the version for CSpider has been sub-
jected to both SSP and LP pre-training. Exact match
accuracy scores for ChatGPT were obtained using:
https://github.com/THU-BPM/chatgpt-sql by Liu
et al. (2023).

4.3 Runtime Performance
The strongest feature of FastRAT is its speed; while
it may not outperform state-of-the-art models in all
setups and datasets as shown in the previous sec-
tion, its decoder-free architecture allows for very
fast decoding times compared to baseline models.

Table 6 shows the runtimes of our system and
baseline models, including end-to-end times and
decoding times separately, on a CPU (2x AMD
EPYC 7763 64-Core 1.8GHz) and a GPU (single
A100-SXM-80GB). It can be seen that FastRAT
decoding speed is an order of magnitude smaller
than that of the baselines, with 2ms average decod-
ing time on a GPU. Interestingly, decoding with
FastRAT is 4 times faster than decoding with Sm-
BoP,8 which in turn has a lower decoding time than
the original RAT-SQL implementation. End-to-end
prediction results paint a similar picture: the av-
erage FastRAT prediction time is less than 1s on
CPU, and 33ms on GPU, with the next fastest being
RAT-SQL (1.4s and 257ms respectively).

The SQL queries in the datasets that we used con-
sist of an average of 17.5 tokens (assuming word-
level tokenisation), with a maximum length of 62
tokens. We believe that these numbers are on par
with the length of the output of systems for other
language generation tasks. It is important to note
that industrial text-to-SQL applications commonly
involve very long SQL queries, spanning several
lines of code. The value of our efficient decod-
ing paradigm becomes even more apparent in such
cases, since with conventional, auto-regressive ap-
proaches, decoding time would increase linearly
with respect to the expected query’s length.

System Decoding End-to-End
CPU GPU CPU GPU

RAT-SQL 0.412 0.120 1.441 0.257
SmBoP 0.558 0.037 7.338 0.065

FastRAT 0.010 0.002 0.993 0.033

Table 6: Average elapsed times (sec), CPU and GPU.

5 Discussion

FastRAT is proposed as a very fast Text-to-SQL
semantic parser (substantially faster than its coun-

8In our tests on a CPU, SmBoP was slower than RAT-SQL.
We hypothesise that this is due to the SmBoP implementation
using some GPU-specific parallelisation options.

https://github.com/THU-BPM/chatgpt-sql


terparts); as such, it navigates a trade-off between
fast decoding times and parsing performance. Our
view is that FastRAT balances this tradeoff effec-
tively, since it achieves 10 times decoding speedup
with a small performance hit (3 EM accuracy points
compared to SmBoP) in Spider, and increased per-
formance against the baseline systems on CSpider.

5.1 Expressive Power of the Decoder
FastRAT uses a deterministic decoder mechanism
on top of the SSP label predictions. This design
signifies a shift from commonly used decoding
algorithms, which decode on a token, token chunk,
or sub-tree basis.

It is important to verify that the decoding ca-
pability of FastRAT is expressive enough to fully
construct SQL queries. While our algorithm is not
designed to fully cover the entirety of the SQL syn-
tax, we can quantify its expressive power using
publicly available benchmarks. To this end, we
run an oracle experiment: we encode SQL queries
from Spider (Yu et al., 2018), DuSQL (Wang et al.,
2020b) and NL2SQL (Sun et al., 2020) to SSP
and then translate the SSP labels back to SQL us-
ing the approach described in Section 3.1. Ex-
act match accuracy scores on the generated SQL
queries provide an upper-bound performance for
our system. The scores on Spider are 95.2%, on
DuSQL 89.04%, and on NL2SQL 96.31%. We
conclude that our decoding algorithm is capable of
successfully constructing most queries in the public
parts of the datasets, and leaves enough room for
improvement in the model development process.

The SQL queries that cannot be fully recon-
structed belong to one of the following types:
(i) they contain multiple HAVING/WHERE clauses
with sub-queries, and our algorithm fails to cor-
rectly determine the antecedent of the sub-query,
(ii) they contain sub-queries in the SELECT or
FROM clauses of the SQL query which are not cur-
rently supported by our algorithm, or (iii) they in-
clude multiple elements in ORDER BY or GROUP BY
clauses, which our algorithm predicts with a differ-
ent order than the original.

5.2 Error Analysis
Conversely to other decoding mechanisms, Fas-
tRAT is trained on the SSP label classification task.
In other words, the model is explicitly trained to
identify correct SSP labels, not to generate correct
SQL queries. As such, errors in SSP predictions
result directly in errors during SQL generation.

Throughout our experiments, we observed low
generalisation in a subset of the development set,
which we attribute to the characteristics of the
dataset. Specifically, there are 11 SSP labels in
the development set that do not appear in the train-
ing split, and which account for 30 development
examples. Naturally, it is challenging for the model
to correctly output predictions for those labels.

Moreover, is worth noting that there is a num-
ber of patterns of SSP labels9 in the development
split, which are underrepresented or absent from
the training data. In total, there are 1, 084 unique
SSP patterns in the training set and 245 in the de-
velopment set. The development set includes 73
patterns which do not appear in the training set
and which account for 127 examples. Unsurpris-
ingly, our model performs worse on those unseen
SSP patterns (correct output in only 18% of the
examples). This disparity in the data splits is an
inherent limitation of the dataset, which affects
many semantic parsers. We observed similar low
performance (32%) on this subset of examples in
LGESQL (Cao et al., 2021), a system which has
been used in different variants by many state-of-
the-art models. However, given FastRAT’s heavy
reliance on SSP semantics, it is disproportionately
affected by this disparity.

6 Conclusion

In this paper, we propose FastRAT, an efficient
cross-lingual Text-to-SQL semantic parser. Fas-
tRAT includes a deterministic decoding mecha-
nism, which makes it 10 times faster than the fastest
previously available Text-to-SQL semantic parser.

Furthermore, we propose a method to efficiently
construct pre-training datasets in new languages
given a dataset in a source language. Finally, we
introduce a pre-training setup, designed for the
cross-lingual Text-to-SQL parsing setup; a setup
in which other systems do not perform favourably.
Our approach can be used to port Text-to-SQL se-
mantic parsers to new languages quickly, and our
experiments show that FastRAT outperforms strong
baselines in the cross-lingual setup, while being
significantly faster than them.

As for future work, we plan to further improve
the expressive power of the decoder. Furthermore,
we will look into coupling FastRAT with other
decoding setups based on larger language models.

9A pattern of SSP labels is the set of SSP labels of a specific
example, after discarding all the empty ones.



Limitations

The design of the deterministic FastRAT decoder
does not fully cover the entirety of SQL syntax.
Consequently, a subset of SQL queries cannot be
decoded using our approach. While Section 5 pro-
vides a detailed analysis of the expressive power
of our decoder, it is important to note FastRAT is
able to effectively and efficiently decode most SQL
queries of general-purpose datasets (92% of Spi-
der), and that challenging queries (see also Section
5 for a qualitative analysis) are usually part of the
hard or extra hard difficulty splits of the datasets,
which are rarely observed in everyday deployment
scenarios.

Additionally, the analysis presented in this pa-
per includes a small number of baselines: in most
experiments, we compare FastRAT with RAT-SQL
and SmBoP. This choice of baselines experimen-
tally highlights how FastRAT navigates the trade-
off between fast decoding times and parsing per-
formance. Specifically, RAT-SQL is a very strong
text-to-SQL baseline (all Spider leader-board sub-
missions compare against the original RAT-SQL
baseline or its variants; also, a large number of sub-
missions use RAT-SQL or parts thereof in their ar-
chitecture). On the other hand, SmBoP is the fastest
parser to date. FastRAT balances this trade-off ef-
fectively, since it achieves 10x decoding speedup
over SmBoP with a small performance loss.

Ethics Statement

Research described in this paper is done in accor-
dance to the ACL code of ethics. Our work does
not make use of private, proprietary, or sensitive
data. The proposed models are trained on publicly
available community datasets, building on top of
publicly available pre-trained models. Due to the
nature of the pre-training/fine-tuning scheme, it
is conceivable that our system might perpetuate
possible biases included in the datasets and/or the
pre-trained models.
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A From SQL to SSP Example

An idealised example of the task of assigning SSP
labels to the columns of an input schema and of
their relevance to the expected SQL query is pre-
sented in Table 7.

B Table Joining Algorithm

A detailed description of the steps that are involved
for the table joining algorithm of Section 3.1.3 is
presented below:
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question how many car models come from Germany

SQL SELECT COUNT(*) FROM car_models
WHERE country = “Germany”

SSP Label

Schema __all__.* SELECT count
t1 = cars
t1.c

1
1 = cars.model

t1.c
1
2 = cars.brand

t1.c
1
3 = cars.country WHERE =

Table 7: An idealised example of the alignment of SSP
labels (in underlined font) with a particular SQL query
given a single-table schema consisting of three columns

– Go through all the columns that appear in the
query, and add their respective tables to the
list of tables to join Lt.

– Go through all the tables which have a FROM
in their labels, and add them to Lt.

• Step 2: Starting with a random table ti, attempt
to create an initial FROM statement by first adding
direct joining. Assuming that ta ∈ Ls, and that
we are considering table tb, we evaluate whether
tb can be directly joined to ta (noted ta ⇌ tb) by
checking if any of the following hold:

– Case 1: ta has a column caa′ which references
or is referenced by cbb′ in tb (noted caa′ → cbb′).
We add tb to the FROM statement and join on
ta.caa′ = tb.cbb′ .

– Case 2: ta has a column caa′ which refer-
ences cbb′ in tb via a foreign key chain (noted
caa′ →∗ cbb′). A foreign key chain (ctili )i∈[1,k]
is a sequence such that: ∀i ∈ [1, k − 1], tti
is a table and ctili is a column of table tti st.

ctili → c
ti+1

li+1
. We define that caa′ →∗ cbb′ iif

there exist a foreign key chain (ctili )i∈[1,k] st.
caa′ = ct1l1 and cbb′ = ctklk . In this case, we add
tb to the FROM statement and join on ta.caa′ =
tb.cbb′ . Note: We do not add all the intermedi-
ate tables ti.

– Case 3: ta has a column caa′ which references
cbb′ in tb via a common reference chain. caa′
references cbb′ via a common reference chain
if there exists a column cdd′ in a table td st.
caa′ →∗ cdd′ and cbb′ →∗ cdd′ . In this case, add
tb to the FROM statement and join on ta.caa′ =
tb.cbb′ . Note that td does not need to be in the
set of tables to join.

• Step 3: Check the remaining tables to join for
tables tb that references without chaining a table ta

that has already been added to the FROM statement
(noted ta ⇐⇒ tb). This means that there exists
a sequence of tables (tj)j∈[1,T ] such that t1 = ta
and tT = tb and ∀j ∈ [1, T − 1], tj ⇌ tj+1.
In this case, add each intermediate table tj to the
FROM statement and join on the columns allowed by
these direct joins. This last step corresponds to the
case where tables can be joined together but only
on foreign keys referencing different columns in a
third table.

C English-Chinese Context-free
Grammar Example

Table 8 shows an example of a synchronous
context-free grammar for Chinese and English.

D Pre-training Framework

A schematic representation of our pre-training
framework, including an example, can be seen in
Figure 2.

E Hyper-parameters

The hidden size for RAT (i.e. Relation-Aware
Transformer) and the SSP decoder is 1024. Optimi-
sation is performed using Adam (Kingma and Ba,
2014). We trained for 100 epochs with 5 epochs
of linear warmups. After the warmup steps, we
use a linear decay down to zero for both learning
rates. The following tables include detailed hyper-
parameters that have been used for pre-training
and fine-tuning for both the monolingual and cross-
lingual setup of FastRAT.



Non-terminals (EN) Production rules (EN)

TABLE → ti
COLUMN → ci
VALUE → vi
AGG → ⟨ MAX, MIN, COUNT, AVG, SUM ⟩
OP → ⟨ =, ≤, . . ., LIKE, BETWEEN ⟩
SC → ⟨ ASC, DESC ⟩
MAX → ⟨ “maximum number of”, “the largest” . . .⟩
≤→ ⟨ “no more than”, “at most” . . .⟩
. . .

1. ROOT → ⟨ “List all the {COLUMN0} which {OP0}
{VALUE0}.”,
SELECT {COLUMN0} {FROM} WHERE {COLUMN0}
{OP0} {VALUE0} ⟩
2. ROOT → ⟨ “What are the {COLUMN0} in which the
{COLUMN1} was between {VALUE0} and {VALUE1}?”,
SELECT {COLUMN0} {FROM} WHERE {COLUMN1}
BETWEEN {VALUE0} AND {VALUE1} ⟩
. . .

Non-terminals (ZH) Production rules (ZH)

TABLE → ti
COLUMN → ci
VALUE → vi
AGG → ⟨ MAX, MIN, COUNT, AVG, SUM ⟩
OP → ⟨ =, ≤, . . ., LIKE, BETWEEN ⟩
SC → ⟨ ASC, DESC ⟩
MAX → ⟨ “最多的”, “最大的” . . .⟩
≤→ ⟨ “不超过”, “至多” . . .⟩
. . .

1. ROOT → ⟨ “列出{OP0}{VALUE0}的所有{COLUMN0}.”,
SELECT {COLUMN0} {FROM} WHERE {COLUMN0}
{OP0} {VALUE0} ⟩
2. ROOT → ⟨ “{COLUMN1}在{VALUE0}和{VALUE1}
之间的{COLUMN0}是什么？”,
SELECT {COLUMN0} {FROM} WHERE {COLUMN1}
BETWEEN {VALUE0} AND {VALUE1} ⟩
. . .

Table 8: An excerpt of our Synchronous Context-Free Grammar for Chinese (ZH), translated from the English (EN)
version released by Yu et al. (2021). ti, ci, vi refer to table names, column names, and entry values respectively.

Transformer Encoder

language label SSP label SSP label SSP label

<s> show the student ID that have more than 4 class. </s> student_id </s> class_id </s> …</s>

<s> 显示有超过四门课的学生的ID。 </s> student_id </s> class_id </s> …</s>

synthetic
data

LP objective SSP objective

Figure 2: Model Pre-training Framework

Model num_params learning_rate batch_size num_epochs

xlm-roberta-large 550M − − −
+ cross-lingual SSP 550M 1e− 5 32 5

Table 9: Pre-training Hyper-parameters

Model num_params learning_rate batch_size stop_criterion

FastRAT (with
bert-large or with
https://github.
com/taoyds/grappa)

458M

lr: 1e− 4; lm_lr:
3e− 6 with

polynomial decay (5%
warm-up steps)

40 100 epochs

FastRAT (with
xlm-roberta-large
or with
xlm-roberta-large
+ cross-lingual SSP)

673M

lr: 1e− 4; lm_lr:
3e− 6 with

polynomial decay (5%
warm-up steps)

40 100 epochs

Table 10: Fine-tuning Hyper-parameters

https://github.com/taoyds/grappa
https://github.com/taoyds/grappa

