
LEKG: A System for Constructing Knowledge Graphs from Log
Extraction

Fangrong Wang1, Alan Bundy1, Xue Li1, Ruiqi Zhu1, Kwabena Nuamah1, Lei Xu2, Stefano
Mauceri2, Jeff Z. Pan1∗

1School of Informatics, the University of Edinburgh, UK; 2Huawei Ireland Research Centre, Ireland

ABSTRACT
Logs record system events and status, which help developers and
system administrators diagnose run time errors, monitor running
status and mine operation patterns [13, 23]. However, logs are com-
plex and weakly linked, making it difficult to diagnose the causes
of failures. While recent studies on log knowledge extraction focus
on lifting entities from log messages for enriching a background
knowledge graph (BKG), they do not involve knowledge reasoning
for inferring implicit relations nor guarantee that the knowledge
learned from log streams is consistent with the background knowl-
edge. In this preliminary research paper, we present a log extraction
approach to log knowledge graph (KG) construction. It includes
a novel strategy that utilizes inference rules from a background
knowledge graph to learn new triples and validate triples. Also,
it implements a local to global strategy to perform reasoning on
temporary log instance graphs (LIGs) then on the extended BKG,
which significantly reduces query space. Finally we demonstrate
the applicability of this approach by a use case in the context of
root cause analysis.

KEYWORDS
knowledge graph; relation linking; log analysis; root cause analysis
ACM Reference Format:
FangrongWang1, Alan Bundy1, Xue Li1, Ruiqi Zhu1, Kwabena Nuamah1, Lei
Xu2, Stefano Mauceri2, Jeff Z. Pan1. 2021. LEKG: A System for Constructing
Knowledge Graphs from Log Extraction. In The 10th International Joint
Conference on Knowledge Graphs (IJCKG’21), December 6–8, 2021, Virtual
Event, Thailand. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3502223.3502250

1 INTRODUCTION
Logs are a vital source of information for monitoring software sys-
tems’ running status and diagnosing faults. Traditional methods
of fault diagnosis through logs requires huge manual work from
experts, which is not feasible for modern large-scale logs. Log anal-
ysis is a technique of deriving knowledge from log files [41]. It has
been applied to a variety of applications such as anomaly detection

∗Correspondence author: Jeff Z. Pan, https://knowledge-representation.org/j.z.pan/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IJCKG’21, December 6–8, 2021, Virtual Event, Thailand
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9565-6/21/12. . . $15.00
https://doi.org/10.1145/3502223.3502250

[6, 22, 40], intrusion detection [5, 8, 15, 33], and root cause analysis
[2, 19, 31, 42, 44].

Although logs contain valuable information, deriving knowledge
from logs is different from classic information extraction against
text: logs are weakly structured, vary in different formats and do
not follow natural language grammar. Typical log analysis tasks
start from template-based detection to parse useful information
from logs [13]; then use data-mining algorithms to analyze or sum-
marize patterns from events. However, these approaches do not
represent events and their connections in formal knowledge repre-
sentation nor do they consider other perspectives on data. Some
recent studies have facilitated the integration of log information by
linking knowledge extracted from logs [8] and aligning them with
a background knowledge graph (BKG) [25, 26]. These approaches
open up opportunities for downstream research and practice based
on formal represented knowledge. For instance, it is possible to
query the log KG and contextualize local event information. These
approaches, however, only use the BKG as a target graph to align
and merge new entities from logs, and do not leverage existing
knowledge to infer implicit knowledge nor guarantee the quality
of extracted knowledge.

Background knowledge, such as internal expert knowledge, ar-
chitectural information and external knowledge [7, 8, 15], exists in
real enterprise scenarios. For example, BKGs can be obtained by
information extraction or exported from other data sources. Unlike
existing works [7, 8, 15, 43] that only use BKGs to align and map
new entities, our view of the background knowledge contains not
only entities but also logical rules that describe the logical connec-
tions and constraints between modules. In our work, new triples are
learned from the KG by rule inference and validated by constraints
from background knowledge. Only valid triples will be included in
the enriched KG.

To this end, we developed a system (LEKG) that extracts and
learns knowledge from logs. To keep the reasoning in manageable
query space, we designed a local to global strategy to infer triples
in Section 3. We first construct temporary LIGs based on groups
of logs having specific features, then perform reasoning against
each LIG for inferring relations between log instance entities. After
merging triples from LIGs into the BKG, we perform reasoning on
this global BKG to infer implicit relations. Then we apply constraint-
based triple validation on new triples. Finally, we describe a use
case that uses the LEKG for root cause analysis in Section 4. The
contributions of this work are summarized as below: (i) A novel
strategy to extract knowledge from large volumes of logs; (ii) A
system, called LEKG, to integrate extraction, rule-based relation
linking, constraint-based validation; (iii) A use case that applies
LEKG to root cause analysis.

https://doi.org/10.1145/3502223.3502250
https://doi.org/10.1145/3502223.3502250
https://doi.org/10.1145/3502223.3502250

IJCKG’21, December 6–8, 2021, Virtual Event, Thailand Fangrong Wang1 , Alan Bundy1 , Xue Li1 , Ruiqi Zhu1 , Kwabena Nuamah1 , Lei Xu2 , Stefano Mauceri2 , Jeff Z. Pan1

2 RELATEDWORK
Typical log analysis tasks are designed to solve specific problems
and do not learn general knowledge that has an insight into how
software systems operate. Among these approaches, log represen-
tation in graphs has attracted recent research interest. Various
graph-based approaches have been proposed in the literature, cov-
ering applications such as query log analysis [9], cybersecurity [3],
anomaly detection [5, 32], root cause analysis [2], business pro-
cess analysis [4]. These approaches focus on resolving problems
by graph-theoretical methods, and do not aim to extract general
knowledge from log data. Recent studies [7, 8] aimed at semantic
lifting of general log data. These works involve not only a huge
number of logs but also existing background knowledge. They rely
on log parsing tools [43] to obtain event templates and then merge
the lifted entities to a BKG by mapping and aligning based on sim-
ilar vocabulary and common identifiers. Although these studies
have similar purpose to us, they do not use the BKG to infer implicit
relations nor validate the extracted knowledge. Kiesling et al. [15]
builds a system to integrate newly available structured data from
public sources into a cybersecurity KG, which involves acquisition,
extraction, lifting, linking, and validation steps. Its validation is to
make sure the necessary properties lifted from logs are included
for each generated individual. However, the approach only checks
if a reference entity exist, rather than checking logical or semantic
consistencies of the extracted knowledge.

3 METHODOLOGY
3.1 Problem Definition
The combination of background knowledge and a huge number
of logs is a typical scenario in information technology companies.
Hence we formulate our research problem as follows.

Definition 3.1 (Aim of Research). Given a BKG 𝐺B, a set of logs
in their original format L and a log theory 𝜏 = 𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ∪𝑅𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ,
where𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 are positive rules that infer new triples and𝑅𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
are negative rules that are constraints for validation, the task is to
update BKG G by extracting knowledge from L to enrich 𝐺B.

3.2 Solution
The overall structure of our system is illustrated in Figure 1.
We construct a BKG by applying classic information extraction tech-

Figure 1: Process of Log Extraction

niques, such as semantic parsing of technical manuals to produce
a set of high-level conceptual triples. The automated log parsing
converts free text to structured information. However, the parsed
items usually only have vague categories; entities and events may
hide in the body of parsed items. Hence, we combine Named Entity

Recognition (NER)1 and templates to identify entities from log mes-
sages. By training a domain-specific NER model, we identify and
label the entities based on their semantic context. The entity labels
are assigned to entities as RDF types and contribute to relation
linking in downstream steps.

Instead of simply merging entities to BKG, we use Horn rules
to infer relations. A Horn rule is a disjunction of atoms with at
most one unnegated atom. In the implication form, they have the
following format:𝐴1∧𝐴2∧ ...∧𝐴𝑛 → 𝐵, where𝐴1∧𝐴2∧ ...∧𝐴𝑛 is
the body of the rule and 𝐵 is the head. A positive rule has an atom
as its head, while a negative rule has the head ⊥. Thus, a negative
rule is in the form of 𝐴1 ∧𝐴2 ∧ ... ∧𝐴𝑛 → ⊥. Positive Horn rules
can help to generate new triples, and negative rules can help to
identify contradicting triples [1, 24].

In the real world, the knowledge grows as logs come on stream;
as a result, reasoning [27, 28] cover a whole KG is more and more
resource consuming over time. To this end, we apply a local to
global strategy for inferring relations. Firstly, we aggregate logs
by their source components. We believe the logs from the same
source have more clustered interactions between them. Secondly,
we construct LIGs using entities identified in aggregated log groups,
after which rule inference over 𝑅𝑙𝑜𝑐𝑎𝑙 is applied to each LIG. Then,
the entities and triples are learned from each LIG locally.

Definition 3.2 (Local Reasoning). Given a set of logs L divided
into 𝑛 groups 𝑔1, . . . 𝑔𝑛 of logs based on their sources, where 𝑔𝑖 (1 ≤
𝑖 ≤ 𝑛) is a group of logs from the same source, a subset 𝑅𝑙𝑜𝑐𝑎𝑙 ⊆
𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 of local positive rules , a function 𝑓𝑔 extracting a LIG from
𝑔𝑖 ∈ L, and the entailment closure operation 𝐶𝑛. The set of local
logical consequences 𝑇𝑔𝑖 of each 𝑔𝑖 can be computed as follows.

𝑇𝑔𝑖 = 𝐶𝑛(𝑓𝑔 (𝑔𝑖) ∪ 𝑅𝑙𝑜𝑐𝑎𝑙) (1)

Entities from different LIGs may have potential relationships,
but are not linked within each local reasoning process. Hence, we
apply reasoning with 𝑅𝑔𝑙𝑜𝑏𝑎𝑙 against the whole extended BKG to
infer implicit relations for all entities.

Definition 3.3 (Global Reasoning). Given an original BKG 𝐺B,
local consequences 𝑇𝑔𝑖 s, a subset 𝑅𝑔𝑙𝑜𝑏𝑎𝑙 ⊆ 𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 of global rea-
soning rules,and the entailment closure operation𝐶𝑛. The extended
BKG 𝐺 ′

B is computed as followed.

𝐺 ′
B = 𝐶𝑛(𝐺B ∪ {𝑇𝑔𝑖 |1 ≤ 𝑖 ≤ 𝑛} ∪ 𝑅𝑔𝑙𝑜𝑏𝑎𝑙) (2)

Although we perform relation linking by rules, there is no guar-
antee that these Horn rules are sound. Even if rules are sound for
the current system, the conditions may change while the system
evolves. Thus we validate new triples by a set of constraints and
the triples that do not pass the validation are called negative triples.
The triples from the input graphs 𝐺B are not negative because 𝐺B
is from the last version and have passed its validation.

Definition 3.4 (Validation). The set of negative triples N𝑡𝑟𝑖𝑝𝑙𝑒𝑠
are ones involved in any proof of false ⊥ in the extended graphs𝐺 ′

B
but which do not occur in the input 𝐺B. Here T = 𝐺 ′

B ∪ 𝑅𝑔𝑙𝑜𝑏𝑎𝑙 ∪
𝑅𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and T ⊢𝜋 ⊥ means that 𝜋 is a proof of ⊥ in T.

N𝑡𝑟𝑖𝑝𝑙𝑒𝑠 = {𝑟 (𝑠, 𝑜) |∃𝜋. 𝑟 (𝑠, 𝑜) ¤∈(𝜋,𝐺B) ∧ T ⊢𝜋 ⊥} (3)

1https://en.wikipedia.org/wiki/Named-entity_recognition

https://en.wikipedia.org/wiki/Named-entity_recognition

LEKG IJCKG’21, December 6–8, 2021, Virtual Event, Thailand

where function ¤∈(𝜋,𝐺B) returns the last incoming triple 𝑟 (𝑠, 𝑜) that
completes the proof 𝜋 and 𝑟 (𝑠, 𝑜) ∉ 𝐺B.

The new version of graph G is output after filtering out N𝑡𝑟𝑖𝑝𝑙𝑒𝑠 .

Definition 3.5 (Filter). The final KG G is computed by removing
negative triples N𝑡𝑟𝑖𝑝𝑙𝑒𝑠 from the extended graphs 𝐺 ′

B.

G = 𝐺 ′
B \ N𝑡𝑟𝑖𝑝𝑙𝑒𝑠 (4)

3.3 Implementation
3.3.1 Entity Extraction. Instead of purely relying on templates,
we combine the template-based approach and the NER approach
to identify and label entities from log messages. Because raw log
messages are usually unstructured and contain a lot of sub-words,
acronyms and terminologies, we cannot leverage general pre-trained
language models to tokenize and transform the raw log messages
into vectors for NER. Hence we first generate a log text corpus by
log parsing and learn character-level representation for log mes-
sages via FastText2. The word vector generated through FastText
via N-Gram technique holds extra information about sub-words.
We annotate the log corpus using entities from BKG and use the
spaCy3 toolkit to train its NER model. We combine Regex-based
NER with the trainable NER model, because some entities like IP
addresses are more suitable to be identified by Regex. The NER is
performed on each log instance.

3.3.2 LIG Construction. We generate two types of graphs, one is
the BKG, and the other is the LIGs. Initially the BKG holds concept
level triples that are learned from technical manuals and converted
from expert knowledge. The LIGs are temporary graphs consisting
of entities identified from groups of logs. Triples learned from LIGs
will be fused to the BKG, then the LIGs will be deleted.

To construct the LIGs, we firstly group the logs by multiple fixed
columns like containers and components, which are the source of
logs. In each individual log group, the entities are identified and
divided into two sets, one is of self-contained entities identified in
the grouping keys, another is of entities identified in the variable
log messages and we are not sure if they belong to the source
components. Each entity is assigned RDF type properties by its NER
label and an additional class SELFCONTAINED indicating whether
it is identified from the source components. For example, given this
log from a service-oriented system:

[ERROR][2021-10-07 20:48:15.347 +08:00][197.28.1.23]

[Session-database-container-0se45][UserExecSvc-098]:

"Failed to request UserDomainSvc-034, unreachable"]

Container instance entity Session-database-container-0se45 and ser-
vice instance entity UserExecSvc-098 are the source container and
source service that generate this log, and service instance entity
UserDomainSvc-034 is likely an external entity that interacted with
UserExecSvc-098.

We link entities within each LIG group. The positive rules for
relation linking in LIGs are designed based on the entity classes.
An example positive rule to infer relation host_service is:

2https://fasttext.cc/
3https://spacy.io/

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 (?𝑠) ∧ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 (?𝑜)∧
𝑆𝐸𝐿𝐹𝐶𝑂𝑁𝑇𝐴𝐼𝑁𝐸𝐷 (?𝑠) ∧ 𝑆𝐸𝐿𝐹𝐶𝑂𝑁𝑇𝐴𝐼𝑁𝐸𝐷 (?𝑜)

→ ℎ𝑜𝑠𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (?𝑠, ?𝑜)

3.3.3 Link Entities to BKG. Linking and aligning entities from LIGs
to the BKG is a key step that facilitates the enrichment of the BKG.
We cannot simply merge the triples from LIG to BKG, because they
have different IRIs and the former have class such as SELFCON-
TAINED, that we would not like to include in the BKG. Different
from typical entity linking task that aims to link text to entities in
a KG, our entity linking module have two functions: 1) link entities
from the LIGs to the BKG based on text and NER labels; 2) link
instance entities from LIGs to corresponding concepts in the BKG.
For example, entity Session-database-container-0 is an instance of
class Session-Database-Container. We would like to link instance
entities with their concept entities, so that we can learn concept
level triples from instance triples or link instance entities to each
other based on their conceptual dependency. The entity linking
module is a combination of SPARQL query 4, ElasticSearch 5 and
character-level text similarity comparison. We implement the entity
linking module to support case-insensitive, sub-word matching and
context-aware, so that it has the ability to apply both exact matches
and fuzzy matches. If no existing entity is found in BKG, we create
a new entity and assign rdf:type as its label.

3.3.4 Rule-based Relation Linking. We apply positive rules to infer
new triples in both LIG and BKG. The rules for LIG and BKG are
different. The former links entities in an LIG with explicit relations;
while the latter infers implicit relations for both concept entities
and instance entities.

We manually scripted such positive rules to involve domain
knowledge in the BKG. This positive rule set could possibly be
extended by rule mining tools such as AMIE [10, 11, 16] and Rudik
[1, 24]. We use the Pellet reasoner [38] to infer triples. BKG reason-
ing happens after the set of LIG triples are merged into BKG.

3.3.5 Triple Validation. Given a new triple 𝑟 (𝑠, 𝑜) and an example
negative rule such as:

𝑟 (?𝑠, ?𝑜) ∧ 𝑟 ′ (?𝑠, ?𝑜) → ⊥
If 𝑟 ′ (𝑠, 𝑜) exists in BKG, then 𝑟 (𝑠, 𝑜) is invalid. Practically we parse
the negative rule to an SPARQL query and check whether there
exist any contradictions in the BKG against the new triple.

The negative rules are converted fromBKG’s ontology or scripted
manually to involve expert knowledge. There are different types
of negative rules, such as class disjointness 𝐶1 (?𝑥) ∧𝐶2 (?𝑥) → ⊥,
relation restriction 𝑟 (?𝑎, ?𝑏) ∧𝑟 (?𝑏, ?𝑎) → ⊥ and rules that restricts
the system’s behaviours: 𝑟1(?𝑎, ?𝑏) ∧ 𝑟2(?𝑎, ?𝑐) → ⊥.

4 USE CASE
We tested our proposed approach on an enterprise service-oriented
network system. The service-oriented architecture breaks the sys-
tem logic into different, small services where each one has a single
task or responsibility. The services are hosted and executed inside
containers such as Docker 6. The different services communicate
and cooperate with each other to provide the system functionality
4https://www.w3.org/2001/sw/wiki/SPARQL
5https://www.elastic.co/elasticsearch/
6https://www.docker.com/

IJCKG’21, December 6–8, 2021, Virtual Event, Thailand Fangrong Wang1 , Alan Bundy1 , Xue Li1 , Ruiqi Zhu1 , Kwabena Nuamah1 , Lei Xu2 , Stefano Mauceri2 , Jeff Z. Pan1

Figure 2: A use case of extracted knowledge for root cause analysis.

as a whole. Our test data were logs exported from an enterprise
operation and management platform. In practice, the local to global
strategy reduces the reasoning query space. Since reasoning is seg-
mented within a set of LIGs, only a subset of inference rules are
applied to the whole BKG to infer implicit relations between entities
from different LIGs. Also, the reasoning in LIGs can be performed in
parallel to save execution time. Our use case demonstrated (1) how
to learn knowledge from logs and (2) how the knowledge learned
from logs facilitates root cause analysis.

4.1 Extracting Knowledge from Logs
A full set of log groups is too large to demonstrate in this paper,
therefore we use a single log instance as an example and pretend it
is a log group having only one log instance. The extraction process
is illustrated in Figure 2. The process is described as below:

(1) The NER identifies a list of entities from the log.
(2) The entities and labels are converted into RDF triples as

{1, 2, 3}. Three entities are linked to concepts in BKG: {4, 5, 6}.
Two entities are assigned with rdf:type SELFCONTAINED
as they are in fixed columns: {7, 8}. These triples compose
an initial LIG.

(3) Apply the set of positive rules on this LIG, and learn a set
of triples as {9, 10}. The local rule 𝑅1 infers triple 9 and 𝑅2
infers triple 10.

(4) Align and merge triples from LIG to the background graph.
Extend the background graphwith triples {1, 2, 3, 4, 5, 6, 9, 10}.

(5) Infer new triples based on all triples in the background graph.
0 is the triple from the initial background graph, {5, 6, 9} are
from the above LIG, {11, 12, 13, 14} are from other LIGs.

(6) New triple 15 is learned from the extended BKG, based on
triples {0, 5, 6, 9, 12, 14} and rule 𝑅3.

After extraction and inference, we expand the BKG with a set of
instance level triples {1, 2, 3, 4, 5, 6, 9, 10} from the log and a triple
15 that connects two alarm instance entities.

4.2 Use the Log Knowledge Graph for Root
Cause Analysis

The background knowledge now contains initial concept level
triples and triples learned from a set of LIGs. In Figure 2, triples

{12, 13, 14, 15} describes two alarm events, both related to the triples
from our example LIG. The alarm events are reported to the opera-
tion and management platform, but administrators don’t know the
causal relationship given the huge list of alarms reporting similar
alarms on different containers and services. By applying 𝑅3 on
the whole KG, we learned triple 16, showing the causal relation
between two alarm instances.

5 CONCLUSION AND FUTUREWORK
This paper introduces a system LEKG for automated knowledge
model construction from arbitrary log data. The proposed system
extracts and learns triples from unstructured logs to construct a
log KG based on a BKG. The key idea of this approach is to utilize
Horn rules from background knowledge to infer additional triples
and validate new triples. From the angle of practice, we proposed a
local to global strategy for triple inference, which reduced reason-
ing query space. Finally, we demonstrate the knowledge extraction
process and how it facilitates root cause analysis.
A limitation evident from our experiment was the uncertain cov-
erage of the rule set and the effort of preparing the rules. This
limitation could be eased by rule-mining technologies to some ex-
tent [1, 20, 36]. The automatic rule-mining tools [1, 10, 11, 16] rely
on a large set of examples. This improvement is not applicable from
a cold start but can be arranged when the KG is expanded to a
large size. Usually the rules learned by automatic tools are not as
concise as those scripted by experts. This problem can be tackled
by the ABC [18] system, which has ability of repairing Horn rules
based on an ABox with the minimal changes w.r.t. entrenchment
scores [17]. In our future work, the triples that failed the validation
will play an important role in revising rules and repairing KG with
minimal changes. Furthermore, there might also a need to use some
uncertainty [37] mechanisms, such as fuzzy extensions [29, 30, 39],
possibilistic extensions [34, 35] or probabilistic extensions [12, 21],
of knowledge graphs in the future. We also plan to look into Shape
constraints [14].

ACKNOWLEDGMENTS
The authors would like to thank Huawei for supporting the research
on which this paper was based under grant CIENG4721/LSC.

LEKG IJCKG’21, December 6–8, 2021, Virtual Event, Thailand

REFERENCES
[1] Naser Ahmadi, Viet Phi Huynh, Vamsi Meduri, Stefano Ortona, and Paolo Papotti.

2020. Mining Expressive Rules in Knowledge Graphs. Journal of Data and
Information Quality 12, 2 (2020). https://doi.org/10.1145/3371315

[2] Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, María S. Pérez,
and Victor Muntés-Mulero. 2020. Graph-based root cause analysis for service-
oriented and microservice architectures. Journal of Systems and Software 159
(2020). https://doi.org/10.1016/j.jss.2019.110432

[3] Harith A. Dawood. 2014. Graph theory and cyber security. Proceedings - 3rd Inter-
national Conference on Advanced Computer Science Applications and Technologies,
ACSAT 2014 (2014), 90–96. https://doi.org/10.1109/ACSAT.2014.23

[4] Youcef Djenouri, Asma Belhadi, and Philippe Fournier-Viger. 2018. Extracting use-
ful knowledge from event logs: A frequent itemset mining approach. Knowledge-
Based Systems 139 (2018), 132–148. https://doi.org/10.1016/j.knosys.2017.10.016

[5] Hristo Djidjev, Gary Sandine, Curtis B. Storlie, and Scott Vander Wiel. 2011.
Graph Based Statistical Analysis of Network Traffic. Mlg ’11 (2011), 8. https:
//www.cs.purdue.edu/mlg2011/papers/paper{_}10.pdf

[6] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
detection and diagnosis from system logs through deep learning. Proceedings of
the ACM Conference on Computer and Communications Security (2017), 1285–1298.
https://doi.org/10.1145/3133956.3134015

[7] Andreas Ekelhart, Fajar J. Ekaputra, and Elmar Kiesling. 2021. The SLOGERT
Framework for Automated Log Knowledge Graph Construction. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 12731 LNCS (2021), 631–646. https://doi.org/10.
1007/978-3-030-77385-4_38

[8] Andreas Ekelhart, Elmar Kiesling, and Kabul Kurniawan. 2018. Taming the logs
– Vocabularies for semantic security analysis. Procedia Computer Science 137
(2018), 109–119. https://doi.org/10.1016/j.procs.2018.09.011

[9] Alexandre P. Francisco, Ricardo Baeza-Yates, andArlindo L. Oliveira. 2012. Mining
query log graphs towards a query folksonomy. Concurrency and Computation:
Practice and Experience 24, 17 (2012), 2179–2192. https://doi.org/10.1002/cpe.1773

[10] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. 2015.
Fast rule mining in ontological knowledge bases with AMIE+. VLDB Journal 24,
6 (2015), 707–730. https://doi.org/10.1007/s00778-015-0394-1

[11] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian Suchanek.
2013. AMIE: Association Rule Mining under Incomplete Evidence in Ontological
Knowledge Bases. (2013), 413–422. https://doi.org/10.1145/2488388.2488425

[12] Víctor Gutiérrez-Basulto, Jean Christoph Jung, Carsten Lutz, and Lutz Schröder.
2017. Probabilistic description logics for subjective uncertainty. Journal of
Artificial Intelligence Research 58(1) (2017), 1–66.

[13] Pinjia He, Jieming Zhu, Shilin He, Jian Li, andMichael R. Lyu. 2016. An evaluation
study on log parsing and its use in log mining. Proceedings - 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2016 (2016),
654–661. https://doi.org/10.1109/DSN.2016.66

[14] Aidan Hogan. 2020. Shape Constraints and Expressions. In The Web of Data.
Springer, 449–513.

[15] Elmar Kiesling, Andreas Ekelhart, Kabul Kurniawan, and Fajar Ekaputra. 2019.
The SEPSES Knowledge Graph: An Integrated Resource for Cybersecurity. Vol. 11779
LNCS. Springer International Publishing. 198–214 pages. https://doi.org/10.
1007/978-3-030-30796-7_13

[16] Jonathan Lajus, Luis Galárraga, and Fabian Suchanek. 2020. Fast and Exact Rule
Mining with AMIE 3. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12123
LNCS (2020), 36–52. https://doi.org/10.1007/978-3-030-49461-2_3

[17] Xue Li, Alan Bundy, and Eugene Philalithis. 2021. Signature Entrenchment
and Conceptual Changes in Automated Theory Repair. In The Ninth Annual
Conference on Advances in Cognitive Systems. Cognitive Systems Foundation.

[18] Xue Li, Alan Bundy, and Alan Smaill. 2018. ABC repair system for datalog-
like theories. IC3K 2018 - Proceedings of the 10th International Joint Conference
on Knowledge Discovery, Knowledge Engineering and Knowledge Management 2
(2018), 335–342. https://doi.org/10.5220/0006959703350342

[19] Jian Guang Lou, Qiang Fu, Yi Wang, and Jiang Li. 2010. Mining dependency
in distributed systems through unstructured logs analysis. Operating Systems
Review (ACM) 44, 1 (2010), 91–96. https://doi.org/10.1145/1740390.1740411

[20] Ravi Lourdusamy and Stanislaus Abraham. 2020. A Survey on Methods of
Ontology Learning from Text. May (2020), 113–123. https://doi.org/10.1007/978-
3-030-38501-9_11

[21] Thomas Lukasiewicz. 2008. Expressive probabilistic description logics. Artificial
Intelligence 172(6-7) (2008), 852–883.

[22] Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing Liu, Yihao
Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou. 2019. Loganomaly:
Unsupervised detection of sequential and quantitative anomalies in unstructured
logs. IJCAI International Joint Conference on Artificial Intelligence 2019-Augus
(2019), 4739–4745. https://doi.org/10.24963/ijcai.2019/658

[23] Adam Oliner, Archana Ganapathi, and Wei Xu. 2012. Advances and challenges
in log analysis. Commun. ACM 55, 2 (feb 2012), 55–61. https://doi.org/10.1145/

2076450.2076466
[24] Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. 2018. Robust

discovery of positive and negative rules in knowledge bases. Proceedings - IEEE
34th International Conference on Data Engineering, ICDE 2018 (2018), 1180–1191.
https://doi.org/10.1109/ICDE.2018.00108

[25] J.Z. Pan, D. Calvanese, T. Eiter, I. Horrocks, M. Kifer, F. Lin, and Y. Zhao. 2017.
ReasoningWeb: Logical Foundation of Knowledge Graph Construction and Querying
Answering. Springer.

[26] J.Z. Pan, G. Vetere, J.M. Gomez-Perez, and H. Wu. 2016. Exploiting Linked Data
and Knowledge Graphs for Large Organisations. Springer.

[27] Jeff Z. Pan and Ian Horrocks. 2002. Reasoning in the SHOQ(Dn) Description
Logic. In Proceedings of the 2002 International Workshop on Description Logics
(DL2002), Ian Horrocks and Sergio Tessaris (Eds.).

[28] Jeff Z. Pan and Ian Horrocks. 2003. Web Ontology Reasoning with Datatype
Groups. In Proc. of the International Semantic Web Conference. 47–63.

[29] Jeff Z. Pan, Giorgos B. Stamou, Vassilis Tzouvaras, and Ian Horrocks. 2005. f-
SWRL: A Fuzzy Extension of SWRL. In Artificial Neural Networks: Formal Models
and Their Applications - ICANN. 829–834.

[30] Jeff Z. Pan, Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, and Ian Horrocks.
2006. f-SWRL: A Fuzzy Extension of SWRL. Journal of Data Semantic (2006),
28–46.

[31] Antonio Pecchia, Ingo Weber, Marcello Cinque, and Yu Ma. 2020. Discovering
process models for the analysis of application failures under uncertainty of event
logs. Knowledge-Based Systems 189 (2020). https://doi.org/10.1016/j.knosys.2019.
105054

[32] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, Shiqing Ma, Fei Wang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2016. HERCULE: Attack
story reconstruction via community discovery on correlated log graph. ACM
International Conference Proceeding Series 5-9-Decemb, 3 (2016), 583–595. https:
//doi.org/10.1145/2991079.2991122

[33] Aditya Pingle, Aritran Piplai, SudipMittal, Anupam Joshi, JamesHolt, and Richard
Zak. 2019. Relext: Relation extraction using deep learning approaches for cyberse-
curity knowledge graph improvement. Proceedings of the 2019 IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining, ASONAM
2019 (2019), 879–886. https://doi.org/10.1145/3341161.3343519 arXiv:1905.02497

[34] Guilin Qi, Qiu Ji, Jeff Z. Pan, and Jianfeng Du. 2011. Extending Description
Logics with Uncertainty Reasoning in Possibilistic Logic. International Journal of
Intelligent Systems 26(4) (2011).

[35] Guilin Qi, Jeff Z. Pan, and Qiu Ji. 2007. A Possibilistic Extension of Description
Logics. In Proc. of 2007 International Workshop on Description Logics (DL2007).

[36] Wilhelm Schickard-lnstitute, Ulrich Gntzer, Wilhelm Schickard-lnstitute, Daim-
lerchrysler Ag, and F T Ad. [n. d.]. Algorithms for Association Rule Mining - A
General Survey and Comparison. 2, 1 ([n. d.]), 58–64.

[37] Murat Sensoy, Achille Fokoue, Jeff Z. Pan, Timothy J. Norman, Yuqing Tang, Nir
Oren, and Katia P. Sycara. 2013. Reasoning about uncertain information and
conflict resolution through trust revision. In Proc. of the International conference
on Autonomous Agents and Multi-Agent Systems, AAMAS, Maria L. Gini, Onn
Shehory, Takayuki Ito, and Catholijn M. Jonker (Eds.). 837–844.

[38] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. 2007. Pellet: A practical OWL-DL reasoner. Web Semantics 5, 2 (2007),
51–53. https://doi.org/10.1016/j.websem.2007.03.004

[39] Giorgos Stoilos, Giorgos B. Stamou, and Jeff Z. Pan. 2006. Handling Imprecise
Knowledge with Fuzzy Description Logic. In the Proc. of the 2006 International
Workshop on Description Logics (DL2006).

[40] Hudan Studiawan, Christian Payne, and Ferdous Sohel. 2017. Graph cluster-
ing and anomaly detection of access control log for forensic purposes. Digital
Investigation 21 (2017), 76–87. https://doi.org/10.1016/j.diin.2017.05.001

[41] Jan Svacina, Jackson Raffety, Connor Woodahl, Brooklynn Stone, Tomas Cerny,
Miroslav Bures, Dongwan Shin, Karel Frajtak, and Pavel Tisnovsky. 2020. On
Vulnerability and Security Log analysis: A Systematic Literature Review on
Recent Trends. ACM International Conference Proceeding Series (2020), 175–180.
https://doi.org/10.1145/3400286.3418261

[42] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. SherLog: Error diagnosis by connecting clues from run-time logs.
International Conference on Architectural Support for Programming Languages and
Operating Systems - ASPLOS (2010), 143–154. https://doi.org/10.1145/1736020.
1736038

[43] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R.
Lyu. 2019. Tools and Benchmarks for Automated Log Parsing. Proceedings -
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE-SEIP 2019 (2019), 121–130. https://doi.org/10.1109/
ICSE-SEIP.2019.00021 arXiv:1811.03509

[44] De Qing Zou, Hao Qin, and Hai Jin. 2016. UiLog: Improving Log-Based Fault
Diagnosis by Log Analysis. Journal of Computer Science and Technology 31, 5
(2016), 1038–1052. https://doi.org/10.1007/s11390-016-1678-7

https://doi.org/10.1145/3371315
https://doi.org/10.1016/j.jss.2019.110432
https://doi.org/10.1109/ACSAT.2014.23
https://doi.org/10.1016/j.knosys.2017.10.016
https://www.cs.purdue.edu/mlg2011/papers/paper{_}10.pdf
https://www.cs.purdue.edu/mlg2011/papers/paper{_}10.pdf
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1007/978-3-030-77385-4_38
https://doi.org/10.1007/978-3-030-77385-4_38
https://doi.org/10.1016/j.procs.2018.09.011
https://doi.org/10.1002/cpe.1773
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1145/2488388.2488425
https://doi.org/10.1109/DSN.2016.66
https://doi.org/10.1007/978-3-030-30796-7_13
https://doi.org/10.1007/978-3-030-30796-7_13
https://doi.org/10.1007/978-3-030-49461-2_3
https://doi.org/10.5220/0006959703350342
https://doi.org/10.1145/1740390.1740411
https://doi.org/10.1007/978-3-030-38501-9_11
https://doi.org/10.1007/978-3-030-38501-9_11
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.1145/2076450.2076466
https://doi.org/10.1145/2076450.2076466
https://doi.org/10.1109/ICDE.2018.00108
https://doi.org/10.1016/j.knosys.2019.105054
https://doi.org/10.1016/j.knosys.2019.105054
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/2991079.2991122
https://doi.org/10.1145/3341161.3343519
https://arxiv.org/abs/1905.02497
https://doi.org/10.1016/j.websem.2007.03.004
https://doi.org/10.1016/j.diin.2017.05.001
https://doi.org/10.1145/3400286.3418261
https://doi.org/10.1145/1736020.1736038
https://doi.org/10.1145/1736020.1736038
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://doi.org/10.1109/ICSE-SEIP.2019.00021
https://arxiv.org/abs/1811.03509
https://doi.org/10.1007/s11390-016-1678-7

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Definition
	3.2 Solution
	3.3 Implementation

	4 Use Case
	4.1 Extracting Knowledge from Logs
	4.2 Use the Log Knowledge Graph for Root Cause Analysis

	5 Conclusion and Future Work
	Acknowledgments
	References

