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Abstract. For reusing an RDF dataset, understanding its content is
a prerequisite. To support the comprehension of its large and complex
structure, existing methods mainly generate an abridged version of an
RDF dataset by extracting representative data patterns as a summary.
As a complement, recent attempts extract a representative subset of
concrete data as a snippet. We extend this line of research by injecting
the strength of summary into snippet. We propose to generate a pattern-
coverage snippet that best exemplifies the patterns of entity descriptions
and links in an RDF dataset. Our approach incorporates formulations of
group Steiner tree and set cover problems to generate compact snippets.
This extensible approach is also capable of modeling query relevance
to be used with dataset search. Experiments on thousands of real RDF
datasets demonstrate the effectiveness and practicability of our approach.

Keywords: RDF data · Snippet · Data pattern · Dataset search.

1 Introduction

We have witnessed increasingly many RDF datasets published on the Semantic
Web, but understanding the content of a large RDF dataset is still a challenge.
Fruitful efforts have been made to compute and present an abridged version of an
RDF dataset by extracting representative data patterns to form a summary [2].
Summaries are typically composed of schema-level elements, i.e., classes and
properties [14, 7, 24, 28, 29]. Complementary to the aggregate nature of sum-
maries, a recent line of research extracts a representative subset of instance-
level triples to form a compact snippet exemplifying concrete data in an RDF
dataset [6, 15]. We follow this trend to generate snippets that can be incorporated
into RDF dataset search engines and profiling tools used by human users.

Research Questions. Existing methods [6, 15] generate a snippet by extract-
ing a compact connected RDF subgraph that covers the most important classes
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and properties in an RDF dataset. There are three limitations of these methods,
which pose three research questions (RQs) accordingly. Firstly, these methods
aim at covering representative schema-level elements, but they are not power-
ful enough to attend to combinations of these elements in entity descriptions,
i.e., patterns which have been extensively studied in summary generation [14,
7, 24, 28, 29]. RQ1: How can we generate compact pattern-coverage snippets
for RDF datasets? Secondly, while a snippet being a connected RDF subgraph
might benefit users’ understanding, if the original RDF dataset comprises mul-
tiple components, however, connectivity will force existing methods [6, 15] to
extract a snippet from only one component but ignore the content of all other
components. Alternatively, if we extract a sub-snippet from each component and
merge all sub-snippets, we will be likely to suffer from redundancy and ineffi-
ciency. RQ2: How can we jointly consider all components to generate a compact
snippet? Thirdly, dataset search [3] is a major downstream application of snip-
pets, and it is often triggered by a query which cannot be exploited by the above
methods [6, 15]. Query-dependent snippets may help users better determine the
relevance of retrieved RDF datasets. RQ3: How can we extend snippet genera-
tion to be biased toward a given query?

Research Contributions. To answer the above RQs, we inject the strength of
summarization (i.e., pattern) into snippet generation and combine the two lines
of research. We propose to generate compact pattern-coverage snippets for RDF
datasets. We answer the three RQs with the following research contributions.

– For RQ1: We present an algorithm Basic for generating a compact snippet
covering all the patterns of entity descriptions and links in an RDF dataset.
Basic achieves compactness by solving a group Steiner tree problem.

– For RQ2: Using Basic as a subroutine, we present an algorithm PCSG which
handles disconnectivity by generating a compact pattern-coverage snippet
that merges the smallest number of sub-snippets extracted from different
components. PCSG achieves compactness by solving a set cover problem.

– For RQ3: We present an algorithm QPCSG which extends PCSG to generate
a query-biased pattern-coverage snippet. QPCSG covers each query keyword
as a pseudo-pattern of its matching entity descriptions and links.

Outline. The remainder of the paper is organized as follows. We discuss related
work in Section 2. We describe Basic in Section 3. We describe its extensions
PCSG and QPCSG in Section 4, and we evaluate these algorithms in Section 5
and Section 6, respectively. We empirically compare snippet with summary in
Section 7. We conclude the paper with future work in Section 8.

2 Related Work

Given a piece of RDF data [18], a snippet is a subset of triples. Various kinds of
snippets have been generated to facilitate different downstream tasks.
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RDF Dataset Snippet. To compactly exemplify the content of a large RDF
dataset, IlluSnip [6] generates a snippet by formulating a maximum-weight-and-
coverage connected graph problem. It aims at extracting an optimum subset of
k triples represented as a connected RDF graph that covers the most frequent
classes, properties, and the most central entities in the RDF dataset. An approx-
imation algorithm is designed for this NP-hard problem. In [15], a more scalable
anytime version of IlluSnip is presented and it can generate snippets for RDF
datasets accessible via SPARQL endpoints. Different from IlluSnip, KSD [6] for-
mulates a weighted maximum coverage problem where it removes the constraint
on connectivity. Its objective of optimization further aims at covering the most
keywords in a keyword query so that it is suitable for RDF dataset search en-
gines. To evaluate these snippets, in [26] a set of metrics are defined to measure
how many important classes, properties, entities, and keywords are covered in
a snippet. Compared with IlluSnip and KSD, while our approach also aims at
covering schema-level elements, we focus on patterns of entity descriptions and
links which are combinations of classes and properties. Patterns can provide a
“higher-order” preview of data than separate classes and properties.

RDF Dataset Sample. To efficiently answer SPARQL queries over an RDF
dataset, SampLD [20] creates a sample to replace the original RDF dataset. It
extracts central triples from the RDF dataset as they are considered to frequently
appear in the answers to common queries. GLIMPSE [21] has a similar goal but
its ranking of triples is personalized, i.e., biased toward a user’s query history.
In [12], a sample is created to capture the structural and statistical features of
an RDF dataset to benefit query plan optimization. Compared with our dataset
snippets which are generated to be read by human users, dataset samples are
created to be used by machines in SPARQL query processing. The two problems
and their solutions are fundamentally different.

Entity Summary. The research on entity summarization aims at generating a
representative snippet called an entity summary for RDF data that describes a
specified entity to show its main features [16]. Methods addressing this problem
compute a ranking of triples but they cannot apply to an RDF dataset containing
many and various entities studied in our work.

RDF Dataset Summary. A summary of an RDF dataset usually refers to a
set of patterns in the data [2]. Patterns are combinations of classes and proper-
ties [14, 7, 24, 28, 29], or more complex path-based patterns [1, 23]. Snippet and
summary provide complementary views of an RDF dataset: snippets contain-
ing representative instance-level triples; summaries comprising representative
schema-level patterns. They are both important features of a dataset profile [8].
Our approach combines their strengths by generating a pattern-coverage snip-
pet. Different from our focus, there are also dataset summaries that can be used
for optimizing distributed query answering [10, 11] or vocabulary reduction [25].
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(a) Example RDF Dataset              (b) Entity-Link Graph (ELG)        (d) Pattern-Coverage Snippet

(c) Group Steiner Tree (Expanded)

Fig. 1: An RDF dataset and its pattern-coverage snippet generated by Basic.

3 Snippet Generation: A Basic Approach

3.1 Problem Formulation

RDF data is a set of subject-predicate-object triples and can be represented as
an RDF graph. An example RDF dataset is shown in Fig. 1(a).
Snippet. Given an RDF dataset D which is a set of triples, a snippet S of D is
a subset of triples represented as a connected RDF graph [6, 15]. Connectivity
indicates that S describes a set of interlinked entities and exhibits cohesion which
is beneficial to users’ understanding [6]. In this section we follow this definition.

However, if D itself is represented as a disconnected RDF graph, a snippet
defined as above can only be generated from one component and will have to
ignore the data in other components. To overcome this limitation, while in this
section we assume D is represented as a connected RDF graph, in Section 4.1
we will cope with disconnectivity in our full approach.
Pattern. Given a set of triples T , an instance-level entity e is described by a
subset of triples where e is the subject or the object. The schema-level elements
in these triples form the entity description pattern (EDP) of e, consisting of sets
of classes (C), forward properties (FP), and backward properties (BP):

edp(e, T ) = 〈C(e, T ), FP(e, T ), BP(e, T )〉 ,
C(e, T ) = {c : ∃〈e, rdf:type, c〉 ∈ T} ,

FP(e, T ) = {p : ∃〈e, p, o〉 ∈ T} \ {rdf:type} ,
BP(e, T ) = {p : ∃〈s, p, e〉 ∈ T} .

(1)

A triple where the object is an entity is of particular interest as it represents
a link between two entities. The predicate and the EDPs of the two entities in
such a triple 〈ei, p, ej〉 form the link pattern (LP) of this triple:

lp(〈ei, p, ej〉, T ) = 〈edp(ei, T ), p, edp(ej , T )〉 . (2)

For example, given T comprising all the triples in Fig. 1(a), we use different
colors to show entities and links in Fig. 1 having different patterns such as

edp(Berlin, T ) = edp(London, T ) = p1 = 〈{Capital, City}, {capitalOf, locatedIn}, ∅〉
edp(DE, T ) = edp(UK, T ) = p2 = 〈∅, {partOf, area}, {capitalOf, locatedIn}〉
lp(〈Berlin, locatedIn, DE〉, T ) = lp(〈London, locatedIn, UK〉, T ) = 〈p1, locatedIn, p2〉 .
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By iterating over all entities and links in T , we obtain the set of all EDPs
and the set of all LPs in T , denoted by EDP(T ) and LP(T ), respectively.

Pattern-Coverage Snippet. Given an RDF dataset D, a pattern-coverage
snippet S of D is a snippet that covers all the EDPs and LPs in D:

EDP(D) = EDP(S) and LP(D) = LP(S) . (3)

For example, Fig. 1(d) shows a pattern-coverage snippet of the RDF dataset in
Fig. 1(a). Observe that S may not be unique. For example, S = D is a trivial
pattern-coverage snippet. We aim at finding a compact S of the smallest size
in terms of the number of triples. We refer to this optimization problem as the
pattern-coverage snippet problem (PCSP). We will present a solution to PCSP
in Section 3.2.

Note that if the heterogeneity of D is very high containing many different
EDPs and LPs, S covering all patterns can hardly be very compact. In Section 4.2
we will extend our approach to cope with high heterogeneity.

3.2 Algorithm Basic

We solve PCSP by Algorithm Basic. Its three steps are outlined in Algorithm 1.
We illustrate the output of each step in Fig. 1(b), Fig. 1(c), and Fig. 1(d).

Step 1. We firstly represent an RDF dataset D as an undirected graph where
nodes and edges represent entities and entity links in D, respectively. Each node
is labeled with its EDP, and each edge is labeled with its LP. Then we convert
labeled edges into labeled nodes by subdividing each edge. The subdivision is
referred to as the entity-link graph representation of D, denoted by ELG(D), as
illustrated by Fig. 1(b) where different labels are represented by different colors.

Step 2. Observe that PCSP essentially looks for a smallest connected subgraph
of ELG(D) whose node labels cover EDP(D) and LP(D). It would be straightfor-
ward to reduce PCSP to an unweighted version of the well-known group Steiner
tree problem (GSTP): all nodes having the same label form a group. GSTP re-
quires finding a smallest tree that connects at least one node from each group
and hence it covers all distinct labels. GSTP is NP-hard, and we solve it using
KeyKG+ [22], a state-of-the-art approximation algorithm for GSTP. Note that
for each leaf in the computed tree representing an entity link, we expand the tree
to contain both entities it links, as illustrated by the dotted edge in Fig. 1(c).

Step 3. From the computed subgraph of ELG(D) we derive a pattern-coverage
snippet S as follows. For each node in the subgraph representing an entity e,
from the triples describing e in D: we choose all triples describing e’s classes,
and for each property in edp(e,D) we choose an arbitrary triple describing e
using this property. For each node in the subgraph representing an entity link:
we choose its corresponding triple from D. All the chosen triples form S, as
illustrated by Fig. 1(d).
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Algorithm 1: Basic
Input: An RDF dataset D.
Output: A pattern-coverage snippet S.

1 Construct ELG(D);
2 Compute a group Steiner tree in ELG(D);
3 Derive S from the computed subgraph;
4 return S;

Algorithm 2: PCSG
Input: An RDF dataset D.
Output: A pattern-coverage snippet S.

1 D ← Components(D);
2 P ← EDP(D) ∪ LP(D);
3 S ← ∅;
4 while P 6= ∅ do
5 Di ← arg max

Dj∈D
|(EDP(Dj) ∪ LP(Dj)) ∩ P |;

6 S ← S∪ Basic (Di);
7 P ← P \ (EDP(Di) ∪ LP(Di));

8 return S;

Time Complexity. The run-time of Basic is dominated by KeyKG+ in Step 2.
KeyKG+ runs in O(n2g+ng3) time [22], where n ≤ 3|D| is the number of nodes
in ELG(D), and g = |EDP(D) ∪ LP(D)| is the number of groups. Thanks to the
efficiency of KeyKG+ [22], Basic is also efficient and practical as we will see in
the experimental results in Sections 5 and 6.

4 Snippet Generation: Extended Approaches

In this section, we extend Basic to accommodate more general settings.

4.1 Extension to Disconnectivity: Algorithm PCSG

Basic assumes the connectivity of D. We use it as a subroutine to be called by
our main algorithm PCSG which is extended to handle disconnectivity as follows.

A straightforward idea is to generate a pattern-coverage sub-snippet for each
component of D and then merge all sub-snippets. However, different components
may contain common patterns. It may be unnecessary to generate and merge
sub-snippets for all components to form a pattern-coverage snippet S of D. To
improve the compactness of S and the efficiency of its generation, we aim at
finding a smallest subset of components that cover all the patterns in D. It is
an instance of the well-known set cover problem (SCP) where EDP(D)∪LP(D) is
the universe and for each component Dj , EDP(Dj)∪LP(Dj) ⊆ EDP(D)∪LP(D) is
a set. SCP requires finding the smallest number of sets whose union equals the
universe. SCP is NP-hard, and we solve it using a standard greedy algorithm [9].

The extended algorithm PCSG, standing for pattern-coverage snippet gener-
ation, is presented in Algorithm 2. Let D be the set of all components of D
(line 1). P denotes the universe (line 2). Initially S is empty (line 3). Then it-
eratively until P is fully covered (line 4), we greedily choose a component Di

that contains the largest number of uncovered patterns (line 5). We use Basic to
generate a pattern-coverage sub-snippet of Di and add its triples to S (line 6).
Finally we update P for the next iteration (line 7).

Moreover, we modify Basic to generate a possibly smaller sub-snippet of Di.
Observe that the sub-snippet only needs to cover (EDP(Di)∪ LP(Di))∩P rather
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than EDP(Di)∪LP(Di). In Basic, when formulating GSTP we ignore the groups
that correspond to the patterns in (EDP(Di) ∪ LP(Di)) \ P .

PCSG has the same time complexity as Basic.

4.2 Extension to High Heterogeneity: Algorithm PCSG-τ

PCSG requires a snippet S to cover all the patterns in D. If D is highly hetero-
geneous and contains many different patterns, S will inevitably be very large.
Below we extend PCSG to achieve a trade-off between pattern coverage and snip-
pet size to handle high heterogeneity.

We modify PCSG to generate a possibly smaller snippet that only covers the
most important patterns in D. Observe that patterns are not equally important.
We define the relative frequency of an EDP as the proportion of entities that
have this EDP in D. The relative frequency of an LP is defined analogously. More
frequent patterns are considered more important. We separately rank all EDPs
and all LPs in descending order of relative frequency. In PCSG, we restrict the
universe P to only contain top-ranked EDPs and LPs whose total relative fre-
quency of EDP and total relative frequency of LP exceed τ which is a parameter
describing a percentage. The extended algorithm is referred to as PCSG-τ .

4.3 Extension to Query Relevance: Algorithm QPCSG(-τ )

Below we extend PCSG and PCSG-τ to generate query-biased snippets to be pre-
sented in dataset search to help users determine the relevance of RDF datasets.

Consider a keyword query Q. We modify PCSG and PCSG-τ to generate a
pattern-coverage snippet S that matches all the keywords in Q. Specifically, we
view each keyword q ∈ Q as a pseudo-pattern. Each entity or entity link in D
is extended to have a set of patterns consisting of: its EDP or LP, and all the
pseudo-patterns it matches (computed by an off-the-shelf matcher). Accordingly,
when formulating GSTP in Basic, for each pseudo-pattern q ∈ Q we add a group
consisting of all entities and entity links that match q. In PCSG and PCSG-τ , we
add all the pseudo-patterns in Q to the universe P , and we refer to the extended
algorithms as QPCSG and QPCSG-τ , respectively.

Regarding the matcher, we adopt the following simple implementation for our
experiments. An entity e matches q ∈ Q if q appears in any triple describing e
in D. An entity link 〈ei, p, ej〉 matches q if q appears in the textual form of p.

5 Evaluation of PCSG(-τ )

We firstly carried out experiments to verify two research hypotheses (RHs) about
the effectiveness (RH1) and practicability (RH2) of our approach PCSG(-τ).

– RH1: PCSG(-τ) generates better snippets than [6, 15].
– RH2: PCSG(-τ) efficiently generates compact snippets.

All our experiments presented in the paper were serially conducted on an Intel
Xeon E7-4820 (2GHz) with 80GB memory for JVM. Source code, experimental
data, and example snippets are online: https://github.com/nju-websoft/PCSG.
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Table 1: Statistics about RDF datasets.

Portal
#RDF #triples #classes #properties #EDPs #LPs

datasets Median Max Median Max Median Max Median Max Median Max

DataHub.io 311 1,272 20,968,879 3 2,030 16 3,982 15 270,224 27 156,722
Data.gov 9,233 4,000 6,343,524 1 2 13 545 3 500 2 1,103
Overall 9,544 4,000 20,968,879 1 2,030 14 3,982 3 270,224 2 156,722

5.1 RDF Datasets

We retrieved all datasets with RDF dumps from two data portals: DataHub.io
and Data.gov. We successfully downloaded and used Apache Jena 3.9.0 to parse
9,544 RDF datasets. Their statistics are shown in Table 1. Observe that many
entities in datasets from Data.gov are untyped and are described by uniform
patterns, probably converted from tabular data.

5.2 Participating Methods

Ours. We implemented three variants: PCSG, PCSG-90%, PCSG-80%.

Baseline. IlluSnip [6, 15] represented the state of the art in snippet generation
for RDF datasets. Its original version [6] could not scale to large RDF datasets.
We used its anytime version [15] and allowed two hours for computing a snippet.
We followed [15] to set its parameters. IlluSnip generated size-bounded snippets
containing at most k triples. For a fair comparison, for each RDF dataset we set k
to the number of triples in the snippet generated by our approach. Accordingly,
there were three variants: IlluSnip, IlluSnip-90%, IlluSnip-80%.

5.3 Experiment 1: Coverage of Schema

PCSG(-τ) and IlluSnip both aimed at schema coverage. To verify RH1, we com-
pared their effectiveness in this aspect.

Metrics. We assessed a snippet’s capability of covering four kinds of schema-
level elements: class, property, EDP, and LP. For each kind, we measured a
snippet’s schema coverage rate by calculating the total relative frequency (de-
fined in Section 4.2) of all the schema-level elements of this kind covered in the
snippet. It represented the weighted proportion of covered schema-level elements
which were weighted by their numbers of instances. Note that for class and prop-
erty, their schema coverage rates had been used for evaluating the quality of a
snippet in [26] (called coSkm). We basically extended it to EDP and LP.

Results. For each approach we calculated its schema coverage rates on each
of the 9,544 RDF datasets. The results are summarized in Table 2. All the
participating methods achieved (near) perfect schema coverage rates for class and
property. It was not surprising: IlluSnip directly optimizes these rates; PCSG(-τ)
indirectly boosts these rates via pattern coverage. However, IlluSnip was unaware
of patterns and exhibited considerably lower schema coverage rates for EDP and
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Table 2: Schema coverage rates (mean ± SD).

Class Property EDP LP
PCSG 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
IlluSnip 0.993 ± 0.079 0.999 ± 0.011 0.822 ± 0.285 0.790 ± 0.320
PCSG-90% 0.999 ± 0.019 0.999 ± 0.006 0.981 ± 0.030 0.976 ± 0.035
IlluSnip-90% 0.991 ± 0.092 0.999 ± 0.013 0.794 ± 0.310 0.762 ± 0.344
PCSG-80% 0.999 ± 0.025 0.998 ± 0.010 0.957 ± 0.061 0.947 ± 0.071
IlluSnip-80% 0.982 ± 0.131 0.998 ± 0.017 0.784 ± 0.317 0.751 ± 0.353
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Fig. 2: Cumulative distributions of schema coverage rate.

LP than PCSG(-τ). Indeed, for PCSG-τ these rates were guaranteed to exceed τ ,
as illustrated by their cumulative distributions over all RDF datasets in Fig. 2.
The results supported RH1 in terms of schema coverage.

5.4 Experiment 2: User Preference

Besides schema coverage rates, to verify RH1, we conducted a user study to
compare the quality of snippets generated by different methods. We recruited
20 students majoring in computer science from a university via a mailing list,
all having the necessary knowledge about RDF and paid to participate.

Procedure and Metrics. We followed the experimental design for snippet
comparison described in [6]. Specifically, each participant was randomly as-
signed ten RDF datasets. For each RDF dataset, the participant could obtain an
overview by accessing its metadata and top-twenty most frequent schema-level
elements of each kind: class, property, EDP, and LP, each associated with its fre-
quency (i.e., number of instances). Two snippets of this RDF dataset generated
by PCSG-80% and IlluSnip-80% were presented in random order to avoid position
bias. Each snippet was visualized as a node-link diagram. Its quality was to be
rated in the range from 1 to 5 indicating how well it exemplified the content of
the RDF dataset. The participant was encouraged to briefly explain the rating.

Results. The results of user-rated quality on 200 RDF datasets are summarized
in Table 3. Paired two-sample t-test showed that PCSG-80% generated signifi-
cantly (p < 0.01) better snippets than IlluSnip-80%. PCSG-80% was rated ≥ 4 on
most RDF datasets (80%), while for IlluSnip-80% this proportion was only 39%,
according to the distributions in Fig. 3. On 59% of all RDF datasets PCSG-80%
was thought to generate better snippets. Participants in their explanations of



10 X. Wang et al.

Table 3: User-rated quality.
Mean ± SD

PCSG-80% 4.09± 0.97
IlluSnip-80% 3.24± 1.12

Proportion
PCSG-80% > IlluSnip-80% 59.00%
PCSG-80% = IlluSnip-80% 24.50%
PCSG-80% < IlluSnip-80% 16.50%
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Table 4: Space savings
(mean ± SD).

PCSG 87.02% ± 21.42%
PCSG-90% 89.62% ± 20.98%
PCSG-80% 91.45% ± 19.22%
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PCSG-80%’s ratings were satisfied with the comprehensive classes and properties
included in each entity description which facilitated the comprehension of data
content and structure. The results supported RH1 in terms of user preference.
However, on 17% of all RDF datasets IlluSnip-80% was thought to generate
better snippets. In fact, participants’ explanations were mainly concerned about
visualization: snippets generated by PCSG-80% were often denser and hence their
node-link diagram visualizations appeared more complex. It inspires us to study
presentation methods that are more suitable for EDPs and LPs in future work.

5.5 Experiment 3: Space Saving and Run-Time

To verify RH2, we measured the space saving and run-time of our approach.

Metrics. We measured the space saving of our approach on an RDF dataset:

space saving = 1− number of triples in the generated snippet

number of triples in the RDF dataset
, (4)

and we reported the size of a snippet in terms of the number of triples. Recall
that IlluSnip was configured to generate snippets of the same size as ours, thereby
having the same space saving and size. We also reported the run-time of each
approach on an RDF dataset (excluding the time for parsing RDF dumps).

Results. We calculated the space saving of our approach on each of the 9,544 RDF
datasets. The results are summarized in Table 4. Our approach substantially re-
duced the size of an RDF dataset by an average of about 90%. The space savings
of PCSG, PCSG-90%, and PCSG-80% were above 95% on 57%, 69%, and 72% of
all RDF datasets, respectively, as illustrated by the cumulative distributions in
Fig. 4. The median numbers of triples in their generated snippets were only 41,
20, and 17, respectively, as illustrated by the cumulative distributions in Fig 5.
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Table 5: Run-time in milliseconds
(mean ± SD).

PCSG 2,806 ± 95,310
IlluSnip 856,446 ± 2,103,072
PCSG-90% 1,336 ± 70,896
IlluSnip-90% 572,099 ± 1,722,136
PCSG-80% 981 ± 47,325
IlluSnip-80% 446,110 ± 1,516,651

PCSG              PCSG-90%              PCSG-80%
IlluSnip IlluSnip-90%           IlluSnip-80%
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Fig. 6: Cum. distributions of run-time.

These numbers were comparable to the size constraints on compact snippets
(k = 40 or k = 20) proposed in previous research [6, 15, 26]. The results sup-
ported the compactness part of RH2. However, we observed a small proportion
of snippets containing more than 1,000 triples for highly heterogeneous RDF
datasets using diverse combinations of hundreds of properties to describe enti-
ties. Their browsing could be facilitated by an interface for filtering as in [17].

For each approach we recorded its run-time on each of the 9,544 RDF datasets.
The results are summarized in Table 5. PCSG(-τ) was more than two orders of
magnitude faster than IlluSnip. The run-time of PCSG, PCSG-90%, and PCSG-80%
was below one second on 98%, 98%, and 99% of all RDF datasets, respectively,
as illustrated by the cumulative distributions in Fig. 6. The results supported the
efficiency part of RH2. However, for several highly heterogeneous datasets con-
taining thousands of EDPs and LPs, PCSG(-τ) used more than an hour. Though
still faster than IlluSnip and acceptable as offline computation, it suggested room
for further improving the performance of our approach.

6 Evaluation of QPCSG(-τ )

We also carried out experiments to verify two research hypotheses (RHs) about
the effectiveness (RH3) and practicability (RH4) of our approach QPCSG(-τ).

– RH3: QPCSG(-τ) generates better query-biased snippets than [27].
– RH4: QPCSG(-τ) efficiently generates compact query-biased snippets.

6.1 Queries and RDF Datasets

From three published research datasets [13, 4, 5] we collected 2, 067 keyword
queries representing real-world data needs. In our experiments, since keywords
were to be matched with the content of an RDF dataset rather than its metadata,
we followed an existing annotation scheme [4] to manually annotate each query
and removed keywords that were to be matched with metadata (e.g., data format,
license). We also removed stop words and filtered out empty queries. For the
remaining 1,356 filtered queries, their statistics are shown in Table 6.

To match queries with the 9,544 RDF datasets described in Section 5.1, we
employed Apache Lucene 7.5.0 to index the content of each RDF dataset as a
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Table 6: Statistics about queries.

Source #queries #filtered queries
#words in a filtered query
Min Median Max

Ref. [13] 449 399 1 3 12
Ref. [4] 1,498 843 1 3 15
Ref. [5] 120 114 3 6 15

Table 7: Statistics about RDF datasets in Q-D pairs.

#Q-D #triples #classes #properties #EDPs #LPs
pairs Median Max Median Max Median Max Median Max Median Max

Overall 13,429 9,049 10,733,302 1 2,030 20 3,982 11 270,224 10 156,722

pseudo document by transforming each triple into a sentence concatenating its
subject, predicate, and object in their textual forms (e.g., rdfs:label, local
name, lexical form). We used the default document retrieval model provided
by Lucene and kept ten top-ranked RDF datasets for each query. As a result
we obtained 13,429 query-dataset pairs, or Q-D pairs for short. For the RDF
datasets in these Q-D pairs, their statistics are shown in Table 7.

6.2 Participating Methods

Ours. We implemented three variants: QPCSG, QPCSG-90%, QPCSG-80%.

Baseline. KSD [27] represented the state of the art in query-biased snippet
generation for RDF datasets. We followed [27] to set its parameters. KSD gener-
ated size-bounded snippets containing k triples. For a fair comparison, for each
RDF dataset we set k to the number of triples in the snippet generated by our
approach. Accordingly, there were three variants: KSD, KSD-90%, KSD-80%.

6.3 Experiment 4: Coverage of Query and Schema

QPCSG(-τ) and KSD both aimed at query coverage and schema coverage. To
verify RH3, we compared their effectiveness in these two aspects.

Metrics. Given a set of keywords in a query, we used two metrics [26] to assess
a snippet’s capability of covering the query: coKyw calculating the proportion of
keywords covered in the snippet; coCnx calculating the proportion of keyword
pairs connected by a path in the RDF graph representation of the snippet. For
schema coverage we reused schema coverage rate defined in Section 5.3.

Results. For each approach we calculated its coKyw, coCnx, and schema cover-
age rates on each of the 13,429 Q-D pairs. The results are summarized in Table 8.
All the participating methods achieved satisfying coKyw and schema coverage
rates for class and property, which was not surprising since they directly or in-
directly optimize these metrics. However, QPCSG(-τ) achieved noticeably higher
coCnx than KSD which did not attend to connectivity. KSD was also unaware of
patterns and exhibited considerably lower schema coverage rates for EDP and
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Table 8: coKyw, coCnx, and schema coverage rates (mean ± SD).

coKyw coCnx Class Property EDP LP

QPCSG 0.948 ± 0.124 0.841 ± 0.308 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000
KSD 0.895 ± 0.239 0.489 ± 0.443 0.944 ± 0.207 0.916 ± 0.219 0.222 ± 0.316 0.070 ± 0.190

QPCSG-90% 0.948 ± 0.124 0.839 ± 0.307 0.998 ± 0.013 0.998 ± 0.009 0.947 ± 0.041 0.943 ± 0.042
KSD-90% 0.888 ± 0.248 0.455 ± 0.442 0.905 ± 0.262 0.867 ± 0.261 0.190 ± 0.307 0.047 ± 0.168

QPCSG-80% 0.948 ± 0.124 0.836 ± 0.309 0.996 ± 0.020 0.981 ± 0.080 0.890 ± 0.081 0.883 ± 0.082
KSD-80% 0.884 ± 0.253 0.438 ± 0.440 0.892 ± 0.284 0.842 ± 0.281 0.174 ± 0.296 0.037 ± 0.153

QPCSG            QPCSG-90%            QPCSG-80%            KSD            KSD-90%            KSD-80%
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Fig. 7: Cum. distributions of schema coverage rate.

Table 9: Space savings
(mean ± SD).
QPCSG 88.07% ± 20.78%
QPCSG-90% 90.90% ± 19.87%
QPCSG-80% 92.38% ± 18.36%
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LP than QPCSG(-τ). Observe that for QPCSG-τ these rates were guaranteed to
exceed τ , as illustrated by their cumulative distributions over all Q-D pairs in
Fig. 7. The results supported RH3 in terms of query and schema coverage.

6.4 Experiment 5: Space Saving and Run-Time

To verify RH4, we measured the space saving and run-time of our approach.

Metrics. We reused space saving, size, and run-time defined in Section 5.5.

Results. We calculated the space saving of our approach on each of the 13,429 Q-
D pairs. The results are summarized in Table 9. Our approach substantially re-
duced the size of an RDF dataset by an average of about 90%. The space savings
of QPCSG, QPCSG-90%, and QPCSG-80% were above 95% on 59%, 76%, and 81%
of all Q-D pairs, respectively, as illustrated by the cumulative distributions in
Fig. 8. The median numbers of triples in their generated snippets were 215, 101,
and 77, respectively, as illustrated by the cumulative distributions in Fig. 9.
These numbers appeared larger than those of PCSG(-τ) reported in Section 5.5
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Table 10: Run-time in milliseconds
(mean ± SD).

QPCSG 39,301 ± 268,090
KSD 89,516 ± 718,355
QPCSG-90% 14,215 ± 131,611
KSD-90% 55,458 ± 473,939
QPCSG-80% 13,369 ± 126,801
KSD-80% 44,757 ± 384,312

QPCSG         QPCSG-90%        QPCSG-80%
KSD              KSD-90%             KSD-80%
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Fig. 10: Cum. distributions of run-time.

because their scopes of statistics were different: the RDF datasets in Q-D pairs
here were much larger and more heterogeneous (medians: 9,049 triples, 11 EDPs,
10 LPs in Table 7) than those in Section 5 (medians: 4,000 triples, 3 EDPs, 2 LPs
in Table 1) so that many keyword queries were matched with them. However, on
the same RDF dataset, QPCSG(-τ) did not output noticeably more triples than
PCSG(-τ). The compactness part of RH4 was still supported.

For each approach we recorded its run-time on each of the 13,429 Q-D pairs.
The results are summarized in Table 10. QPCSG(-τ) was more than twice as fast as
KSD. The run-time of QPCSG, QPCSG-90%, and QPCSG-80% was below one second
on 85%, 88%, and 91% of all Q-D pairs, though above ten seconds on 11%, 7%,
and 4%, respectively, as illustrated by the cumulative distributions in Fig. 10.
Again, QPCSG(-τ) actually did not use noticeably more time than PCSG(-τ) on
the same RDF dataset. The efficiency part of RH4 was also supported.

7 Empirical Comparison with Summary

Since PCSG(-τ) injects the strength of summary (i.e., pattern) into snippet, it
would be desirable to empirically compare them. We conducted a user study
to compare their usefulness for performing the task of SPARQL query comple-
tion [24]. We recruited 30 students majoring in computer science from a univer-
sity, all having the necessary knowledge about SPARQL and paid to participate.

RDF Dataset. For this experiment we used DBpedia 2016-10.

Participating Methods. We compared PCSG-80% with ABSTAT [24], a popu-
lar summarization method. We used ABSTAT to compute a summary containing
all the ontologically minimal patterns of triples in DBpedia, and we reproduced
its tabular interface for presenting and filtering patterns with autocomplete [17].
For a fair comparison, we implemented a similar interface for PCSG-80%: entity
descriptions in the snippet were grouped by EDP and then were presented in a
tabular interface for presenting and filtering EDPs with autocomplete.

Procedure and Metrics. We followed the experimental design for SPARQL
query completion described in [24]. Firstly, each participant performed two sim-
ple tasks: one using the snippet generated by PCSG-80% and the other using the
summary computed by ABSTAT, performed in random order to avoid position
bias. Each simple task asked the participant to rely on PCSG-80% or ABSTAT to
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Table 11: Accuracy and time (mean ± SD) for completing a SPARQL query.

Accuracy Time (seconds)
Simple Task Complex Task Overall Simple Task Complex Task Overall

PCSG-80% 0.900 ± 0.300 0.900 ± 0.300 0.900 ± 0.300 85.9 ± 39.0 164.0 ± 84.6 124.9 ± 76.6
ABSTAT 0.933 ± 0.249 0.833 ± 0.373 0.883 ± 0.321 117.6 ± 51.1 214.3 ± 154.1 166.0 ± 124.6

Table 12: User-rated usefulness.
Mean ± SD

PCSG-80% 4.47± 0.62
ABSTAT 3.60± 0.95

Proportion
PCSG-80% > ABSTAT 66.67%
PCSG-80% = ABSTAT 26.67%
PCSG-80% < ABSTAT 6.67%
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Fig. 11: Distributions of usefulness.

convert a natural language query into a SPARQL query consisting of two triple
patterns. The participant was given an incomplete SPARQL query where a pred-
icate was left blank to type in a property. Next, in the same way the participant
performed two complex tasks: completing a SPARQL query consisting of four
triple patterns where two predicates and one object were left blank to type in
two properties and one class, respectively. Before all tasks the participant was
given a tutorial on the two interfaces with a warm-up task. After all tasks the
participant rated each method in the range from 1 to 5 indicating its usefulness.
The participant was encouraged to briefly explain the rating. We also reported
the binary accuracy of a completed SPARQL query by comparing it with the
gold standard, and reported the time for completing a SPARQL query.

Results. The results of accuracy and time for completing 120 SPARQL queries
are summarized in Table 11. While paired two-sample t-test showed that the dif-
ference between the accuracy using PCSG-80% and the accuracy using ABSTAT
was not statistically significant (p > 0.05), participants spent 25% less time us-
ing PCSG-80% and this difference was statistically significant (p < 0.01). The
results of user-rated usefulness are summarized in Table 12. Paired two-sample
t-test showed that PCSG-80% was significantly (p < 0.01) more useful than AB-
STAT. PCSG-80% was rated ≥ 4 by most participants (93%), while for ABSTAT
this proportion was 60%, according to the distributions in Fig. 11. By 66.67%
of all participants PCSG-80% was thought to be more useful than ABSTAT. Par-
ticipants in their explanations of ratings preferred PCSG-80% because it helped
participants find all the needed classes and properties in one entity description,
while using ABSTAT they had to find multiple patterns of triples. Besides, com-
pared with abstract patterns in the summary, concrete entity descriptions in the
snippet exemplified the use of classes and properties and improved participants’
confidence. However, by 6.67% of all participants ABSTAT was thought to be
more useful than PCSG-80%. The explanations were concerned about complexity:
participants were overloaded by some large entity descriptions in the snippet.
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8 Conclusion and Future Work

We presented novel methods PCSG(-τ) and QPCSG(-τ) for generating pattern-
coverage snippets for RDF datasets. They effectively generated better snippets
than existing methods in terms of schema coverage, query coverage, and user
preference, and their space savings and run-time demonstrated practicability. In
the future, we plan to optimize PCSG(-τ) and QPCSG(-τ) to address some short-
comings observed in the experiments. Firstly, we observed a few large snippets
even with τ = 80%. To solve this problem, we plan to adapt our approach to
generating a size-bounded snippet that covers the most frequent patterns in an
RDF dataset. We will also consider merging similar EDPs [28] or mining common
sub-EDPs to reduce snippet size. However, such a snippet may not precisely re-
flect how entities are described in the dataset. Secondly, to address participants’
concerns about visualization in the user study, we will investigate presentation
methods [19] that are more suitable for showing patterns.

Combining the strengths of snippet and summary, our snippet appeared more
useful than the summary computed by ABSTAT in assisting SPARQL query
completion over DBpedia. However, based on a single downstream task and a
comparison with a single method, one shall not draw a general conclusion that
our snippets can be substituted for all summaries in all tasks. Rather, we believe
they are complementary. In future work we will carry out experiments to com-
prehensively evaluate various summarization and snippet generation methods.
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