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BANDAR: Benchmarking Snippet Generation
Algorithms for (RDF) Dataset Search
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Abstract—The large volume of open data on the Web is expected to be reused and create value. Finding the right data to reuse is a
non-trivial task addressed by the recent dataset search systems, which retrieve datasets relevant to a keyword query. An important
component of such systems is snippet generation, extracting data from a retrieved dataset to exemplify its content and explain its
relevance to the query. Snippet generation algorithms have emerged but were mainly evaluated by user studies. More efficient and
reproducible evaluation methods are needed. To meet this challenge, in this article, we present a set of quality metrics for assessing
the usefulness of a snippet from different perspectives, and we select and aggregate them into quality profiles for different stages of a
dataset search process. Furthermore, we create a benchmark from thousands of collected real-world data needs and datasets, on
which we apply the presented quality metrics and profiles to evaluate snippets generated by two existing algorithms and three adapted
algorithms. The results, which are reproducible as they are automatically computed without human interaction, show the pros and cons
of the tested algorithms and highlight directions for future research. The benchmark data is publicly available.

Index Terms—Snippet generation, RDF data, dataset search, benchmark.
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1 INTRODUCTION

1 O PEN data is crucial to scientific research and Web2

application development. In recent years, we have3

witnessed an explosive growth of open data on the Web.4

By November 2020, the Web Data Commons project found5

triple-structured data embedded in 44% of the 34 million6

crawled pay-level domains [3], collectively contributing7

86 billion triples. By January 2020, Google has indexed8

25 million datasets in tabular or other formats [42]. Among9

such increasingly many and various datasets that are find-10

able, accessible, interoperable, and reusable (FAIR) [55],11

there is great value, e.g., for improving machine learning12

such as transfer learning [35], zero-shot learning [8], [9],13

and their explanations [10]. Creating value from open data14

requires effective retrieval, sense-making, reuse of existing15

datasets. It has motivated the research and development of16

dataset search systems, ranging from specific systems such17

as LODAtlas [45] focused on datasets in the format of18

the Resource Description Framework (RDF) [18], [44], aka19

knowledge graphs, to the generic Google Dataset Search [4].20

Current dataset search systems [7] match a user-21

submitted keyword query with the indexed metadata of22

datasets, and present in search results pages some metadata23

and data statistics to help the user decide the relevance of24

a retrieved dataset. This metadata-centred architecture can25

largely build upon the infrastructure of the general Web26

search—treating the metadata of a dataset as a webpage to27

index and search. However, its shortcomings are explicit.28

First, the quality of metadata varies greatly [4]. Some datasets29
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lack metadata, while others have incomplete or inaccurate 30

metadata fields. Second, the data itself is completely ignored, 31

thereby limiting the search capability. Indeed, our recent 32

analysis of real data needs [11] showed that 63.79% of 33

keyword queries refer to elements that typically appear in 34

the data rather than the metadata of a dataset, e.g., concrete 35

entities and data values. 36

These limitations can be overcome by incorporating data 37

into the pipeline of dataset search. Specifically, we can 38

match a keyword query with indexed data, then generate 39

and present a snippet in search results pages to show ex- 40

tracted data that best exemplifies the content of a retrieved 41

dataset [13], [39] and explains how it is relevant to the 42

query [11], [54]. This emerging problem of snippet generation 43

for dataset search is our research focus. We should note the 44

difference between snippet and summary [6]: a snippet is 45

an extracted subset of data, while a summary often refers to 46

an aggregated representation of data. To support the study 47

of snippet generation, our work in this article is targeted 48

on providing a convenient toolkit for evaluation, includ- 49

ing evaluation metrics and benchmark data for comparing 50

snippet generation algorithms. Previous research evaluated 51

the effectiveness of such algorithms mainly by conducting 52

a user study [11], [13]. In contrast to this expensive, time- 53

consuming, and irreproducible way of evaluation, we aim 54

at developing computable quality metrics for assessing the 55

usefulness of a snippet in dataset search. Snippet generation 56

algorithms will then be able to be automatically evaluated, 57

and the experiments will be reproducible. Indeed, we apply 58

the proposed quality metrics to evaluate and compare exist- 59

ing snippet generation algorithms based on a benchmark we 60

publish called BANDAR, short for BenchmArking sNippet 61

generation algorithms for Dataset seARch, which we create 62

from collected real-world data needs and RDF datasets. Our 63
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Fig. 1. An example RDF dataset.

benchmark data is available on GitHub.164

Our contributions are summarized as follows.65

• We proposed six quality metrics for assessing the66

usefulness of a snippet in dataset search from three67

perspectives. Two metrics measure a snippet’s repre-68

sentativeness of the schema-level and instance-level69

elements of the original dataset, two metrics measure70

the representativeness of description-level and link-71

level data patterns, and two metrics measure the72

query relevance of a snippet.73

• For different stages of a typical dataset search pro-74

cess requiring different snippets to support different75

activities, including the search stage and the evaluate76

stage, we selected a different subset of suitable qual-77

ity metrics to create a quality profile for each stage.78

For convenient comparison between snippets, we79

aggregated the selected metrics into a single metric80

representing overall usefulness for a stage.81

• We created BANDAR, a publicly available bench-82

mark for evaluating snippet generation algorithms83

for dataset search. We collected 2,067 keyword84

queries representing real-world data needs, and we85

indexed the data in 9,544 collected real-world RDF86

datasets. We paired each query with its most relevant87

datasets, and generated 13,429 query-dataset pairs88

for evaluating snippet generation.89

• In addition to two existing algorithms for gener-90

ating snippets for RDF datasets [13], [54], we re-91

implemented three adapted algorithms that were92

originally developed for ontology snippet genera-93

tion [26], document summarization [48], and key-94

word search over graph data [37]. We employed all95

these algorithms to generate snippets for the query-96

dataset pairs in BANDAR.97

• We used the proposed quality metrics and profiles to98

assess and compare the usefulness of the generated99

snippets in dataset search. The results revealed the100

strengths and weaknesses of the tested algorithms,101

and helped to select proper algorithms to be used102

for different stages of dataset search. The results103

1. https://github.com/nju-websoft/BANDAR
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Fig. 2. Five different snippets under k = 5 for the dataset in Fig. 1.

also identified their common shortcomings and sug- 104

gested research directions for future work. 105

This article significantly extends our previous work [53] 106

in five aspects. (1) We revised two metrics for query rele- 107

vance and we added two new metrics for pattern represen- 108

tativeness. (2) We selected and aggregated quality metrics 109

into quality profiles. (3) We added 9,233 real-world datasets 110

from a new source. (4) We replaced synthetic queries with 111

2,067 queries representing real-world data needs, and we 112

annotated and removed query keywords referring to meta- 113

data. (5) We added two new algorithms [48], [54] to evaluate. 114

The remainder of the article is organized as follows. Sec- 115

tion 2 describes the proposed quality metrics and profiles. 116

Section 3 presents the design of the created benchmark. 117

Section 4 analyzes benchmark results. Section 5 discusses 118

related work. Section 6 concludes the article. 119

2 EVALUATION FRAMEWORK 120

In this section, we firstly define necessary terms used in the 121

article. Then we describe a set of metrics for evaluating the 122

quality of a snippet. Finally we aggregate quality metrics 123

into quality profiles for measuring the overall usefulness of 124

a snippet for each stage of a typical dataset search process. 125

2.1 Preliminaries 126

In this work we focus on datasets in RDF format [18]. 127

An RDF term is an Internationalized Resource Identifier 128

(IRI), a blank node, or a literal. Let I, B, and L be the disjoint 129

sets of all IRIs, blank nodes, and literals in RDF, respectively. 130

An RDF dataset, or a dataset for short, is a non-empty set of 131

subject-predicate-object triples T ⊆ (I∪B)×I× (I∪B∪L). 132

Each triple t ∈ T consists of the subject ts, predicate tp, and 133

object to, written as t = 〈ts, tp, to〉. 134

Each RDF term r in T has a textual form text(r): 135

• if r ∈ (I ∪ B) and there exists t ∈ T such that ts = 136

r and tp = rdfs:label, then text(r) will be the 137

lexical form of the literal to; 138
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• if r ∈ I but it is not associated with rdfs:label,139

then text(r) will be the local name of r, i.e., the140

fragment component of the IRI;141

• if r ∈ L, then text(r) will be the lexical form of r.142

It is possible that text(r) is an empty string, e.g., when r is143

a blank node not associated with any rdfs:label.144

An RDF dataset T can be represented as a graph G(T )145

where each triple t = 〈ts, tp, to〉 is represented as an146

edge directed from ts to to and labeled with tp. In Fig. 1147

we illustrate the graph representation of an example RDF148

dataset, where for RDF terms we show their textual forms.149

Given an integer size constraint k, a snippet for an RDF150

dataset T is a subset of triples S ⊆ T satisfying |S| ≤ k. A151

snippet S can be represented as a subgraph G(S) of G(T ).152

In Fig. 2 we illustrate five different snippets under k = 5153

for the dataset in Fig. 1. Consider the presenting capacity of154

a typical dataset search engine, k is usually set to a small155

integer in practice.156

2.2 Quality Metrics157

We present six metrics for evaluating the quality of a snip-158

pet. These metrics assess the usefulness of a snippet in159

dataset search from three perspectives: data representative-160

ness, pattern representativeness, and query relevance.161

2.2.1 Data Representativeness162

A snippet serves as a preview of the data in a dataset.163

Therefore, a good snippet is expected to be representative164

of the central data elements. We divide data elements into165

two levels: the level of instances (i.e., entities) and of schema166

(i.e., classes and properties). We consider the emergent167

schema of a dataset, i.e., the actual schema used in the data,168

because a dataset may not explicitly specify the schema it169

uses or may not strictly conform to its specified schema [1].170

Specifically, we distinguish between entities, classes, and171

properties. An entity is an instance-level RDF term repre-172

sented by an IRI or a blank node. Entities are grouped by173

their types into classes. Entities are described by properties,174

which relate an entity to other RDF terms. Formally, the175

emergent schema of a dataset T consists of a set of classes C(T )176

and a set of properties P(T ) that are used in T :177

C(T ) = {r : ∃t ∈ T, tp = rdf:type and to = r} ,
P(T ) = {r : ∃t ∈ T, tp = r} .

(1)

Entities described in T are assumed to be disjoint from178

schema-level elements:179

E(T ) = {r ∈ (I ∪B) : ∃t ∈ T, r ∈ {ts, to} and r /∈ (C(T ) ∪ P(T ))} .
(2)

For example, in Fig. 1 we depict entities and classes as180

vertices of different styles.181

Now we are ready to define two quality metrics that182

assess the data representativeness of a snippet at different183

levels: schema-level and entity-level representativeness.184

Schema-Level Representativeness (SkmRep). A good
snippet is expected to be representative of the central
schema of the dataset. Since our schema emerges from data,
we measure the importance of a schema-level element r
by the number of times it is used in the data. Specifically,

we compute the relative frequency of a class (CFreq) and the
relative frequency of a property (PFreq) as follows:

CFreq(r) =
|{t ∈ T : tp = rdf:type and to = r}|

|{t ∈ T : tp = rdf:type}|
,

PFreq(r) =
|{t ∈ T : tp = r}|

|T |
.

(3)

For example, in Fig. 1 we have

CFreq(City) =
8

12
, CFreq(Capital) =

2

12
, CFreq(Country) =

2

12
,

PFreq(located in) =
8

24
, PFreq(capital of) =

2

24
,

PFreq(part of) =
2

24
, PFreq(type) =

12

24
.

For a snippet S, we assess its schema-level representative-
ness (SkmRep) based on the total relative frequency of the
classes and properties that are observed to be used in S,
i.e., that are included in the emergent schema of S. We
separately compute for classes and properties and then we
integrate the results using harmonic mean (H):

SkmRep(S) = H(
∑

r∈C(S)

CFreq(r),
∑

r∈P(S)

PFreq(r)) ,

where H(x, y) =
2xy

x+ y
.

(4)

C(·) and P(·) are defined in Eq. (1). We choose harmonic 185

mean because it is dominated by the minimum of its argu- 186

ments, i.e., a snippet achieves high schema-level representa- 187

tiveness only if it uses both important classes and properties. 188

Note that P(T ) = ∅ is impossible since T 6= ∅. However, if 189

C(T ) = ∅ and hence the denominator of CFreq(r) in Eq. (3) 190

is zero, we will ignore classes in the computation of SkmRep: 191

SkmRep(S) =
∑

r∈P(S)

PFreq(r) if C(T ) = ∅ . (5)

In Eq. (4) and Eq. (5), SkmRep is in the range of 0–1. For
example, the snippet in Fig. 2(b) uses two classes (City and
Country) and all the four properties that are used in the
dataset. Its SkmRep is

H(
8

12
+

2

12
,

8

24
+

2

24
+

2

24
+

12

24
) = 0.91 .

Entity-Level Representativeness (EntRep). A good snip- 192

pet is also expected to be representative of the central 193

entities in the dataset. There are many and various ways of 194

measuring the importance of an entity [31]. We rely on the 195

graph structure of G(T ) and we compute the out-degree (d+) 196

and in-degree (d−) of entity r to characterize its centrality: 197

d+(r) = |{t ∈ T : ts = r}| , d−(r) = |{t ∈ T : to = r}| .
(6)

We choose degree for efficiency and interpretability reasons.
Degree can be inexpensively computed, and is easily under-
standable. Out-degree indicates the richness of the descrip-
tion of an entity, and in-degree indicates the influence of an
entity on other entities. For example, in Fig. 1 we have

d+(Berlin) = 4, d+(Germany) = 2, d+(Europe) = 0,

d−(Berlin) = 0, d−(Germany) = 5, d−(Europe) = 2.

Berlin and Germany are entities having the largest out- 198

degree and in-degree in Fig. 1, respectively. 199
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Fig. 3. Four EDPs for the entities described in Fig. 1.

For a snippet S, we assess its entity-level representative-200

ness (EntRep) based on the average normalized out-degree201

and in-degree of the entities that are described in S. Degree202

values are normalized firstly by logarithmizing each value203

because they usually follow a highly skewed power-law204

distribution in practice [25], and then by dividing each value205

by the largest value observed in T . We separately compute206

for out-degrees and in-degrees and then we integrate the207

results using harmonic mean (H):208

EntRep(S) = H(
1

|E(S)|
·
∑

r∈E(S)

log(d+(r) + 1)

maxr′∈E(T ) log(d+(r′) + 1)
,

1

|E(S)|
·
∑

r∈E(S)

log(d−(r) + 1)

maxr′∈E(T ) log(d−(r′) + 1)
) ,

(7)

where E(·) is defined in Eq. (2). With harmonic mean, a209

snippet achieves high entity-level representativeness only if210

both its out-degree and in-degree are large. However, if the211

in-degrees of the entities in T are all zero (i.e., entities are212

never linked to each other) and hence the denominator of213

the last fraction in Eq. (7) is zero, we will ignore in-degrees214

in the computation of EntRep:215

EntRep(S) =
1

|E(S)|
·
∑

r∈E(S)

log(d+(r) + 1)

maxr′∈E(T ) log(d+(r′) + 1)

if ∀r′ ∈ E(T ), d−(r′) = 0 .
(8)

Theoretically, the largest out-degree observed in T can also
be zero (i.e., no entities are described). We ignore such trivial
datasets. In Eq. (7) and Eq. (8), EntRep is in the range of 0–1.
For example, the snippet in Fig. 2(b) describes three entities
(Berlin, Germany, Europe). Its EntRep is

H( 13 (
log 5
log 5 + log 3

log 5 + log 1
log 5 ),

1
3 (

log 1
log 6 + log 6

log 6 + log 3
log 6 )) = 0.55 .

2.2.2 Pattern Representativeness216

As a preview of the data in a dataset, a good snippet is217

expected to show not only central data elements but also218

how data elements are regularly organized, i.e., central data219

patterns, which provide a fine-grained view of data. We220

focus on two types of data patterns: patterns for entity221

descriptions and for links between entities. We consider222

emergent patterns, i.e., the actual patterns observed in data.223

Specifically, an entity is described in a subset of triples224

of T using schema-level elements (i.e., classes and prop-225

erties). The entity description pattern (EDP) for an entity226

r ∈ E(T ), denoted by EDPT (r), consists of a set of227

classes EDPcT (r), a set of forward properties EDP
f
T (r), and228

𝐷1 𝐷3
located in

𝐷2 𝐷3
capital of

𝐷2 𝐷3
located in

𝐷3 𝐷4
part of

𝐿1 𝐿2 𝐿3 𝐿4

Fig. 4. Four LPs for the links in Fig. 1, based on EDPs depicted in Fig. 3.

a set of backward properties EDPbT (r) that are used to 229

describe r in T : 230

EDPT (r) = 〈EDPcT (r), EDP
f
T (r), EDP

b
T (r)〉 , where

EDPcT (r) = {r′ ∈ C(T ) : ∃t ∈ T, ts = r, tp = rdf:type, to = r′} ,
EDP

f
T (r) = {r

′ ∈ (P(T ) \ {rdf:type}) : ∃t ∈ T, ts = r, tp = r′} ,
EDPbT (r) = {r′ ∈ (P(T ) \ {rdf:type}) : ∃t ∈ T, tp = r′, to = r} ,

(9)
where C(·) and P(·) are defined in Eq. (1). Our definition 231

of EDP extends [6], [57] where backward properties are not 232

considered. For example, in Fig. 3 we depict all the unique 233

EDPs for the entities described in Fig. 1. 234

Moreover, entities are linked to each other by properties 235

in T . Let t ∈ T be a triple representing a link between two 236

entities, i.e., ts, to ∈ E(T ). The link pattern (LP) for t, denoted 237

by LPT (t), consists of the EDP for ts, the property tp, and 238

the EDP for to in T : 239

LPT (t) = 〈EDPT (ts), tp, EDPT (to)〉 . (10)

For example, in Fig. 4 we depict all the unique LPs for the 240

links in Fig. 1. 241

Now we are ready to define two quality metrics that 242

assess the pattern representativeness of a snippet at different 243

levels: description-level and link-level representativeness. 244

Description-Level Representativeness (DescRep). A 245

good snippet is expected to be representative of the central 246

EDPs in the dataset. Since our EDPs emerge from the data, 247

we measure the importance of EDP D by the number of 248

times it is observed in the data. Specifically, we compute the 249

relative frequency of an EDP (DFreq) as follows: 250

DFreq(D) =
|{r ∈ E(T ) : EDPT (r) = D}|

|E(T )|
, (11)

where E(·) is defined in Eq. (2). For example, for the EDPs
in Fig. 3 we have

DFreq(D1) =
6

11
, DFreq(D2) =

2

11
,

DFreq(D3) =
2

11
, DFreq(D4) =

1

11
.

For a snippet S, we assess its description-level representa- 251

tiveness (DescRep) based on the total relative frequency of 252

the EDPs that are preserved in S, i.e., that are observed on 253

entity descriptions preserved in S: 254

DescRep(S) =
∑

D∈EDPS(S)

DFreq(D) ,

where EDPS(S) = {D : ∃r ∈ E(S), D = EDPS(r) = EDPT (r)} .
(12)

Note that to preserve EDPT (r) in S, i.e., EDPS(r) = EDPT (r),
if r is described by some property in more than one triple
in T , then S only needs to include one of these triples.
DescRep is in the range of 0–1. For example, the snippet
in Fig. 2(b) preserves the EDPs for two entities: D3 for
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Germany and D4 for Europe in Fig. 3, but it fails to preserve
the EDP for Berlin. Its DescRep is

2

11
+

1

11
= 0.27 .

Link-Level Representativeness (LinkRep). A good snip-255

pet is also expected to be representative of the central LPs256

in the dataset. We measure the importance of LP L by the257

number of times it is observed in the data. Specifically, we258

compute the relative frequency of a LP (LFreq) as follows:259

LFreq(L) =
|{t ∈ T : LPT (t) = L}|
|{t ∈ T : ts, to ∈ E(T )}|

. (13)

For example, for the LPs in Fig. 4 we have

LFreq(L1) =
6

12
, LFreq(L2) =

2

12
,

LFreq(L3) =
2

12
, LFreq(L4) =

2

12
.

For a snippet S, we assess its link-level representative-260

ness (LinkRep) based on the total relative frequency of the261

LPs that are preserved in S, i.e., that are observed on links262

and linked entity descriptions preserved in S:263

LinkRep(S) =
∑

L∈LPS(S)

LFreq(L) ,

where LPS(S) = {L : ∃t ∈ S, L = LPS(t) = LPT (t)} .
(14)

LinkRep is in the range of 0–1. For example, the snippet in
Fig. 2(b) preserves the LP for one triple: L4 in Fig. 4 for triple
〈Germany, part of, Europe〉, but it fails to preserve the LP
for triple 〈Berlin, located in, Germany〉 because the EDP for
Berlin is not preserved. Its LinkRep is

2

12
= 0.17 .

2.2.3 Query Relevance264

In the application of dataset search, for a dataset retrieved265

for a query, a good snippet is expected to reveal how the266

dataset is relevant to the query. We focus on keyword267

queries as they have been widely supported by existing268

search engines. We analyze query relevance at two levels:269

the level of single keywords and of the entire query.270

Specifically, a keyword query Q = 〈q1, . . . , qg〉 is a se-271

quence of g keywords. We assume an indicator function hit272

that, for each keyword q and each RDF term r, returns273

whether r matches q. This function can be implemented in274

various ways. For our experiments we follow a standard275

information retrieval process to transform text(r), the tex-276

tual form of r, into a sequence of words and perform case-277

insensitive word stem matching:278

hit(q, r) =

{
1 if q and a word in text(r) have the same stem ,

0 otherwise .
(15)

Note that changing hit may affect evaluation results.279

Now we are ready to define two quality metrics that as-280

sess the query relevance of a snippet at two levels: keyword-281

level and query-level relevance.282

Keyword-Level Relevance (KwRel). A good snippet is283

expected to match as many keywords in the query as284

possible. We compute the set of keywords in Q that are285

matched in T ; they form the largest possible subset of Q 286

that can be matched in a snippet: 287

Kws(T ) = {q ∈ Q : ∃t ∈ T, ∃r ∈ {ts, tp, to}, hit(q, r) = 1} .
(16)

For a snippet S, we assess its keyword-level rele- 288

vance (KwRel) based on the proportion of keywords that are 289

matched in S: 290

KwRel(S) =
|Kws(S)|
|Kws(T )|

. (17)

KwRel is in the range of 0–1. However, if Kws(T ) = ∅ and
hence both the numerator and the denominator of KwRel
in Eq. (17) are zero, we will leave KwRel undefined. This
trivial case should not occur in practice because a search
engine would not retrieve such T for Q. For example, for
keyword query london berlin europe, all the three keywords
are matched in the dataset in Fig. 1. The snippet in Fig. 2(b)
matches two keywords in the query (berlin and europe).
Its KwRel is

2

3
= 0.67 .

Note that our definition of KwRel in Eq. (17) generalizes 291

its old version in our conference paper [53] where the 292

experiments were limited to datasets that could match all the 293

query keywords and thus the denominator of KwRel was |Q| 294

rather than |Kws(T )|. Now, the extended definition of KwRel 295

is also suitable for evaluating a snippet for a dataset that 296

only matches a proper subset of query keywords, e.g., in a 297

search engine that retrieves datasets using OR as the default 298

Boolean operator between keywords in a query. 299

Query-Level Relevance (QryRel). To reveal query rele- 300

vance, a good snippet is expected to not only match each 301

keyword in the query but also capture their connections as 302

per the query. In a query which is a sequence of keywords, 303

a pair of consecutive keywords probably refer to the same 304

concept or to two related concepts. A captured connection 305

between two consecutive keywords is represented as a path 306

in the graph representation of a snippet, i.e., the two key- 307

words are in the same connected component of the graph. 308

This goes beyond the scope of conventional information 309

retrieval evaluation. To realize it, we partition T into a 310

disjoint union of subsets CC(T ) = {T1, . . . , Tw}; G(Ti) for 311

1 ≤ i ≤ w, the graph representation of Ti, is a unique con- 312

nected component of G(T ). We compute the set of ordered 313

pairs of consecutive keywords in Q = 〈q1, . . . , qg〉 that are 314

connected in T ; they form the largest possible subset of pairs 315

of consecutive keywords that can be connected in a snippet: 316

Kwp(T ) = {〈qj , qj+1〉 ∈ Q×Q : ∃Ti ∈ CC(T ), qj , qj+1 ∈ Kws(Ti)} ,
(18)

where Kws(·) is defined in Eq. (16). 317

For a snippet S, we assess its query-level rele- 318

vance (QryRel) based on the proportion of ordered pairs of 319

consecutive keywords that are connected in S: 320

QryRel(S) =
|Kwp(S)|
|Kwp(T )|

. (19)

If Kwp(T ) = ∅ and hence both the numerator and denomina- 321

tor of QryRel in Eq. (19) are zero, we cannot leave QryRel 322

undefined because this case frequently occurs in practice. 323

Instead, we will reduce query-level relevance QryRel to 324
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keyword-level relevance KwRel since no pairs of consecutive325

keywords can be connected by any snippet:326

QryRel(S) = KwRel(S) if Kwp(T ) = ∅ . (20)

In Eq. (19) and Eq. (20), QryRel is in the range of 0–1. For
example, for keyword query london berlin europe, the snippet
in Fig. 2(b) captures a connection between one ordered pair
of consecutive keywords in the query (berlin and europe).
Its QryRel is

1

2
= 0.50 .

Note that our definition of QryRel in Eq. (19) is different327

from its old version in our conference paper [53] where328

all pairs of keywords in the query were used. Now, the329

new definition of QryRel is focused on ordered pairs of330

consecutive keywords. This modification is reasonable as331

in many cases a user may not have a particular interest332

in the long-distance dependencies between nonconsecutive333

keywords in the query, although in some cases such connec-334

tions may be needed. However, the new definition is more335

cost-effective, reducing the computation complexity from336 (|Q|
2

)
pairs (i.e., quadratic) to (|Q| − 1) pairs (i.e., linear). As337

we will see in the experiments, the two definitions of QryRel338

are strongly correlated in practice.339

2.3 Quality Profiles340

We have presented six metrics for evaluating the quality of341

a snippet. They may be incomplete and can be extended342

by future research. However, it is both impossible and343

unnecessary for a snippet to exhibit high quality in all these344

aspects. Indeed, search is a complex process, consisting of345

multiple stages and involving various activities [34]. Dataset346

search is no exception. In different stages of a dataset search347

process, different kinds of snippets are needed to support348

different search activities, where the usefulness of a snippet349

is thus to be assessed from different perspectives. Therefore,350

we select and aggregate the proposed quality metrics in351

different ways into different quality profiles, and measure the352

overall quality of a snippet for each stage of dataset search.353

In [33], the process of dataset search is divided into five354

“pillars” or stages, and a dataset search system is expected355

to focus on two of these stages: search and evaluate. This is356

consistent with the implementation of current systems [4],357

[45]. Specifically, in the search stage, a user submits a key-358

word query, and the system retrieves a list of top-ranked359

datasets and presents the list in a search results page. The360

user quickly browses the list to identify datasets that are361

probably relevant to the query. In the evaluate stage, the362

user clicks a dataset and opens a new page where the system363

provides detailed information about the clicked dataset for364

the user to evaluate and decide whether to use it. Following365

the analysis in [33], for each of these two stages we select a366

subset of suitable quality metrics to create a quality profile.367

Note that new stages may be supported by future systems,368

and new profiles can be created accordingly.369

Quality Profile for the Search Stage (QS). In this stage,370

the user wants to quickly scan through and filter a list371

of datasets, and the primary concern is query relevance.372

Snippets here would be expected to help the user filter373

out datasets that are not relevant to the query. If multiple374

datasets contain relevant data, the user may give priority 375

to datasets where the central data elements are relevant. 376

This decision can be made with the assistance of snippets 377

featuring high data representativeness by exemplifying the 378

central schema and entities in a dataset. Therefore, we 379

select four quality metrics to form a quality profile for the 380

search stage: query relevance (KwRel and QryRel) and data 381

representativeness (SkmRep and EntRep). 382

To assess the usefulness of a snippet S for the search 383

stage, we rely on not all but only the above selected quality 384

metrics. For convenient comparison between different snip- 385

pets, we can also aggregate the selected metrics into a single 386

metric representing the overall quality for the search stage (QS): 387

QS(S) =
1

4
(KwRel(S)+QryRel(S)+SkmRep(S)+EntRep(S)) .

(21)
QS is in the range of 0–1. For example, for the snippet in
Fig. 2(b), its QS is

1

4
(0.67 + 0.50 + 0.91 + 0.55) = 0.66 .

One can extend Eq. (21) to a weighted sum, but setting 388

proper weights may be difficult and is outside our focus. 389

Quality Profile for the Evaluate Stage (QE). In this stage, 390

the user wants to decide the usefulness of a dataset and 391

hence needs to more carefully examine the data. Snippets 392

here would be expected to provide a representative pre- 393

view of data. Knowing the central elements and patterns 394

in the data is beneficial to the understanding and sense- 395

making of data, and can help the user decide whether this 396

dataset contains the right data that the user is seeking. 397

This decision can be made with the assistance of snippets 398

featuring high data representativeness and high pattern rep- 399

resentativeness. Therefore, we select four quality metrics to 400

form a quality profile for the evaluate stage: data represen- 401

tativeness (SkmRep and EntRep) and pattern representative- 402

ness (DescRep and LinkRep). 403

To assess the usefulness of a snippet S for the evaluate 404

stage, we only use the above selected quality metrics. Again, 405

we can aggregate the selected metrics into a single metric 406

representing the overall quality for the evaluate stage (QE): 407

QE(S) =
1

4
(SkmRep(S)+EntRep(S)+DescRep(S)+LinkRep(S)) .

(22)
QE is in the range of 0–1. For example, for the snippet in
Fig. 2(b), its QE is

1

4
(0.91 + 0.55 + 0.27 + 0.17) = 0.48 .

One can also extend Eq. (22) to a weighted sum. 408

3 BENCHMARK DESIGN 409

In this section, we present the design of our benchmark. We 410

firstly introduce the datasets and queries we used. Then we 411

describe the algorithms selected to be benchmarked. Finally 412

we present experiment settings. 413

3.1 Datasets and Queries 414

We used real-world RDF datasets and we derived keyword 415

queries from real-world data needs. We combined each 416

query with the most relevant datasets, for which snippets 417

were to be generated by benchmarked algorithms. 418



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ?, NO. ?, ?? ???? 7

TABLE 1
Statistics about Collected RDF Datasets

Sources #datasets #triples #classes #properties #entities #EDPs #LPs
Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

DataHub 311 275,885 20,968,879 19 2,030 39 3,982 54,567 5,399,234 1,005 270,224 1,490 156,722
Data.gov 9,233 7,131 6,343,524 1 2 21 545 411 273,774 11 500 15 1,103

TABLE 2
Statistics about Collected Keyword Queries

Sources #queries #words in a query
All With data words Min Mean Max

WWW-18 449 399 2 9 18
CIKM-19 1,498 843 2 9 21
ECIR-20 120 114 3 8 21

3.1.1 RDF Datasets419

We collected 9,544 real-world RDF datasets from two well-420

known data portals.421

• DataHub: We used the CKAN API to retrieve the422

metadata of all the 11,462 datasets indexed by423

DataHub.2 For 1,262 datasets we found dump files in424

RDF format, namely N-Triples, RDF/XML, or Turtle.425

We successfully downloaded and used Apache Jena426

v3.8.0 to parse 311 RDF datasets.427

• Data.gov: We followed the same procedure to428

collect from Data.gov.3 We retrieved the meta-429

data of 230,579 datasets, found RDF dump files430

for 11,846 datasets, and successfully processed431

9,233 RDF datasets.432

In Table 1 we show some basic statistics about the433

collected RDF datasets. In general, compared with DataHub,434

we collected more but smaller datasets from Data.gov.435

3.1.2 Keyword Queries436

We collected 2,067 keyword queries representing real-world437

data needs from three published datasets. We could not find438

other real queries for datasets at the time of experiments.439

• WWW-18 [32]: The authors published 449 queries4
440

that were manually generated from data requests to441

data.gov.uk.442

• CIKM-19 [11]: The authors published 1,498 queries5
443

that were manually generated from data needs444

posted on Stack Overflow, Open Data Stack Ex-445

change, and Reddit.446

• ECIR-20 [12]: The authors published 120 queries6 for447

a set of dataset search tasks.448

In Table 2 we show some basic statistics about the449

collected queries. An example query is450

Datasets about social media usage by country and age from Google .
(23)

For each query, we removed stop words, and we manu-451

ally annotated and filtered the remaining words according452

2. https://old.datahub.io/
3. https://www.data.gov/
4. https://github.com/chabrowa/data-requests-query-dataset
5. http://ws.nju.edu.cn/datasetsearch/query-cikm2019/
6. https://github.com/Zhiyu-Chen/ECIR2020-dataset-search

TABLE 3
Dataset Distribution of Generated Q-D Pairs

Sources #Q-D pairs #distinct datasets
DataHub 3,677 124
Data.gov 9,752 1,804
Total 13,429 1,928

TABLE 4
Query Distribution of Generated Q-D Pairs

Sources #Q-D pairs #distinct queries
WWW-18 3,981 399
CIKM-19 8,308 832
ECIR-20 1,140 114
Total 13,429 1,345

to the query annotation scheme we presented in [11]. We 453

distinguished between words to be matched with the data 454

and with the metadata of a dataset. 455

• Data words referred to classes, properties, entities, 456

and data values that should appear in the data of a 457

dataset, e.g., country and age in Eq. (23). 458

• Metadata words referred to the name, format, lan- 459

guage, accessibility, provenance, and statistics about 460

a dataset that should appear in the metadata rather 461

than the data of a dataset, e.g., Google in Eq. (23). 462

Metadata words were removed from queries because we 463

focused on snippets generated from data rather than meta- 464

data. Otherwise, data might mistakenly match metadata 465

words and cause some algorithms to generate undesirable 466

query-biased snippets which would distort evaluation re- 467

sults. As shown in Table 2, most queries contained data 468

words. The mean and maximum of the number of data 469

words in a query were 3.29 and 15, respectively. 470

3.1.3 Query-Dataset Pairs 471

We combined each query with up to 10 most relevant 472

datasets. Specifically, we used Apache Lucene v7.5.0 to 473

index the data in each dataset as a pesudo document. Each 474

triple was transformed into a sentence in the document by 475

concatenating the textual forms of the subject, predicate, 476

and object. Search was performed using OR as the default 477

Boolean operator between words in a query. Words were 478

lowercased and stemmed before matching. Search results 479

were ranked by the default scoring function in Lucene. 480

We generated 13,429 query-dataset pairs, or Q-D pairs 481

for short. In Table 3 and Table 4, we show their dataset 482

distribution and query distribution, respectively. These Q- 483

D pairs were diverse, involving 1,928 distinct datasets and 484

1,345 distinct queries from different sources. 485
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3.2 Participating Algorithms486

To the best of our knowledge, there were only a few al-487

gorithms for generating snippets for RDF datasets [2], [13],488

[39], [54]. We excluded [2] because this algorithm required489

manual definition of property rankings; it was impracticable490

to define for 1,928 datasets used in our experiments. To491

widen the scope of our experiments, we also adapted state-492

of-the-art algorithms for several related problems to our493

problem [26], [37], [48]. We sought to configure each algo-494

rithm according to the setting recommended by its authors495

since such a “standard” setting would likely be followed by496

its users. However, some algorithms in the evaluation might497

have performed better in other settings.498

3.2.1 KSD499

KSD [54] represents the state of the art in generating query-500

biased snippets for RDF datasets.501

KSD formulates the selection of triples as a weighted502

maximum coverage (WMC) problem, where elements to be503

covered include: query keywords weighted evenly, classes504

and properties weighted by their relative frequencies, and505

entities weighted by the harmonic mean of their normalized506

out-degrees and in-degrees. A triple t is regarded as a set507

that covers keywords matched in t, classes and properties508

used in t, and entities described in t. The goal is to choose at509

most k triples that maximize the total weight of covered el-510

ements. The WMC problem is solved by a greedy algorithm511

which, in each iteration, chooses a triple that contains the512

largest weight of uncovered elements.513

We held the source code of KSD. All its parameters were514

set to the values suggested in [54].515

3.2.2 IlluSnip516

IlluSnip [13], [39] generates a snippet for an RDF dataset to517

illustrate its main content.518

IlluSnip formulates the selection of triples as a519

Maximum-weight-and-coverage Connected Graph520

(MwcCG) problem, where elements to be covered521

include: classes and properties weighted by their relative522

frequencies, and entities weighted by their normalized523

PageRank scores. A triple t is regarded as a set that covers524

classes and properties used in t, and entities described in t.525

The goal is to choose at most k triples that maximize the526

total weight of covered elements, subject to the constraint527

that the graph representation of the selected triples is a528

connected graph. The MwcCG problem is solved by a529

multi-start greedy algorithm which greedily constructs a530

solution starting from each triple and, in each iteration of531

a construction process, chooses a triple that contains the532

largest weight of uncovered elements.533

We re-implemented IlluSnip. All its parameters were set534

to the values suggested in [13].535

3.2.3 TA+C536

TA+C [26] represents the state of the art in generating537

query-biased snippets for ontologies. It processes an ontol-538

ogy as an RDF graph, i.e., the graph representation of an539

RDF dataset, and hence it can be applied to our problem.540

TA+C transforms an RDF graph into a term association541

graph (TAG) where each vertex represents an RDF term, and542

each edge represents a set of RDF sentences connecting two 543

RDF terms. An RDF sentence is either a triple not containing 544

any blank nodes or a maximal set of triples containing 545

common blank nodes. RDF sentences at the schema level 546

and at the instance level are assigned different weights. The 547

weight of an edge is the total weight of the RDF sentences it 548

represents. TAG is then decomposed into maximal radius- 549

bounded subgraphs, from which min-weight group Steiner 550

trees (GSTs) that cover all possible query keywords are 551

extracted as sub-snippets. Finally, sub-snippets are greedily 552

selected and merged into a snippet containing at most 553

k RDF terms where, in each iteration, a sub-snippet that 554

has the smallest weight and covers the most uncovered 555

query keywords is chosen. Note that TA+C constrains the 556

size of a snippet in terms of the number of RDF terms. It 557

is inappropriate to constrain it in terms of the number of 558

triples because, for example, TA+C may produce a snippet 559

containing isolated RDF terms that match query keywords 560

but do not appear in any triples in the snippet. 561

We re-implemented TA+C. All its parameters were set 562

to the values suggested in [26]. 563

3.2.4 Dual-CES 564

Dual-CES [48] represents the state of the art in unsuper- 565

visedly generating query-biased snippets for documents, 566

while supervised algorithms currently could not apply to 567

our problem due to the lack of training data. To adapt Dual- 568

CES to our problem, we transformed each RDF dataset into 569

a pesudo document as described in Section 3.1.3. 570

Dual-CES is an extension of the CES approach [21]. 571

It performs two-step Monte-Carlo sampling to iteratively 572

select subsets of sentences and return the optimal subset, 573

containing at most k sentences. Preference is given to long 574

sentences that are close to the centroid of the document 575

(in the first step) and are relevant to the query (in the 576

second step). Query relevance is computed based on term- 577

frequency vectors and unigram language models. 578

We re-implemented Dual-CES. Most of its parameters 579

were set to the values suggested in [21], [48]. We modified 580

some parameters due to the relatively very large size of an 581

RDF dataset compared with a document. In the preliminary 582

step of sentence pruning, we considered top-(1000 · k) sen- 583

tences, instead of only top-150 sentences in [48], to trade 584

runtime for summaries of higher quality. However, sam- 585

pling was reduced from 10,000 times in [21] to 1,000 times 586

in our implementation, because otherwise Dual-CES would 587

frequently reach timeout. The first step of sampling was 588

configured to output at most (6 · k) sentences. 589

3.2.5 PrunedDP++ 590

PrunedDP++ [37] is a popular algorithm for keyword 591

search over graph data. It extracts a min-weight group 592

Steiner tree (GST) from graph data such as an RDF graph 593

so that it can be applied to our problem. 594

A min-weight GST is a tree of minimum weight that 595

covers all the query keywords. To compute a min-weight 596

GST, PrunedDP++ optimizes a dynamic programming al- 597

gorithm [19] and performs progressive A*-search. Note that 598

the size of a min-weight GST is not bounded, i.e., the size of 599

a snippet generated by PrunedDP++ is not constrainable. 600
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TABLE 5
Statistics over 13,429 Q-D Pairs

Non-empty Empty Timeoutsnippets snippets

KSD k = 20 13,429 0 0
k = 40 13,429 0 0

IlluSnip k = 20 13,429 0 2,140
k = 40 13,429 0 2,277

TA+C k = 20 11,164 2,265 488
k = 40 11,162 2,267 490

Dual-CES k = 20 13,429 0 629
k = 40 13,429 0 556

PrunedDP++
k = 20 9,819 3,610 297
k = 40 9,819 3,610 297

Besides, PrunedDP++ will return an empty result if the601

query keywords are not connected in the graph.602

We re-implemented PrunedDP++. In [37] it was unclear603

how to weight edges. We followed [19] to define the weight604

of an edge as the normalized degrees of its endpoints.605

3.2.6 Running Example606

In Fig. 2 we show the snippets generated by the above607

five algorithms for the example RDF dataset in Fig. 1 w.r.t.608

keyword query london berlin europe.609

3.3 Experiment Settings610

For the size constraint k, we experimented with two values:611

k = 20 and k = 40. Small snippets (k = 20) could be612

used in the search stage of dataset search, to be compactly613

presented in a search results page and help users quickly614

identify relevant datasets. Large snippets (k = 40) could be615

used in the evaluate stage of dataset search, to provide more616

detailed information for dataset evaluation.617

Our experiments were performed on an Intel Xeon E7-618

4820 with 80GB memory for the JVM. As a preprocessing619

step, we materialized inverted indexes for efficient keyword620

matching in KSD, TA+C, Dual-CES, and PrunedDP++. For621

TA+C, we also indexed all the maximal 1-radius subgraphs622

in each dataset for efficient extraction of sub-snippets.623

For generating a single snippet we set a timeout of624

1,000 seconds. It was the longest time our computational625

resources could afford for the experiments, and it should626

already be very long for generating a snippet in practice.627

When timeout was reached, the runtime would be de-628

fined as 1,000 seconds, and the generating process would629

be terminated. In that case, for algorithms that iteratively630

generated better snippets (IlluSnip and Dual-CES), the best631

snippet found at timeout was returned. For other algorithms632

(KSD, TA+C, and PrunedDP++), timeout indicated failure.633

634

4 RESULTS AND ANALYSIS635

We ran each algorithm on each of the 13,429 Q-D pairs.636

As shown in Table 5, KSD successfully generated non-637

empty snippets for all the Q-D pairs without reaching638

timeout. IlluSnip and Dual-CES also consistently generated639

non-empty snippets but they reached timeout for 2,140–640

2,277 (16–17%) and 556–629 (4–5%) Q-D pairs, respectively.641

In these cases, the returned snippets might not be the642

optimal ones that these algorithms could find given un- 643

limited time. TA+C and PrunedDP++ generated empty 644

snippets for 2,265–2,267 (17%) and 3,610 (27%) Q-D pairs, 645

respectively. In addition to timeout failure, reasons for 646

these empty snippets included: failing to precompute an 647

index for a dataset in 12 hours (TA+C), failing to find 648

matching vertices for every query keyword (TA+C and 649

PrunedDP++), and failing to find any GST to connect all 650

the query keywords (PrunedDP++). Therefore, the use of 651

TA+C and PrunedDP++ would be limited in practice. 652

The values of quality metrics reported in the following 653

were computed over non-empty snippets. 654

4.1 Quality Metrics 655

4.1.1 Overall Results 656

Table 6 shows the mean values of quality metrics computed 657

over all the non-empty snippets. 658

KSD achieved fairly high data representative- 659

ness (SkmRep and EntRep) and query relevance (KwRel). 660

Its mean values of these quality metrics were close to the 661

highest values achieved by other algorithms. Indeed, KSD 662

was designed to keep a balance between these aspects. 663

It was implemented to optimize the coverage of frequent 664

classes, properties, central entities, and query keywords. 665

The absolute values of EntRep, 0.1938–0.2297, were not 666

high because KSD selected entities with high out-degrees 667

or in-degrees, whereas EntRep would be high only if 668

out-degree and in-degree were both high. Query-level 669

relevance was not as high as keyword-level relevance 670

(0.5 < QryRel < 0.6) because connectivity was ignored in 671

the design of KSD. 672

IlluSnip showed the highest data representativeness 673

(SkmRep > 0.75 and EntRep > 0.25). It was not surpris- 674

ing because IlluSnip was exactly designed to optimize the 675

coverage of frequent classes, properties, and central entities. 676

However, IlluSnip also showed the lowest query relevance 677

(KwRel < 0.4 and QryRel < 0.3) since it generated query- 678

unbiased snippets. The design of IlluSnip did not consider 679

query relevance. 680

TA+C exhibited very high keyword-level relevance 681

(KwRel > 0.9) by greedily selecting sub-snippets to cover 682

more query keywords. Query-level relevance was not as 683

high as keyword-level relevance (0.4 < QryRel < 0.5) 684

because sub-snippets were extracted from radius-bounded 685

subgraphs which could not capture long-distance connec- 686

tions between keywords. TA+C exhibited the lowest data 687

representativeness (SkmRep < 0.05 and EntRep < 0.05), 688

which was not the focus of its design. Increasing k from 20 689

to 40 did not noticeably increase its data representative or 690

query relevance, different from some other algorithms. 691

Dual-CES seemed to have achieved a better trade- 692

off than TA+C. Its keyword-level relevance (KwRel) was 693

close to TA+C, but its data representativeness (SkmRep 694

and EntRep) was much higher because Dual-CES preferred 695

central sentences (i.e., triples) which often used frequent 696

classes, properties, and described central entities. However, 697

this trade-off was not as good as the trade-off achieved by 698

KSD, where data representativeness was notably higher but 699

query relevance was still close. 700
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TABLE 6
Mean Values of Quality Metrics over Non-Empty Snippets

SkmRep EntRep DescRep LinkRep KwRel QryRel QryRel (non-trivial)

KSD k = 20 0.6404 0.2297 0.0873 0.0014 0.8624 0.5412 0.4059
k = 40 0.7097 0.1938 0.0949 0.0015 0.8805 0.5555 0.4228

IlluSnip k = 20 0.7580 0.3093 0.2088 0.0171 0.3120 0.2267 0.1097
k = 40 0.8570 0.2622 0.2655 0.0228 0.3821 0.2779 0.1606

TA+C k = 20 0.0153 0.0298 0.0045 0.0000 0.9395 0.4630 0.3525
k = 40 0.0175 0.0308 0.0045 0.0000 0.9395 0.4690 0.3597

Dual-CES k = 20 0.2320 0.1060 0.0400 0.0009 0.8896 0.6486 0.5407
k = 40 0.4729 0.1144 0.0743 0.0022 0.9098 0.7089 0.6198

PrunedDP++
k = 20 0.1018 0.1212 0.0383 0.0000 1.0000 1.0000 1.0000
k = 40 0.1018 0.1212 0.0383 0.0000 1.0000 1.0000 1.0000

PrunedDP++ showed perfect query relevance (KwRel =701

1 and QryRel = 1) because every non-empty snippet702

it generated was guaranteed to cover and connect all703

the query keywords. Its data representativeness (SkmRep704

and EntRep) was low as they were not considered in the705

design of PrunedDP++. However, its entity-level represen-706

tativeness (EntRep) was higher than TA+C because query707

keywords were often connected by paths passing through708

central entities.709

Query-level relevance would be reduced to keyword-710

level relevance if no pairs of consecutive keywords could be711

connected by any snippet, as shown in Eq. (20). The above-712

mentioned mean values of QryRel might have been dis-713

torted because for 3, 199 out of the 13,429 Q-D pairs (24%),714

QryRel was trivially reduced to KwRel. We re-computed715

the mean value of QryRel over the 10, 230 non-trivial Q-716

D pairs. As shown in Table 6, whereas PrunedDP++ still717

achieved perfect results, the differences between algorithms718

became more noticeable. We also calculated the Pearson cor-719

relation coefficient between QryRel and its old version [53].720

The result of 0.969 suggested their strong correlation, thus721

demonstrating the cost-effectiveness of the new version.722

Pattern representativeness was not considered in723

any participating algorithm. KSD, TA+C, Dual-CES, and724

PrunedDP++ achieved very low values of DescRep <725

0.1 and LinkRep < 0.1. IlluSnip exhibited a bit higher726

description-level representativeness (DescRep > 0.2) be-727

cause it was optimized to use frequent classes and prop-728

erties and, more importantly, the graph representations of729

the generated snippets were connected graphs. This feature730

helped to raise the possibility of preserving EDPs.731

To conclude, none of the five participating algorithms732

could lead on all the six quality metrics. IlluSnip shows733

the highest data and pattern representativeness, followed734

by KSD, but there is much room for improving pattern735

representativeness. PrunedDP++ leads on query relevance,736

followed by Dual-CES, TA+C, and KSD.737

4.1.2 Result Breakdown738

Figure 5(a) depicts the mean values of quality metrics com-739

puted over all queries as a radar chart. The results are bro-740

ken down into queries from different sources in Figs. 5(b)–741

(d). The results observed over different sources were gener-742

ally consistent. One exception was IlluSnip. Its query rele-743

vance (KwRel and QryRel) over ECIR-20 in Fig. 5(d) were744

notably lower than the results over other sources. Among745

120 queries from this source, 52 queries (43%) contained746

TABLE 7
Mean Overall Quality over Non-Empty Snippets

QS (k = 20) QE (k = 40)
KSD 0.5684 0.2500
IlluSnip 0.4015 0.3519
TA+C 0.3619 0.0132
Dual-CES 0.4691 0.1659
PrunedDP++ 0.5558 0.0653

temporal words, and 95 queries (79%) contained geospatial 747

words. Such words were often matched with literals de- 748

scribing different entities. These literal vertices were at least 749

3 hops away from each other in the graph representation of 750

an RDF dataset, and could hardly be covered by a single 751

query-unbiased connected subgraph generated by IlluSnip. 752

The results are broken down into queries containing 753

different numbers of keywords in Figs. 5(e)–(h). Most of 754

these constituent results were similar to the overall re- 755

sults in Fig. 5(a). However, in Fig. 5(e), query-level rel- 756

evance (QryRel) was slightly exaggerated for most algo- 757

rithms because QryRel was always reduced to KwRel for 758

queries containing a single keyword. When the number 759

of keywords was increased from Fig. 5(e) to Fig. 5(h), we 760

observed small decreases of KwRel and QryRel for KSD and 761

Dual-CES. Query relevance was not the unique factor con- 762

sidered in these algorithms. Therefore, the more keywords a 763

query contained, the more keywords and their connections 764

these algorithms failed to cover. This phenomenon was not 765

observed for TA+C and PrunedDP++. Keyword-level rel- 766

evance was the primary concern of these algorithms. They 767

always tried to cover as many query keywords as possible. 768

4.2 Quality Profiles 769

In Section 2.3 we selected and aggregated quality metrics 770

into two quality profiles for the search stage and the evalu- 771

ate stage of dataset search. Table 7 shows the mean overall 772

quality computed over all the non-empty snippets. 773

For the search stage, we evaluated small snippets (k = 774

20) which could be compactly presented in a search results 775

page to help users quickly identify relevant datasets. KSD 776

and PrunedDP++ exhibited the highest overall quality for 777

this stage (QS > 0.55). However, we would like to remind 778

that PrunedDP++ could not generate non-empty snippets 779

for 27% of the Q-D pairs. Therefore, KSD appeared to be 780

a better and more reliable solution. IlluSnip and TA+C 781

showed relatively low quality for this stage due to ignoring 782

query relevance and data representativeness, respectively. 783
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Fig. 5. Mean values of quality metrics computed over: (a) all queries, (b)–(d) queries from different sources, and (e)–(h) queries containing different
numbers of keywords (i.e., g).

TABLE 8
Statistics about Preprocessing Time (s)

Precomputed data Median Max
KSD Inverted index 0.17 40
IlluSnip – – –
TA+C Inverted index and 5.50 40,307

maximal 1-radius subgraphs
Dual-CES Inverted index 0.24 52
PrunedDP++ Inverted index 0.23 59

For the evaluate stage, we evaluated large snippets784

(k = 40) providing more detailed information for assessing785

the usefulness of a dataset. IlluSnip exhibited the highest786

overall quality for this stage (QE > 0.35), which was not787

surprising as it achieved the highest data and pattern rep-788

resentativeness. However, this level of overall quality was789

not satisfactory and called for future research on pattern790

representativeness. Among the other algorithms, KSD ex-791

hibited higher quality (QE > 0.25) than TA+C, Dual-CES,792

and PrunedDP++ (QE < 0.20) where data and pattern793

representativeness were not their focus of design.794

To conclude, among the five participating algorithms,795

KSD is more balanced and suitable for both stages.796

PrunedDP++ would also be a good choice for the search797

stage when it could generate non-empty snippets. IlluSnip798

is the top selection for the evaluate stage.799

4.3 Runtime800

Table 8 presents the median and maximum runtime of801

preprocessing in each algorithm for each Q-D pair under802

k = 20. TA+C used much more time than other algorithms803

due to the indexing of maximal 1-radius subgraphs.804

Figure 6 depicts the distribution of runtime (excluding805

preprocessing) of each algorithm for each Q-D pair on a806

R
u
n
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e 
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Fig. 6. Distribution of runtime for each Q-D pair.

logarithmic scale. KSD was the only algorithm that never 807

reached timeout. KSD, PrunedDP++, and TA+C used less 808

than 1 second to generate a snippet for 92%, 88%, and 81% 809

of the Q-D pairs, respectively, showing promising perfor- 810

mance for practical use. IlluSnip and Dual-CES used at least 811

10 seconds for most Q-D pairs, but the runtime of IlluSnip as 812

a query-independent offline algorithm seemed acceptable. 813

5 RELATED WORK 814

5.1 Generating Snippets for RDF Data 815

RDF datasets in the early ages are small and serialized into 816

documents. To enhance RDF document search systems such 817

as Sindice [43], in a pioneering work [2], triples in an RDF 818

document describing entities that match the keyword query 819

or occupy a central position in the document are ranked and 820

selected into the snippet for the document. Triple ranking in 821

this work employs predefined importance of properties, and 822

hence can hardly be applied to the Web scale. 823
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Recent methods can handle large RDF datasets. IlluS-824

nip [13] generates a snippet to illustrate the main content825

of an RDF dataset. It tends to select triples where frequent826

classes and properties are used and central entities are827

described. Efficient implementations of this approach are828

presented in [39]. Query relevance is not considered in829

IlluSnip, but is incorporated into KSD [54]. This extended830

approach also selects triples that cover query keywords.831

IlluSnip and KSD were evaluated using earlier versions of a832

subset of quality metrics proposed in this article. IlluSnip833

was also evaluated by a user study, which is relatively834

expensive, time-consuming, and not reproducible.835

Entity summarization [40] is a task focused on gener-836

ating snippets for a particular kind of RDF data: triples837

describing an entity or several related entities. In this838

task, triples are selected to best characterize an entity and839

comprise an entity card presented in downstream applica-840

tions [15], [27], [36], helping to distinguish between similar841

entities for quick comparison [16], [17], or to connect a set of842

mentioned entities for enriching a document [28], [30], [38].843

The core techniques used for this entity-centred task, such844

as measuring the informativeness (i.e., rarity) of a triple, are845

fundamentally different from those needed for our problem.846

Apart from human-oriented snippets, there are also data847

samples generated for machine use. In [20], [22], a subset848

of data is sampled to replace the original data, so that849

reasoning can be performed more efficiently. A similar goal850

is pursued in [47], [49] where a subset of triples is sampled851

to realize more efficient query answering while maximizing852

answer coverage. In distributed settings, triples are sampled853

to support source selection [23] or data statistics estima-854

tion [29]. These completeness-preserving data samples are855

much larger than our snippets as they will be used for856

different purposes, thus using different techniques such as857

hashing and query execution plan analysis.858

5.2 Summarizing RDF Data859

To summarize the content of an RDF dataset, a snippet860

can be viewed as an extractive summary, whereas a large861

body of research has been focused on aggregating the data862

into a high-level representation [6]. Such an aggregated863

summary is used to (approximately) restore the original864

data. For example, entities can be aggregated according to865

EDP-based similarity [41], [56] or (multi-hop) neighborhood866

similarity [51], [52]. Aggregation can be hierarchical [14]. A867

trade-off between the accuracy of restoration and the size of868

an aggregated summary is to be achieved [5]. Extraction and869

aggregation are complementary paradigms for data summa-870

rization. Restoration is not the purpose of our snippet.871

To assess the quality of an aggregated summary, a set872

of evaluation metrics are presented in [57]. Some of these873

metrics rely on the existence of a gold-standard summary,874

which is not needed in our evaluation framework. Others875

are conceptually similar to our quality metrics for assessing876

data representativeness, but they are used to evaluate aggre-877

gated summaries rather than snippets. Moreover, we assess878

pattern representativeness and query relevance which are879

not considered in [57]. It would be interesting to adapt our880

metrics to evaluating aggregated summaries.881

5.3 Other Related Techniques 882

We have identified several related problems and in the 883

experiments we adapted their state-of-the-art solutions to 884

our problem. 885

An ontology, used as the schema of an RDF dataset, can 886

be too large to be easily browsed. Snippet generation for 887

ontologies has attracted widespread research and found 888

application in ontology search systems. Existing methods 889

mainly process some graph representation of an ontology 890

and employ various graph centralities to extract a sub- 891

graph [46]. They are immediately applicable to our problem, 892

processing the graph representation of an RDF dataset. The 893

algorithm we chose to adapt, TA+C [26], represents the state 894

of the art in generating query-biased ontology snippets. 895

Document summarization is an established research 896

topic [24]. A document snippet, typically consisting of a 897

few sentences selected from the original document, is used 898

in Web search systems. By transforming triples in an RDF 899

dataset into sentences of a pesudo document, methods 900

for document snippet generation can be applied to our 901

problem. Although many existing methods are supervised, 902

we adapted a state-of-the-art unsupervised query-biased 903

algorithm [48] as we lack labeled RDF data for training. 904

Recent methods for keyword search over graph data 905

compute a min-weight GST that spans all the query key- 906

words [37], [50]. Applying these methods to the graph rep- 907

resentation of an RDF dataset, as we did in the experiments 908

with PrunedDP++ [37], a computed GST can be used as a 909

snippet for the dataset. 910

All the above adapted algorithms are primarily con- 911

cerned with query relevance. In our experiments they gen- 912

erated highly relevant snippets that appeared suitable for 913

the search stage of data search. Their less promising results 914

for the evaluate stage were not surprising as they were not 915

optimized towards representativeness of the original data. 916

6 CONCLUSION AND FUTURE WORK 917

Snippet generation is a key component of dataset search. 918

We created BANDAR, a public benchmark for evaluating 919

snippet generation algorithms for dataset search. It consists 920

of 13,429 query-dataset pairs generated from thousands of 921

collected keyword queries and RDF datasets. We used BAN- 922

DAR to evaluate and compare five algorithms for snippet 923

generation, based on six quality metrics and two aggregated 924

quality profiles. This evaluation framework supports inex- 925

pensive and reproducible experiments without involving 926

human experts or users in the loop. Our evaluation results 927

showed that KSD and IlluSnip are relatively suitable for 928

the search stage and the evaluate stage of a typical dataset 929

search process, respectively. However, none of the tested 930

algorithms achieved satisfactory pattern representativeness, 931

which has not been considered in current algorithms and 932

calls for future research. BANDAR is public and can be used 933

to evaluate future algorithms. It helps to foster researching 934

and developing dataset search systems. 935

As for future work, first, observe that our syntactic 936

metrics rely on explicit data while RDF (Schema) entailment 937

may deduce implicit data. We plan to incorporate semantics 938

into evaluation by either precomputing the deductive clo- 939

sure of data or developing semantics-aware metrics. Second, 940
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while we used real datasets, it would also be interesting941

to consider synthetic datasets with controllable parameters942

for a systematic evaluation. Third, we want to adapt our943

evaluation framework to datasets in other formats, in par-944

ticular tables. However, it would depend on the concrete945

form of snippet for tables. One universal adaptation might946

be mapping tables into RDF data (e.g., mapping tables947

and columns into classes and properties, respectively) and948

applying our metrics to the mapped data. Fourth, to address949

the limitations of existing snippets shown in the evaluation,950

we will study novel algorithms incorporating pattern repre-951

sentativeness. It might be an idea to extend IlluSnip or KSD952

to cover not only classes and properties but also patterns.953
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