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Abstract. Constructing and maintaining large-scale good quality knowl-
edge graphs present many challenges. Knowledge graph completion has
been regarded a promising direction in the knowledge graph community.
The majority of current work for knowledge graph completion approaches
do not take the schema of a target knowledge graph as input. As a result,
the triples generated by these approaches are not necessarily consistent
with the schema of the target knowledge graph. This paper proposes to
improve the correctness of knowledge graph completion based on Schema
Aware Triple Classification (SATC), which enables sequential combina-
tions of knowledge graph embedding approaches. Extensive experiments
show that our proposed approaches can significantly improve the cor-
rectness of the new triples produced by knowledge graph embedding
methods.

Keywords: Knowledge Graph - Embedding - Schema Aware Triple Clas-
sification - Knowledge Representation and Reasoning - Approximate Rea-
soning - Artificial Intelligence.

1 Introduction

The idea of representing knowledge as graphs dates back to early proposals
such as semantic networks in the research of Knowledge Representation and
Reasoning, which is an important branch of Artificial Intelligence. It has become
popular again since Google coined the term “Knowledge Graph” and used it to
improve its search engine in 2012. In general, a knowledge graph can be seen
as an ontology with an entity-centric view, consisting of a set of interconnected
typed entities and their attributes, as well as some schema axioms for defining the
vocabulary (terminology) used in the knowledge graph [1,2]. It is often assumed
that, in a knowledge graph, the size of the data (or ABoz in description logic
terminology) is much bigger than the size of the schema (or TBoz in description
logic terminology) [3, 2].

Constructing and maintaining large-scale good quality knowledge graphs
presents many challenges. At the core of them is the well-known trade-off be-
tween completeness and correctness. Most existing knowledge graph refinement
approaches either focus on adding missing knowledge to the graph, i.e., comple-
tion, or on identifying wrong information in the graph, i.e., error detection.
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Knowledge graph completion is sometimes also regarded as a kind of knowl-
edge graph reasoning, or similarity reasoning [4], to be more precise, which is dif-
ferent from logic-based knowledge graph reasoning (cf. Sec 2.1). Several research
directions have emerged to complete a knowledge graph, such as knowledge graph
embedding and rule learning. Most of them focus on multi-relational data [5],
while ignoring the TBox schema and the type assertions in ABox. Link Predic-
tion (LP) [11] is perhaps one of the most studied notions of knowledge graph
completion. Given an entity and a relation, as well as the ABox of a knowledge
graph, the task is to predict the missing entity in this relation. Knowledge graph
embedding approaches, such as TransE [5], TransR [8], TransH [9], STransE [10]
(and many others), complete an input knowledge graph ABox by representing
the entities and their relations in a vector space, so as to learn some embed-
ded representations of entities and relations in a knowledge graph for predicting
missing entities or relationships. Rule learning approaches, such as [29, 30|, com-
plete an input knowledge graph ABox by learning rules based on patterns in the
ABox. The learnt rules can then be used to produce new relation assertions.

Correctness checking in knowledge graph completion often relies on the task
of triple classification [12], which computes the likelihood a given triple is correct
or not w.r.t. a given knowledge graph. The risk, however, is that the current no-
tion of task classification does not usually take the schema of the target ontology
into account. Therefore, the triples regarded as correct under this notion of triple
classification might not be consistent with the schema of the target knowledge
graph.

In this paper, we propose to improve the correctness of knowledge graph
completion based on a Schema Aware Triple Classification (SATC). In general,
our approach can be applied to both knowledge graph embedding and rule learn-
ing approaches mentioned above. In this paper, we will focus on the knowledge
graph embedding (KGE) approaches and leave the rule learning approaches for
future work. We envision two types of SATC: black-box SATC and white-box
SATC approaches. The latter approaches require a tight integration of logical
reasoning into KG embedding, while the former approaches do not. In this pa-
per, we will focus on black-box SATC. The advantage of the black-box SATC
approaches is that they can be applied to any KGE approaches with any KG
reasoners, without having to revise the KGE algorithms. The key contributions
of the paper can be summarized as follows:

1. To the best of our knowledge, this work presents the first black-box SATC
approach. In order to evaluate the feasibility of this approach, we con-
ducted several experiments with some knowledge graphs, including NELL-
995, DBpedia-Politics and a knowledge graph from IBM, automatically gen-
erated based on IBM Storwize Knowledge Center articles. Our investigation
shows that applying some KGE approaches, such as TransE, on NELL-995,
the percentage of correct triples is less than 1% under SATC. This confirms
the importance of using schema for quality assurance.

2. In our SATC approach, we propose to use approximate reasoning to help
improve the efficiency of consistency checking w.r.t. the schema.
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3. We propose to use our SATC approach to support sequential combinations
of the KGE approaches, by applying the KGE approaches over the union
of the original graph and the correct triples from a previous iteration of
KG completion. Our experiment confirms that, with the help of SATC, the
KGE approaches can be run sequentially to get higher percentages of correct
triples. Extensive experiments show that our proposed approaches can signif-
icantly improve the correctness of the new triples produced by the knowledge
graph embedding methods; e.g., in the case of NELL-995, the improvement
is over 42%.

2 Background

2.1 Knowledge Graph

More formally, we define a knowledge graph G =7 U A consisting of two parts,
T and A, where Ais the data sub-graph (or ABox) and T is the schema sub-
graph (or TBox) [1, 2]. The size of T is often much smaller than that of A. Facts
in the ABox are represented as triples of the following two forms:

— Relation assertion (h,r,t), where h is the head entity, and r the relation and
t the tail entity; e.g., (ACMilan, playInLeague, ItalianLeague) is a relation
assertion.

— Type assertion (e, rdf:type, C), where eis an entity, rdf:type is the instance-
of relation from the standard W3C RDF specification and C is a type; e.g.,
(ACMilan, rdf:type, FootballClub) is a type assertion.

A TBox includes Type Inclusion axioms C C D, where C and D are type de-
scriptions, such as the following ones: T | L | A | -C| CMD | 3r.C | {o}, where
T is the top type (representing all entities), L is the bottom type (representing
an empty set), A is a named type, 1 is a relation, and o is an entity. For exam-
ple, given the two types River and City, the disjointness of these types can be
represented as River C —City, or River M City C L .

A TBox can also include Relation Domain azioms Domain(r) = A, Relation
Range azioms Range (r) = A, Symmetric Relation azioms Symmetric(r), Asym-
metric Relation azioms Asymmetric(r), Relation Inclusion azioms r1Cr2 and
Relation Chain axioms rl o r2 C r3, where rl, r2 and r3 are properties. Note
that we allow multiple domains (and ranges), and the resulting domain (range)
is the intersection of the individual domains (ranges).

2.2 Knowledge Graph Completion

Given a knowledge graph G= T U A, the task of knowledge graph completion
(KGC) is to produce an extension ABox A’ of which the triples use only types
and relations from 7 . The task of link prediction is a special form of KGC, in
that triples in A’ only are relation assertions only. More precisely, the task of
link prediction is to predict the missing head h or the missing tail t of a triple
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(h,r,t). Link prediction methods often output a list of ranked entities instead of
providing the best entity [14].

In this paper, we focus on knowledge graph embedding (KGE) approaches.
The idea of embedding is to represent an entity as a k-dimensional vector h (or
t) and defines a scoring function f,(h,t) to measure the plausibility of the triple
(h,r,t) in the embedding space. The representations of entities and relations are
obtained by minimising a global loss function involving all entities and relations.
Different KGE algorithms often differ in their scoring functions, transformations,
and loss functions.

Triple classification (TC) is a KGC related task of searching for a relation-
specific threshold o, to identify whether a triple (h,r,t) is plausible [12]. For
doing T'C, one needs to construct three datasets which are train, test and devel-
opment datasets. The development dataset is considered as the golden standard.
In reality, golden standards take too many efforts. Thus silver standards are of-
ten applied, which assume that the input knowledge graph itself is already of
reasonable quality. This assumption is often not satisfied in real world knowl-
edge graphs. For example, even for DBpedia, a recent version has over 25% of
incorrect triples.

3 Problem Statement

We define the problem of schema aware triple classification (SATC) in this sec-
tion. Firstly, we introduce the notions of schema-consistent triples.

Definition 1. Given a knowledge graph G =T U A, a triple (h,r,t), where h and
t are entities and r is a relation in G, (h,r,t) is a schema-consistent triple w.r.t.
G if the extended knowledge graph GU (h,rt) is consistent.

From the perspective of data engineering, we further introduce the notions
of correct, incorrect and unknown triples.

Definition 2. Given a knowledge graph G =T U A, a triple (h,r,t), where h and
t are entities and r is a relation in G, with Cp,Cy being some types of h and
t resp., and D,, R, being the domain and range of r, (h,r,t) is a correct triple

w.r.t. Gif:

1. the extended knowledge graph GU (h,r,t) is consistent, and
2. C, =D, and Cy = R,..

Definition 3. Given a knowledge graph G =T U A, a triple (h,r,t), where h and
t are entities and r is a relation in G, with Cp,Cy being some types of h and t
resp., and Dy, R, being the domain and range of r, (h,r,t) is an incorrect triple

w.r.t. Gif:

1. GCyND,. C L, or
2. GEC,NR, C L.

It is straight forward to see that an incorrect triple is not schema-consistent.
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Lemma 1. Given a knowledge graph G =T U A, a triple (h,r,t), where h and t
are entities and r is a relation in G . If (h,r,t) is incorrect w.r.t. G, then (h,rt)
is not schema-consistent w.r.t. G .

Definition 4. Given a knowledge graph G =T U A, a triple (h,r,t), where h and
t are entities and r is a relation in G, (h,r,t) is an unknown triple w.r.t. G if it
18 meither correct nor incorrect w.r.t. G .

Definition 5. Let G be a knowledge graph, and £ the new triples that are pro-
duced by a KGE method, the task of schema aware triple classification (SATC)
1s to identify the subset ( of correct triples within & ; the percentage of correctness
(PC) is defined as follows:

PC = |§| *100% (1)
Given an input knowledge graph G, our research aim is to identify the most
suitable KGE methods, so as to maximise the PC for SATC.

4 Our Approach

4.1 Approximate Consistency Checking for Schema Aware Triple
Classification

In this section, we will present an approach for schema aware triple classification
(SATC), with the help of an approximate reasoning to address the concern of
high computation complexity in ontology reasoning.

The idea behind an approximate reasoning [6,7] is to identify minimal in-
consistent sub-graphs (justifications) with the help of inconsistency justification
patterns (or LJ patterns). Obviously, it could be expensive to compute all possi-
ble justifications. Since some recent study [18] suggests type assertions are most
often more correct in knowledge graphs than relation assertions, in this paper,
we propose to focus on some simple inconsistency justification patterns related
to relation axioms.

There are three requirements for these inconsistency justification patterns:

(R1) TBox reasoning with schema sub-graphs should be done offline.
(R2) No online reasoning is needed for dealing with data sub-graphs.
(R3) 1J patterns should help not just detect inconsistencies but also repair them.

(R1) is feasible, since knowledge graph completion algorithms only produce
ABox assertions, so that the TBox parts of the 1J patterns can be computed in
advance. In Table 1, 1J patterns 1-4 are about interactions among domain ax-
ioms, range axioms, relation inclusion axioms, and class disjoint axioms. 1J pat-
terns 5-7 are about interactions among asymmetric relation axioms, symmetric
relation axioms, and relation inclusion axioms. IJ pattern 8 is about irreflexive
axioms. Thus, we need to run the following TBox reasoning services offline: (i)
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Table 1. Inconsistency Justification Patterns

ID|TBox subset of the Pattern ABox subset of the Pattern
1 |[Domain(r)=D, DM AC L (el, 1, €2), (el, rdf:type, A)
2 |Range(r)=R, RMALC L (el, 1, €2), (€2, rdf:type, A)
3 |Domain(rl)=D1, Domain(r2)=D2, r1 C r2, D1 1 D2 C L|(el, rl, e2)

4 |Range(rl)=R1, Range(r2)=R2,r1 Cr2, RIMR2C L (el, rl, e2)

5 |Asymmetric(r) (el, r, €2), (e2, r, el)

6 |Symmetric(rl), Asymmetric(r2), r1 C r2 (el, rl, e2)

7 |Symmetric(r2), Asymmetric(r3), r1 C r2, r1 C r3 (el, rl, e2)

8 |Irreflexive(r) (el, r, el)

computing relation subsumptions and (ii) compute disjoint named types. Since
the ABox subsets of the 1J patterns contain at most two data triples, we need
to scan through the data sub-graph of a knowledge graph at most twice and no
reasoning is needed during runtime. Hence, (R2) is addressed.

Once an 1J pattern is detected within a target knowledge graph, one can
repair it by removing the relation assertions in the pattern, i.e., the assertions
in the third column in Table 1. Therefore, IJ patterns not only help us to detect
logical inconsistencies but also help us to repair logical inconsistencies (R3).

4.2 Sequential Combination of Knowledge Graph Embedding
Algorithms for Schema Aware Triple Classification

In this section, we will use the SATC approach to support the sequential com-
binations of KGE approaches, by applying a KGE over the union of the original
graph and the correct triples from a previous iteration of KG completion. We
incorporate the sequential combinations with an approximate reasoning for in-
creasing the correctness of the new facts that a knowledge graph embedding
approach produces. As shown in Figure 1, the components of our approach are
two knowledge graph embedding algorithms (could be the same or different) and
an approximate reasoning 3

Given an input knowledge graph, our approach works as follows. Each it-
eration has two steps. The first step is to run Knowledge Graph Embedding
algorithm (or simply KGE) to produce new triples. In the second step, we only
take the correct triples detected by the approximate reasoning and merge them
with the initial KG. Unless some stopping condition (e.g., no new correct triples
are produced in the current iteration) is satisfied, we will start a new iteration.
Once some stopping condition is satisfied, we count the percentage of correctness
(PC) of the sequential combination by using the number of correct triples and
the number of new triples that we got from the executed iterations 3.

More precisely, at the first step, given an input knowledge graph G, and a
link prediction system LP, we produce the output knowledge graph G’ for that
iteration as follows:

3 The implementation of our approach: http://github.com/bagindokemas/meOnJIST2018
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Fig. 1. Sequential combination of knowledge graph embedding (SCE) algorithms

1. Compute the set of recommended triples RT from LP that are above the
threshold t;

2. Compute the set of new triples NT = RT \ G;

3. G2 =G UNT.

We will then pass G’ to the approximate reasoning module. At the second
step, given the set of incorrect triples IT detected by IJ patterns, the remaining
new triples are NT” = NT \ IT. Accordingly, we can define a stopping condition
as | NT’| < s, where the stop threshold s is a non-negative integer. If s is set to
be 0, it means that the iterations will stop when no new triples are produced in
the current iteration.

5 Evaluation

We empirically study and evaluate our approach on three tasks: (1) Compar-
ing the existing knowledge graph embedding approaches in terms of producing
correct triples according to the schema, (2) Investigating the sequential com-
binations of knowledge graph embedding approaches and (3) Comparing our
approximate reasoning with related justification services which was provided by
some existing off-the-shelf reasoner. The first two tasks are aiming to validate the
sequential combinations of knowledge graph embedding approaches meanwhile
the last task is aiming to validate the approximate reasoning.

For the first and the second task, since our approach needs a KG that has a
TBox and a ABox, we use these three knowledge graphs: (i) NELL-995 which is a
dataset from Carnegie Mellon university containing 142,065 triples, (ii) DBpedia-
Politic which is a subset of DBpedia version 2016-04 that only include triples
that are related to political issue containing 352,754 triples and (iii) IBM-KG
which is a knowledge graph automatically generated based on IBM Storwize
Knowledge Center articles* dataset containing 28,982 triples.

* https://www.ibm.com /support/knowledgecenter/en/ST3FR7
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For the third task, we are only able to test our approximate reasoning on
two knowledge graphs as follows: (i) DBpedia version 2016-04 which is a dataset
from DBpedia containing 17,678,218 triples, and (ii) IBM-KG.

Our approximate reasoning module consists of two components, such as the
TBox scanner and the ABox scanner. We implement the TBox scanner using
Java and OWLAPT [27] library. This scanner process the schema of a KG to find
all the 1J patterns (as mentioned in table 1). The ABox scanner parses all the
triples on the ABox based on the IJ patterns to find the correct, incorrect, and
the unknown triples.

5.1 Comparing Existing Knowledge Graph Embedding Approaches

Experimental Setup. We use this task to check which knowledge graph em-
bedding approaches (KGE) is the best in terms of the percentage of correctness.

KGE Approaches. We used NELL-995, DBpedia-Politic, and IBM-KG as
the knowledge graphs/dataset. For the KGE Approaches, we choose KB2E-
TransE, STranSE, OpenKE-DistMult, and OpenKE-Complex. We chose these
methods because, in their respective categories, they are the most efficient meth-
ods. We consider the top ten results from these systems for each link prediction
task.

Results. Firstly, we expand a KG using a KGE approach. After that, we
collect all the triples that are produced by a KGE approach and then running
our schema-based inconsistency checking against the new triples. The last step
of the experiment is counting the percentage of the correctness.

We can see from Table 2 that the order of the best KGE approaches in terms
of the percentage of correctness is as follows: STransE, DistMult, Complex and
TransE.

The reason for the very good performance of STransE is in STransE, the head
and tail entities are associated with their own project matrices, rather than using
the same matrix for both, as in other embedding approaches.

Table 2. The comparison result of the percentage of correctness

Knowledge Graph|KB2E_TransE|STranSE|OpenKE-DistMult|OpenKe-Complex
IBM-KG 1.52% 61.50% |21.96% 21.59%
NELL-995 0.37% 20.36% |0.72% 0.67%
DBpedia-Politic |18.06% 43.45% |18.90% 18.90%

5.2 Investigating Sequential Combinations of KGE
Experimental Setup. Our objectives in doing this task are as follows:

— (P1). we would like to know whether running the same KGE twice sequen-
tially will outperform than running it once (compares KGE-KGE with KGE).
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— (P2). we would like to know which option is better (in terms of producing
a higher percentage of correctness): running the schema-based inconsistency
checking right after each run of a KGE approach (KGE-IC-KGE-IC) or run-
ning it only once in the end of a sequential combination (KGE-KGE-IC).

— (P3). we would like to know whether we can get a higher percentage of
correctness (compared with all the scenarios from P1 until P2) if we com-
bine different KGE approaches with the schema-based inconsistency checking
(KGE1-IC-KGE2 or KGE2-IC-KGEL1).

For the first purpose (P1), we make four scenarios as follows:

— comparing STransE-IC-STransE-IC (SE-IC-SE-IC) with STransE-IC (SE-
10)

— comparing KB2E-IC-KB2E-IC (KE-IC-KE-IC) with KB2E-IC (KE-IC)

— comparing DistMult-IC-DistMult-IC (DM-IC-DM-IC) with DistMult-IC (DM-
10)

— comparing Complex-IC-Complex-IC (CE-IC-CE-IC) with Complex-IC (CE-
10)

For the second purpose(P2), we also make four scenarios as follows:

— comparing STransE-IC-STransE-IC (SE-IC-SE-IC) with STransE-STransE-
IC (SE-SE-IC)

— comparing KB2E-IC-KB2E-IC (KE-IC-KE-IC) with KB2E-KB2E-IC (KE-
KE-IC)

— comparing DistMult-IC-DistMult-IC (DM-IC-DM-IC) with DistMult-DistMult-
IC (DM-DM-IC)

— comparing Complex-IC-Complex-1C (CE-IC-CE-IC) with Complex-Complex-
IC (CE-CE-IC)

For the third purpose(P3), we make twelve scenarios as follows:

KB2E-IC-STransE-IC (KE-IC-SE-IC)

STransE-IC-KB2E-IC (SE-IC-KE-IC)

— KB2E-IC-DistMult-IC (KE-IC-DM-IC)

DistMult-IC-KB2E-IC (DM-IC-KE-IC)

KB2E-IC-Complex-IC (KE-IC-CE-IC)

— Complex-IC-KB2E-IC (CE-IC-KE-IC)

— STransE-IC-DistMult-IC (SE-IC-DM-IC)

DistMult-IC-STransE-IC (DM-IC-SE-IC)
STransE-IC-Complex-IC (SE-IC-CE-IC)

— Complex-1C-STransE-IC (CE-IC-SE-IC)

DistMult-IC-Complex-1C (DM-IC-CE-IC)

Complex-IC-DistMult-IC (CE-IC-DM-IC)

KGE Approaches. We used NELL-995, DBpedia-Politic, and IBM-KG
as the knowledge graphs/dataset. For the KGE Approaches, we chose KB2E-
TransE, STranSE, OpenKE-DistMult, and OpenKE-Complex.
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Table 3. The result for P1

The PC for running KGE twice The PC for running KGE once
Flow IBM [NELL|DBP |Flow [IBM NELL |DBP
SE-IC-SE-IC |69% |29% [55.51%|SE-IC |61.50%]20.36%43.45%
KE-IC-KE-IC [0.86% [0.17%(17.16% |KE-IC |1.52% (0.37% [18.06%
DM-IC-DM-IC|22.42%|0.53%(19.25% |DM-IC|21.96% [0.72% [18.90%
CE-IC-CE-IC [20.95%10.55%(19.24% |CE-IC [21.59% (0.67% |18.90%

=W N =

Results. Table 3 records all the results that are related with the first pur-
pose/P1. we could see that from all KGE approaches that we try, only STransE
that have higher PC (for all KGs) if we run it twice sequentially rather than run-
ning it once. If we analyze this result deeper, we see that in the second run, all
KGE approaches (except STransE), produce less correct triples compare with
the first run. We continue the experiment P1 on STransE (using NELL KG)
by running it for three runs sequentially (STransE-IC-StransE-IC-STransE-IC).
And we got interesting fact that the percentage of correctness that we got is even
higher than running STransE twice (38% against 29%). However, the number of
new triples that STransE produce is decreasing on each run. In the first run, the
number of new triples is 373,995. In the second run, the number of new triples
is 178,654 and in the third run, the number of new triples becomes 107,587.

Table 4. The result for P2

The PC for running IC after each run| The PC for running IC only once
Flow IBM [NELL|DBP |Flow IBM NELL |DBP
SE-IC-SE-IC |69% |29% |55.51%|SE-SE-IC (66.44%16.25%|43.90%
KE-IC-KE-IC |0.86% |0.17%(17.16% |KE-KE-IC |1.18% (0.28% [17.31%
DM-IC-DM-IC|22.42%/0.53%(19.25% |DM-DM-IC|12.28% [0.22% [16.11%
CE-IC-CE-IC [20.95%10.55%(19.24% |CE-CE-IC [12.38% [0.21% [16.07%

=W N =

For the second purpose/P2, we record all the results in table 4.

From this table we learn that for STransE, DistMult and Complex, running
IC after each run produce higher PC than running IC only once because in each
run, the number of correct triples that these approaches can feed into the next
run is already high (for example in STransE, more than 20% of new triples in
each run is correct). Consequently, this will increase the number of correct triples
that these approaches produce in the next run.

Meanwhile for KB2E-TransE, running IC only once produce higher PC than
running IC after each run, because, in each run, the number of correct triples
that KB2E-TransE can feed into the next run is low (less than 1% of new triples
in each run is correct). Consequently, this will decrease the number of correct
triples that KB2E-TransE produces in the next run.
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Table 5. The result for P3

The Percentage of Correctness
IBM |NELL |DBP
KE-IC-SE-IC {40.72%]|11.85%|30.95%
SE-IC-KE-IC [49.65%17.34%|45.75%
KE-IC-DM-IC {11.44%|0.51% |17.93%
DM-IC-KE-IC {9.45% [0.98% |19.01%
KE-IC-CE-IC |11.40%|0.41% |17.91%
CE-IC-KE-IC |7.75% [0.87% {19.01%
SE-IC-DM-IC [55.60%14.14%|46.29%
DM-IC-SE-IC (63.12%]|16.92%|48.45%
SE-IC-CE-IC [55.65%14.14%|46.21%
CE-IC-SE-IC [62.06%17.15%]|47.68%
DM-IC-CE-IC |22.36%]|0.56% |19.20%
CE-IC-DM-IC [21.15%10.51% {19.26%

SE-IC-SE-IC|69% [29% |55.51%

Scenarios

KE-IC 1.52% (0.37% |18.06%
DM-IC 21.96%(0.72% [18.90%
CE-IC 21.59%10.67% |18.90%

KE-KE-IC 1.18% |0.28% (17.31%
DM-IC-DM-IC|22.42%]|0.53% |19.25%
CE-IC-CE-IC [20.95%10.55% {19.24%

Table 5 records the result of the experiments for the third purpose/P3. We
divide the table into three groups as follows: (1). All twelve scenarios from the
third purpose/P3, (2). All the best scenarios from the first purpose / P1, (3). All
the best scenarios from the second purpose/P2. Following are the lessons that
we can learn from the results in table 5:

— Different combination of KGEs (for an example: KGE1-IC-KG2-IC) with
IC will produce higher PC when compared to the PC that is produced by
the weakest KGE in a scenario (for an example: the weakest KGE between
KGE1 and KGE2).

— The best scenario/flow from all three groups aforementioned above is SE-
IC-SE-IC

5.3 Comparing our Approximate Reasoning with Sound-and-
Complete Reasoner

We compare our Approximate Reasoning approach with existing reasoners in
terms of

— how many incorrect triples (in percentage) that are identified by an existing
reasoner, can also be detected by our approach. For this comparison item,
we collect all the justifications that are generated by a reasoner for a given
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knowledge graph. Then, we check whether our approach can detect all the
incorrect triples that are stated in each of these explanations

— how long Approximate Reasoning takes compared to reasoning time of an
existing reasoner. For this second comparison item, we need to explain first
what are the processing stages for each system. In doing reasoning, every
existing reasoner has two steps which are the consistency checking and gen-
erating justification. Generating justification is often most costly since it
needs to calculate the minimal subsets of a knowledge graph. Hence, the
total of processing time for a reasoner is the consistency checking plus gen-
erating justification. Meanwhile, our approach also has two steps, which are
scanning the inconsistency justification patterns (IJPs) from the TBox and
then based on the IJPs, scanning the triples that conform to these IJPs in
the ABox. Hence, the total processing time for our approach is the TBox
scanning plus the ABox scanning. Please see Figure 2 for the comparison of
the processing stages between a reasoner and our approach.

THE TOTAL TIME
& A
The processing stages in a reasoner : The processing stages in our approach:
1. Consistency Checking = low cost 1. TBox scanning —* low cost
2. Generating Justification = high cost 2. ABox scanning = low cost

Fig. 2. the comparison of the processing stages between a reasoner and our approach.

We show the effectiveness of our approach against the consistency checking
and related justification services that are provided by FACT++ 1.6.5 (run with
Protege). Dataset. We used two datasets: (i) DBpedia version 2016-04, and (ii)
IBM-KG.

Results. The comparison of the performance of the FACT++ reasoner and
our Approximate Reasoning approach can be seen in table 6.

#Exp stands for the number of explanations that the justifications service
from FACT++ generated. Each explanation consists of one or several incorrect
triples. If FACT++ cannot generate the explanations (either because a KG is
consistent or because we cannot run the consistency checking and justification
services on a KG), we will give NA (Not Available) as the score. For DBpedia,
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Table 6. Comparison between pattern-based reasoning and reasoner

Reasoner Our Approach
#Exp|CCT|GJT| CE |TST| AST
IBM-KG| 46 |[1.577|4,620{100%]12.98| 296.68
DBpedia] NA | NA | NA | NA [9,605/6,834.76

Dataset

we got an “insufficient memory” error when we tried to merge the TBox and
the ABox of the DBpedia. This happened due to the sheer size of the ABox of
DBpedia. Since merging the TBox and the ABox is the prerequisite of running
consistency checking and justification services, hence we can not get the #Exp
score for the whole DBpedia KG. CCT stands for the time that the reasoner
needs to do consistency checking (in second). There are only two types of a
score for CCT: the number of times and NA (Not Available). GJT stands for
the time that the reasoner needs to generate the justifications (in seconds).

CE stands for coverage of the Explanations. It refers to how many of the
explanations that are generated by the justification service of the reasoner, in
percentage, are detected by our approach. We get the CE score by dividing the
number of explanations that are detected by our approach with the number of
the explanations that are generated by the reasoner. Since we do not have a
number of explanation scores for the DBpedia data set, we can not count the
CE score. TST stands for the time that is needed to scan the TBox part of a
knowledge graph (in second). AST stands for the time that is needed to scan
the ABox part of a knowledge graph (in seconds).

We observe from table 6, that for IBM-KG, our approach is much more effi-
cient than the consistency checking and justification service provided by the
FACT++ reasoner. Meanwhile for DBpedia, we could scan the problematic
triples less than five hours while FACT++ reasoner failed.

6 Related Work

6.1 Knowledge Graph Embedding

The idea of knowledge graph embedding is to represent an entity as a k-dimensional
vector h (or t) and defines a scoring function f, (h, t) to measure the plausibility
of the triplet (h, r, t) in the embedding space. The representations of entities and
relations are obtained by minimizing a global loss function involving all entities
and relations. Different KGE algorithms often differ in their scoring function,
transformation and loss function [8], [9], [5], [16], [17], [15], [12], [28].

The above work has improved the performance of knowledge graph embed-
ding in terms of the link prediction task but does not take into account the
correctness of the facts that they produce. Our work differs from previous work
on knowledge graph embedding as we focus on whether the new triples that are
produced by a knowledge graph embedding approach are correct respect to a
schema of a knowledge graph.
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The most recent work that is very related to our work is [23]. They enhance
the existing embedding-based methods by encoding the logical consistency into
the learnt distributed representation for the knowledge graph. Their approach
enforces the new triples to be consistent in regards to the Horn theory. However,
their approach does not compute the truth degrees/the correctness level of new
triples, since according to them this technique is time-consuming.

6.2 Correctness of a knowledge graph

There is no specific metric to evaluate the correctness of a knowledge graph. The
closest measurements to do this are the accuracy (which is used in [24,21]) and
the percentage of consistent ABoxes ([25]). Following are our explanation about
these measurements:

— The first measurement tries to validate the RDF triples in a knowledge graph
by collecting consensus of matched triples from other knowledge graphs. Our
work differs with this work as the latter using external information/other
knowledge graphs to validate the triples.

— The second measurement determines the consistency of ABox regarded to a
TBox. We could see that this work has limitation since it cannot guarantee
soundness for inconsistency checking and justifications.

6.3 Approximate concistency checking

There are related work on approximate consistency checking. Meilicke et al. [24]
addresses this issue but only with the DL-Lite ontology language, which is not
enough for our purpose. There are also machine learning based approaches [25,
26]. However, they cannot guarantee soundness for inconsistency checking and
justifications.

7 Conclusion and Future Works

In this paper, we have introduced the black-box Schema Aware Triple Classifica-
tion (SATC). Extensive experiments on IBM, NELL, and DBpedia-Politic show
that our approach (SE-IC-SE-IC on Table 5) can increase the level of correctness
when compared to the application of single embedding-based approach (SE-IC
on table 2). We further show that from all scenarios/combinations that we can
make from different knowledge graph embedding approaches, we can achieve
the highest percentage of correctness by running the KGE approach that pro-
duces most correct triples followed by the approximate reasoning in a sequential
manner.

The potential path for future work includes increasing the scalability of our
approach and applying the sequential combinations to other approaches in the
knowledge graph completion (such as the rule learning).
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