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Abstract To support the reuse and combination of ontologies in Semantic Web applica-
tions, it is often necessary to obtain smaller ontologies from existing larger ontologies. In
particular, applications may require the omission of certain terms, e.g., concept names and
role names, from an ontology. However, the task of omitting terms from an ontology is
challenging because the omission of some terms may affect the relationships between the
remaining terms in complex ways. We present the first solution to the problem of omit-
ting concepts and roles from knowledge bases of description logics (DLs) by adapting the
technique of forgetting, previously used in other domains. Specifically, we first introduce
a model-theoretic definition of forgetting for knowledge bases (both TBoxes and ABoxes)
in DL-Lite𝒩bool , which is a non-trivial adaption of the standard definition for classical logic,
and show that our model-based forgetting satisfies all major criteria of forgetting, which in
turn verifies the suitability of our model-based forgetting. We then introduce algorithms that
implement forgetting in DL-Lite knowledge bases. We prove that the algorithms are correct
with respect to the semantic definition of forgetting. We establish a general framework for
defining and comparing different definitions of forgetting by introducing a parameterized
forgetting called query-based forgetting. In this framework we identify three specific query-
based forgettings. In particular, we show that the model-based forgetting can be embedded
in our framework by showing that it coincides with one of these query-based forgettings.
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1 Introduction

An ontology is a specification of a shared conceptualization of a domain [16]. Ontologies
are widely used for representing, storing and processing structural domain knowledge, and
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have been applied in a wide range of practical domains such as medical informatics, bio-
informatics and, more recently, the Semantic Web [1]. Among various representation for-
malisms, description logics (DLs) [4] are well accepted as one of the most successful un-
derlying formalisms for ontologies. Description logics are a class of logics with expressive
languages, precisely defined semantics and powerful reasoning systems. By representing an
ontology as a DL knowledge base (KB), which consists of a TBox and an ABox, description
logics provide ontology applications with logical foundations and reasoning mechanisms.
In particular, OWL (Web Ontology Language) [9], the latest W3C standard for ontology
markup languages, is based on DLs.

An important and interesting research problem in description logic community is the
trade-off between the expressive power of DLs and the efficiency of their reasoning. Much
work has been done on restricting the expressive power of DLs in appropriate ways, so that
the computational complexity of their reasoning problems can be reduced, and preferably
become tractable. As a result, several tractable DLs have been proposed, among which the
most influential are the DL-Lite family [6–8] and the ℰℒ -family [3,5]. The DL-Lite family,
including a basic description logic DL-Litecore and several extensions, are specially tailored
for efficient query answering over ontologies with large amounts of data. In particular, logics
in the DL-Lite family have polynomial time computational complexity with respect to most
standard reasoning tasks (such as consistency, subsumption and instance checking, but not
conjunctive query answering), and LogSpace data complexity with respect to complex query
answering.

Recently, a more expressive DL language, called DL-Lite𝒩bool , was proposed in [2]. DL-
Lite𝒩bool extends the basic DL-Lite languages [8] with full boolean operators and number
restrictions in its knowledge bases. Also, a class of queries, called positive existential queries
(PEQ), was investigated and shown to have low query answering complexity in DL-Lite𝒩bool .
In particular, the PEQ answering problem in the Horn subset of DL-Lite𝒩bool , namely DL-
Lite𝒩horn , still possesses LogSpace data complexity. This means the LogSpace upper bound
for conjunctive queries in DL-Lite is preserved for PEQs in DL-Lite𝒩horn .

As ontologies become larger and more complex, an important problem is how to con-
struct, reuse, update and refine large ontologies efficiently. Recently, ontology reuse has
received intensive interest, and different approaches have been proposed. Among several
approaches to ontology reuse, the forgetting operator has attracted extensive interests in the
communities of knowledge representation and DL-based ontologies. Informally, forgetting
is a particular form of reasoning that allows a set of elements 𝐹 (such as propositional vari-
ables, predicates, concepts and roles) in a KB to be discarded or hidden in such a way that
future reasoning on information irrelevant to 𝐹 will not be affected. Forgetting has been well
investigated in classical logic [24,23] and logic programming [11,12,33].

Forgetting is especially interesting for dynamic ontology management. In applications of
extracting, reusing and merging ontologies, we are often required to modify a large ontology
into a (smaller) new ontology in a way that certain concepts and roles are omitted/hidden
in the new ontology, while the ‘meaning’ of the original ontology (w.r.t. certain reasoning
tasks, such as query answering for a class of queries) is still preserved. Given that OWL
and several other major ontology languages are based on description logics, the problem of
modifying DL-based ontologies for various application requirements is receiving intensive
research interests (see Section 6 for further details).

Forgetting for DLs can be defined in two ways that are closely related: one is analogous
to the classical forgetting [24,23], and the other is through uniform interpolation [32]. Clas-
sical forgetting is a model-based approach which preserves model equivalence (over certain
signatures), whereas uniform interpolation is defined to preserve certain logical entailment.
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Although these two approaches coincide in propositional logic and first order logic, they
turn out to be different in DL-Lite.

Model-based forgetting has been proposed in [34], which preserves all forms of reason-
ing in DL-Lite and thus is the strongest form of forgetting. Model-based forgetting can be
used to forget about both concepts and roles in DL-Lite TBoxes. The result of forgetting
about concepts are always expressible in DL-Lite and a simple algorithm is provided in
[34]. However, the result of forgetting about roles in a DL-Lite TBox may not be express-
ible in general. For this reason, a weaker form of forgetting for DL-Lite TBoxes (uniform
interpolants) is introduced in [21] (Definition 16). This definition of forgetting is based on
the idea of preserving only DL-Lite concept inclusions in DL-Lite𝒩bool . In short, we refer to
this form of forgetting as b-forgetting where “𝑏” is for “bool”. It is shown in [21] that the re-
sult of b-forgetting about both concepts and roles is expressible in DL-Lite𝒩bool . It is pointed
out in [21] that b-forgetting is too weak to preserve some important semantic properties in
DL-Lite𝒩bool . For this reason, b-forgetting is strengthened by preserving more expressive in-
clusions. Specifically, the syntax of DL-Lite𝒩bool is extended to a new language DL-Lite𝑢bool
by allowing to express that a concept is nonempty, and as a result, a slightly stronger form of
forgetting is defined by requiring to preserve the inclusions in DL-Lite𝑢bool rather than only
in DL-Lite𝒩bool [21] (Definition 20). We refer to this forgetting as u-forgetting. Although it
is not expressible in DL-Lite𝒩bool , the result of u-forgetting is expressible in DL-Lite𝑢bool .

We remark that the above three definitions of forgetting are defined only for TBoxes.
However, in most applications, an ontology in DL-Lite is expressed as a KB, which is a pair
consisting of an ABox and a TBox and thus we believe that dynamic operators for ontology
reuse should be defined for DL-Lite KBs rather only for TBoxes.

In this paper, we investigate the issue of semantic forgetting for DL-Lite𝒩bool KBs. We
first define model-based forgetting for DL-Lite𝒩bool KBs and show several important prop-
erties of forgetting. We also introduce a transformation-based algorithm for concept forget-
ting in DL-Lite𝒩bool KBs, whose completeness implies the existence of concept forgetting.
To provide a unifying framework for defining and comparing different definitions of for-
getting, we introduce a parameterized forgetting called query-based forgetting, which is a
natural generalization of b-forgetting and u-forgetting. The three notions of forgetting in-
troduced in [34,21] can be naturally extended from TBoxes to KBs. In particular, we show
that model-based forgetting, b-forgetting and u-forgetting can all be characterized by query-
based forgetting. Thus, our approach actually provides a hierarchy of forgetting for DL-Lite.

We choose DL-Lite𝒩bool in this paper for at least two reasons: First, it is one of the most
expressive members of the DL-Lite family. Second, it is unclear to us if the algorithms
developed in this paper can be extended to more expressive DLs. We agree with [13] that it
would be an interesting but challenging problem to develop algorithms for determining the
existence of and computing forgetting for DLs such as 𝒜ℒ𝒞 and 𝒮ℋℐ𝒬 . A first attempt in
this direction is reported in [35]

In addition, we note that, while DL-Lite𝒩bool is a fragment of first order logic (FOL)
and forgetting for FOL has been investigated in [24], one cannot define forgetting for DL-
Lite𝒩bool KBs by transforming them into theories in FOL. There are two reasons for this:
First, the result of forgetting in FOL may not be in FOL as mentioned in [24]. Second, even
if the result of forgetting is in FOL, it may not correspond to a KB in DL-Lite𝒩bool .

The work in this paper significantly extends our conference paper [34] in at least three
ways: First, all definitions and results have been extended from TBoxes to KBs. Next, proofs
of all results are included. Last, we introduce and apply query-based forgetting as a general
framework for forgetting.
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While it is not hard to extend the definitions of forgetting to KBs, our efforts show that
it is non-trivial to extend results of forgetting in TBoxes to forgetting in KBs, due to the
involvement of ABoxes. This can be seen from the following aspects: 1) the algorithm of
forgetting in KBs is more complex, as changes in the TBox and the ABox both affect the
models of the KB in a complex way; 2) since KB reasoning tasks are different from those in
a single TBox, forgetting in KBs is expected to possess some different reasoning properties
concerning KB reasoning; 3) forgetting in KBs has different expressibility properties from
those of TBoxes; 4) some properties of forgetting in TBoxes are not straightforward to
be generalized to forgetting in KBs, because of the logical connection between TBox and
ABox, which can be seen from the proofs.

The main contributions of this paper can be summarized as follows:

– We introduce a model-based definition of forgetting about both concepts and roles for
KBs in DL-Lite𝒩bool . Reasoning and expressibility properties of forgetting in KBs are
studied in detail, as they are important for applications of DL-Lite ontology reuse and
combination. The model-based definition of forgetting describes an intuitive ontology
forgetting operation, and these properties can serve as criteria for evaluating various
ontology forgetting operations.

– We provide a resolution-like algorithm for forgetting about concepts in DL-Lite𝒩bool
KBs. The algorithm is capable to handle concept disjunction, which is one of the ma-
jor extensions in DL-Lite𝒩bool of traditional DL-Lite languages, and which is also the
cause of a exponential blow up in algorithm complexity. It is proved that the algorithm
is complete for concept forgetting in DL-Lite𝒩bool KBs. The algorithm provides a basis
for implementing forgetting operations in DL-Lite ontology applications.

– We propose and study several alternative definitions of forgetting based on query an-
swering (that is, query-based forgetting). In particular, three definitions of query-based
forgetting are proposed and their expressibility properties are investigated. We show
these three query-based forgettings correspond to model-based forgetting, b-forgetting
and u-forgetting.

The rest of the paper is organized as follows. Some basics of DL-Lite𝒩bool and DL-
Lite𝒩horn are briefly recalled in Section 2. We present the model-based definition of for-
getting in DL-Lite𝒩bool KBs in Section 3 and show the result of forgetting has desirable
properties. In Section 4, we introduce our algorithms for computing the result of forgetting
about concepts in a DL-Lite𝒩bool KB, and show the algorithms are correct with respect to
the semantic definition. In Section 5, we define query-based forgetting and discuss three in-
teresting variants of it. We also present a detailed discussion about the connection between
query-based forgetting and model-based forgetting and uniform interpolation. Finally, Sec-
tion 6 provides related work and Section 7 concludes the paper.

2 Preliminaries

DL-Lite is designed as a family of lightweight ontology languages. DL-Lite is able to ex-
press most features in UML 1 class diagrams and still has low reasoning complexity [6].
Besides standard reasoning tasks such as subsumption between concepts and consistency of
knowledge bases, the issue of answering complex queries is especially considered.

1 http://www.nlm.nih.gov/research/umls
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In DL-Lite𝒩bool language, complex roles and concepts are defined as follows:

𝑅←− 𝑃 ∣ 𝑃−

𝐵 ←− ⊤ ∣ ⊥ ∣ 𝐴 ∣ ⩾ 𝑛𝑅

𝐶 ←− 𝐵 ∣ ¬𝐶 ∣ 𝐶1 ⊓ 𝐶2

Here, 𝑛 ≥ 1 is a constant, 𝐴 is a concept and 𝑃 is a role name (with 𝑃− as its inverse). 𝐵
is called a basic concept and 𝐶 is called a general concept. Other concept constructors such
as ∃𝑅, ⩽ 𝑛𝑅 and 𝐶1 ⊔ 𝐶2 will be used as standard abbreviations. We will also call ⊤ (⊥)
an empty conjunction (resp., empty disjunction).

A general concept 𝐶 is said to be in disjunctive normal form (DNF) if 𝐶 is a disjunction
of conjunctions whose conjuncts are all basic concepts or their negations. 𝐶 is said to be in
conjunctive normal form (CNF) if 𝐶 is a conjunction of disjunctions whose disjuncts are all
basic concepts or their negations. It is not hard to see that any DL-Lite𝒩bool concept can be
transformed into DNF or CNF through De Morgan’s laws and distributive laws.

A DL-Lite𝒩bool TBox 𝒯 is a finite set of concept inclusions, or briefly inclusions, of the
form 𝐶1 ⊑ 𝐶2, where 𝐶1 and 𝐶2 are general concepts. A DL-Lite𝒩bool ABox𝒜 is a finite set
of membership assertions, or briefly assertions, of the form 𝐶(𝑎) or 𝑅(𝑎, 𝑏), where 𝑎 and 𝑏

are individual names. A DL-Lite𝒩bool knowledge base (KB) is a pair 𝒦 = ⟨𝒯 ,𝒜⟩.
Given a KB 𝒦, Ind(𝒦) denotes the set of all individual names in 𝒦 and Num(𝒦) the set

of all numerical parameters in 𝒦 together with 1.
The semantics of DL-Lite is specified by interpretations. An interpretation ℐ is a pair

(𝛥ℐ , ⋅ℐ), where 𝛥ℐ is a non-empty set called the domain and ⋅ℐ is an interpretation function
which associates each atomic concept 𝐴 with a subset 𝐴ℐ of 𝛥ℐ , each atomic role 𝑃 with
a binary relation 𝑃ℐ ⊆ 𝛥ℐ × 𝛥ℐ , and each individual name 𝑎 with an element 𝑎ℐ of 𝛥ℐ

such that 𝑎ℐ ∕= 𝑏ℐ for each pair of individual names 𝑎, 𝑏 (unique name assumption).
Using ♯(𝑆) to denote the cardinality of a set 𝑆, the interpretation function ⋅ℐ can be

extended to general concepts:

(𝑃−)ℐ = {(𝑎ℐ , 𝑏ℐ) ∣ (𝑏ℐ , 𝑎ℐ) ∈ 𝑃ℐ}
(⩾ 𝑛𝑅)ℐ = {𝑎ℐ ∣ ♯({𝑏ℐ ∣ (𝑎ℐ , 𝑏ℐ) ∈ 𝑅ℐ}) ≥ 𝑛}

(¬𝐶)ℐ = 𝛥ℐ ∖ 𝐶ℐ

(𝐶1 ⊓ 𝐶2)
ℐ = 𝐶ℐ

1 ∩ 𝐶ℐ
2

Two general concepts are said to be equivalent if they are associated with the same set in
any interpretation.

An interpretation ℐ is a model of inclusion 𝐶1 ⊑ 𝐶2 iff 𝐶ℐ
1 ⊆ 𝐶ℐ

2 . ℐ is a model of
assertion 𝐶(𝑎) (resp., 𝑅(𝑎, 𝑏)) if 𝑎ℐ ∈ 𝐶ℐ (resp., (𝑎ℐ , 𝑏ℐ) ∈ 𝑅ℐ ). Note that assertion ⊥(𝑎)
is allowed and is an assertion with no model. ℐ is called a model of a TBox 𝒯 (or ABox 𝒜)
if ℐ is a model of each inclusion (resp., assertion) in 𝒯 (resp., 𝒜). Two inclusions (or resp.,
assertions, TBoxes, ABoxes) are said to be equivalent if they have exactly the same models.
ℐ is a model of a KB ⟨𝒯 ,𝒜⟩ if ℐ is a model of both 𝒯 and 𝒜. We use Mod(𝒦) to

denote the set of all models of 𝒦. Two KBs 𝒦1,𝒦2 that have the same models are said to be
equivalent, denoted 𝒦1 ≡ 𝒦2. A KB 𝒦 logically implies an inclusion or assertion 𝛼 (resp.,
KB 𝒦′), denoted 𝒦 ∣= 𝛼 (resp., 𝒦 ∣= 𝒦′), if all models of 𝒦 are also models of 𝛼 (resp., 𝒦′).
Note that 𝒦1 ∣= 𝒦2 iff 𝒦1 ∣= 𝛼 for each inclusion and each assertion 𝛼 in 𝒦2. 𝒦1 ≡ 𝒦2 iff
𝒦1 ∣= 𝒦2 and 𝒦2 ∣= 𝒦1.

A KB𝒦 is consistent if it has at least one model. Given a set 𝒮 of concept and role names
in 𝒦, we say 𝒦 is coherent over 𝒮 if there is a model ℐ of 𝒦 such that for each concept or
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role name 𝐸 ∈ 𝒮, 𝐸ℐ ∕= ∅. 𝒦 is said to be coherent if 𝒦 is coherent over 𝒮, with 𝒮 being
the set of all concept and role names in 𝒦.

A positive existential query (PEQ) 𝑞(x) (or simply 𝑞) over a KB 𝒦 is a (first order logic)
formula ∃y.𝜑(x,y), where x,y are lists of variables, 𝜑(x,y) is constructed, using only ∧
and ∨, from atoms of the form 𝐶(𝑡) or 𝑅(𝑡1, 𝑡2) and each 𝑡 is either a variable from x,y or
an individual name. A PEQ is grounded if it does not have any free variable.

The Horn fragment of DL-Lite𝒩bool , denoted DL-Lite𝒩horn , is defined in a way analogous
to the Horn fragment in first order logic. An inclusion in DL-Lite𝒩horn TBox is of the form
𝐷 ⊑ 𝐵 where 𝐷 =

d
𝑘≥0 𝐵𝑘 is a (possibly empty) conjunction of basic concepts (i.e.,

𝐷 = ⊤ when 𝑘 = 0). An assertion in DL-Lite𝒩horn ABox is of the form 𝐵(𝑎) or 𝑅(𝑎, 𝑏).
The data complexity of the PEQ answering problem for DL-Lite𝒩horn KBs is in LogSpace,

while for DL-Lite𝒩bool it is coNP-complete.
In the following example we present a DL-Lite𝒩bool KB.

Example 2.1 Suppose a KB 𝒦 for a research center defines four concepts (Researcher ,
Paper , Professor and RA) and one role hasPublications , together with the information
about some researchers and their publications. “RA(𝑎)” states that 𝑎 is a research assistant,
while “hasPublications(𝑎, 𝑏)” means that researcher 𝑎 has paper 𝑏 published.

The TBox 𝒯 of 𝒦 consists of the following inclusions:

(1) ∃hasPublications ⊑ Researcher ,
(2) ∃hasPublications− ⊑ Paper ,
(3) Professor ⊑⩾ 5 hasPublications ,
(4) Researcher ⊑ Professor ⊔ RA,
(5) Professor ⊓ RA ⊑ ⊥.

The meaning of the inclusions (1) and (2) is obvious. The inclusion (3) states that a pro-
fessor of the center must have at least 5 papers published. The inclusion (4) specifies that a
researcher in the center must be either a professor or a research assistant while (5) requires
that no one is both a professor and research assistant.

The ABox 𝒜 in 𝒦 consists of the following assertions:

Professor(John) and hasPublications(John,P75 ),

which states that John is a professor and he has published the paper P75 .
Note that inclusion Researcher ⊑ Professor ⊔ RA is not allowed in DL-Lite𝒩horn . The

KB consisting of all other inclusions and assertions in 𝒦 is a DL-Lite𝒩horn KB.

In this paper, a signature is a finite set of concept and role names. Individual names are
not included in signatures. Given an expression (i.e., a concept, a TBox, an ABox, a query,
a KB or a language) 𝐸, we will denote by Sig(𝐸) the set of all concept and role names in 𝐸.

3 Forgetting in DL-Lite퓝bool Knowledge Bases

In this section, we define the operation of forgetting a set of concept and role names from
a DL-Lite𝒩bool KB. We will first give a definition of forgetting based on model equivalence
and investigate the properties of forgetting. After this, we will discuss the expressibility
properties of the forgetting operations both in DL-Lite𝒩bool and DL-Lite𝒩horn .

Throughout the paper, we use ℒ as a abbreviation of DL-Lite𝒩bool . Suppose 𝒦 is a KB
in ℒ. For simplicity, we also call 𝒦 an ℒ-KB. Let 𝒮 be a set of concept and role names
in ℒ. Informally, the KB that results from forgetting about 𝒮 in 𝒦 should: (1) not contain
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any new concept or role name, or any occurrence of concept or role name in 𝒮, (2) be
logically weaker than 𝒦, and (3) preserve the original meanings of the concepts and roles
other than those in 𝒮. Our model-based definition of forgetting in DL-Lite is an adaption of
the corresponding definition for forgetting in classical logic [24,23].

As with classical forgetting, a notion of model equivalence is needed for defining for-
getting in DL-Lite. Let ℐ1 and ℐ2 be two interpretations of ℒ. We define ℐ1 ∼𝒮 ℐ2 if ℐ1 and
ℐ2 agree on all individual, concept and role names except for those in 𝒮, i.e.,

1. ℐ1 and ℐ2 have the same domain, and interpret every individual name identically (i.e.,
𝑎ℐ1 = 𝑎ℐ2 for each individual name 𝑎);

2. for every concept name 𝐴 not in 𝒮, 𝐴ℐ1 = 𝐴ℐ2 ;
3. for every role name 𝑃 not in 𝒮, 𝑃ℐ1 = 𝑃ℐ2 .

Clearly, ∼𝒮 is an equivalence relation.

Definition 3.1 Let 𝒦 be an ℒ-KB and 𝒮 a signature. We call KB 𝒦′ a result of model-based
forgetting about 𝒮 in 𝒦 if:

– Sig(𝒦′) ⊆ Sig(𝒦)− 𝒮, and
– Mod(𝒦′) = { ℐ′ is an interpretation in ℒ ∣ there is an ℐ ∈ Mod(𝒦) s.t. ℐ ∼𝒮 ℐ′ }.

Before introducing alternative definitions of forgetting, we will refer to model-based forget-
ting as forgetting.

While forgetting is defined in DL-Lite𝒩bool here, we note that the definition can be applied
to any DL language.

It follows from the above definition that the result of forgetting about a signature 𝒮 in
a DL KB 𝒦, when it exists, is unique up to KB equivalence. That is, if both 𝒦′ and 𝒦′′

are results of forgetting about 𝒮 in 𝒦, then they are equivalent. For this reason, we use
forget(𝒦,𝒮) to denote a result of forgetting about 𝒮 in 𝒦. In the remainder of this paper,
whenever forget(𝒦,𝒮) is used, we always assume that it exists.

Example 3.1 (Cont. of Example 2.1) Suppose we want to forget about concept Professor in
𝒦, then forget(𝒦, {Professor}) consists of the following inclusions and assertions:

∃hasPublications ⊑ Researcher ,
∃hasPublications− ⊑ Paper ,
Researcher ⊑⩾ 5 hasPublications ⊔ RA,
⩾ 5 hasPublications(John), ¬RA(John), and hasPublications(John,P75 ).

The inclusion Researcher ⊑⩾ 5 hasPublications ⊔ RA can be equivalently presented
as Researcher ⊓ ⩽ 4 hasPublications ⊑ RA, which says that those researchers who have
at most 4 papers are research assistants. The assertions state that John has at least 5 papers
pulished, among which is P75 , and he is not an research assistant.

We first give an equivalent characterization of the model-based forgetting, which is help-
ful in proofs.

Proposition 3.1 Let 𝒦 be an ℒ-KB and 𝒮 a signature. Then any 𝒦′ over Sig(𝒦)− 𝒮 satis-
fying the following two conditions is a result of forgetting about 𝒮 in 𝒦, i.e., forget(𝒦,𝒮) =
𝒦′:

(1) 𝒦 ∣= 𝒦′, and
(2) for each model ℐ′ of 𝒦′, there exists a model ℐ of 𝒦 such that ℐ ∼𝒮 ℐ′.
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Proof Denoteℳ = Mod(forget(𝒦,𝒮)) = { ℐ′ is an interpretation in ℒ ∣ there is an ℐ ∈
Mod(𝒦) s.t. ℐ ∼𝒮 ℐ′ }, which we will simply present as { ℐ′ ∣ ∃ℐ ∈ Mod(𝒦), ℐ ∼𝒮 ℐ′ } in
the following proofs.

By the above condition (2), Mod(𝒦′) ⊆ ℳ. On the other hand, if ℐ′ ∈ ℳ, then there
exists ℐ such that ℐ ∈ Mod(𝒦) and ℐ ∼𝒮 ℐ′. From condition (1) and ℐ ∈ Mod(𝒦),
ℐ ∈ Mod(𝒦′). Note that ℐ′ and ℐ coincide on Sig(𝒦)−𝒮. Thus, by Sig(𝒦′) ⊆ Sig(𝒦)− 𝒮,
we have ℐ′ ∈ Mod(𝒦′). This impliesℳ⊆ Mod(𝒦′).

Therefore, Mod(𝒦′) =ℳ. That is, forget(𝒦,𝒮) = 𝒦′.

In the rest of this section, we show that our definition of forgetting for DL-Lite KBs
possesses several desirable properties. In particular, it preserves reasoning properties of the
KB.

Proposition 3.2 Let 𝒦 be an ℒ-KB and 𝒮 a signature. Then the following properties are
satisfied:

Consistency: forget(𝒦,𝒮) is consistent iff 𝒦 is consistent;
Coherence: forget(𝒦,𝒮) is coherent iff 𝒦 is coherent over Sig(𝒦)− 𝒮;
Consequence Invariance: for any inclusion or assertion 𝛼 with Sig(𝛼)∩𝒮 = ∅, forget(𝒦,𝒮) ∣=

𝛼 iff 𝒦 ∣= 𝛼;
PEQ Invariance: for any grounded PEQ 𝑞 with Sig(𝑞)∩𝒮 = ∅, forget(𝒦,𝒮) ∣= 𝑞 iff𝒦 ∣= 𝑞.

By Definition 3.1, the above properties are straightforward, as our forgetting preserves
the exact meaning of the remaining concepts and roles.

The following proposition says that if 𝒦2 is logically weaker than (resp., equivalent to)
𝒦1, then after forgetting, the results still have the same relation. Thus it shows that forgetting
preserves logical relations between KBs.

Proposition 3.3 (KB Implication) Let 𝒦1,𝒦2 be two ℒ-KBs and 𝒮 a signature. Then

1. 𝒦1 ∣= 𝒦2 implies forget(𝒦1,𝒮) ∣= forget(𝒦2,𝒮), and
2. 𝒦1 ≡ 𝒦2 implies forget(𝒦1,𝒮) ≡ forget(𝒦2,𝒮).

Proof Denoteℳ′
𝑖 = Mod(forget(𝒦𝑖,𝒮)) = {ℐ′ ∣ ∃ℐ ∈ Mod(𝒦𝑖), ℐ ∼𝒮 ℐ′} for 𝑖 = 1, 2.

Then Mod(𝒦1) ⊆ Mod(𝒦2) impliesℳ′
1 ⊆ℳ′

2.

The following property is useful for ontology extension and partial reuse. It says that
for two ontologies, as long as they do not share common concepts or roles in signature 𝒮,
forgetting about 𝒮 in their combination is the same as combining their respective results of
forgetting.

Proposition 3.4 (KB Union) Let 𝒦1,𝒦2 be two ℒ-KBs and 𝒮 a signature. If Sig(𝒦1) ∩
Sig(𝒦2) ∩ 𝒮 = ∅, then

forget(𝒦1 ∪ 𝒦2,𝒮) = forget(𝒦1,𝒮) ∪ forget(𝒦2,𝒮).

Proof Letℳ𝑖 = Mod(𝒦𝑖) andℳ′
𝑖 = Mod(forget(𝒦𝑖,𝒮)) for 𝑖 = 1, 2. Denoteℳ′ =

Mod(forget(𝒦1 ∪ 𝒦2,𝒮)) = {ℐ′ ∣ ∃ℐ ∈ ℳ1 ∩ℳ2, ℐ ∼𝒮 ℐ′}. It is easy to see thatℳ′ ⊆
ℳ′

1 andℳ′ ⊆ℳ′
2, and thusℳ′ ⊆ℳ′

1 ∩ℳ′
2. We want to show thatℳ′

1 ∩ℳ′
2 ⊆ℳ′.

For any model ℐ′ ∈ ℳ′
1 ∩ℳ′

2, there exists a model ℐ1 ∈ ℳ1 with ℐ1 ∼𝒮 ℐ′ and a
model ℐ2 ∈ℳ2 with ℐ2 ∼𝒮 ℐ′. Thus, ℐ′ ∼𝒮 ℐ1 ∼𝒮 ℐ2.
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Since Sig(𝒦1)∩𝒮 and Sig(𝒦2)∩𝒮 are disjoint, we can construct an interpretation ℐ such
that: (1) ℐ ∼𝒮 ℐ′; (2) ℐ and ℐ𝑖 coincide on Sig(𝒦𝑖)∩𝒮 for 𝑖 = 1, 2. Obviously, ℐ is a model
of both 𝒦1 and 𝒦2, i.e., ℐ ∈ ℳ1 ∩ℳ2. So we have ℐ′ ∈ℳ′ and thusℳ′

1 ∩ℳ′
2 ⊆ℳ′.

An interesting special case of Proposition 3.4 is when the signature of 𝒦1 or 𝒦2 is
disjoint with 𝒮.

Corollary 3.1 Let 𝒦1,𝒦2 be two ℒ-KBs and 𝒮 a signature. If Sig(𝒦2) ∩ 𝒮 = ∅, then

forget(𝒦1 ∪ 𝒦2,𝒮) = forget(𝒦1,𝒮) ∪ 𝒦2.

In a scenario of ontology extension and partial reuse, the above property guarantees that,
after forgetting about 𝒮 in 𝒦1, it is safe to extend forget(𝒦1,𝒮) with any other ontology 𝒦2

(or reuse forget(𝒦1,𝒮) within context ontology 𝒦2) that does not contain concepts or roles
in 𝒮.

This property is also useful for computation of forgetting. Note that each KB 𝒦 can
be divided into two parts 𝒦 = 𝒦1 ∪ 𝒦2 where Sig(𝒦2) ∩ 𝒮 = ∅. As forget(𝒦,𝒮) =

forget(𝒦1,𝒮) ∪ 𝒦2, we only need to consider the subset 𝒦1 when computing the result
of forgetting about 𝒮 in 𝒦.

Another special case is when ontologies share no common concept or role name. In this
case, forgetting can be performed in an ad hoc way before extension.

Combining Proposition 3.2 and Proposition 3.4, we have the following corollary.

Corollary 3.2 Let 𝒦1,𝒦2 be two ℒ-KBs and 𝒮 a signature. If Sig(𝒦1) ∩ Sig(𝒦2) ∩ 𝒮 = ∅,
then

1. forget(𝒦1,𝒮) ∪ forget(𝒦2,𝒮) is consistent iff 𝒦1 ∪ 𝒦2 is consistent;
2. forget(𝒦1,𝒮)∪ forget(𝒦2,𝒮) is coherent iff𝒦1∪𝒦2 is coherent over Sig(𝒦1∪𝒦2)−𝒮;
3. for any inclusion or assertion 𝛼 with Sig(𝛼)∩𝒮 = ∅, forget(𝒦1,𝒮)∪ forget(𝒦2,𝒮) ∣= 𝛼

iff 𝒦1 ∪ 𝒦2 ∣= 𝛼;
4. for any grounded PEQ 𝑞 with Sig(𝑞) ∩ 𝒮 = ∅, forget(𝒦1,𝒮) ∪ forget(𝒦2,𝒮) ∣= 𝑞 iff
𝒦1 ∪ 𝒦2 ∣= 𝑞.

We have shown properties of forgetting concerning relations between KBs. Now we
discuss some properties concerning signatures. The following proposition shows that the
forgetting operation can be divided into steps, with a part of the signature forgotten in each
step.

Proposition 3.5 (Signature Union) Let 𝒦 be an ℒ-KB and 𝒮1,𝒮2 ⊆ Sig(ℒ). Then

forget(𝒦,𝒮1 ∪ 𝒮2) = forget(forget(𝒦,𝒮1),𝒮2).

Proof Let ℳ′ = Mod(forget(𝒦,𝒮1)) = {ℐ′ ∣ ∃ℐ ∈ Mod(𝒦), ℐ ∼𝒮1
ℐ′} and ℳ′′ =

{ℐ′ ∣ ∃ℐ ∈ ℳ′, ℐ ∼𝒮2
ℐ′}. We have ℳ′′ = Mod(forget(forget(𝒦,𝒮1),𝒮2)). Then it

is not hard to see that ℳ′′ = {ℐ′ ∣ ∃ℐ ∈ Mod(𝒦), ℐ ∼𝒮1∪𝒮2
ℐ′}. That is ℳ′′ =

Mod(forget(𝒦,𝒮1 ∪ 𝒮2)).

To compute the result of forgetting about 𝒮 in 𝒦, it is equivalent to forget the concept
and role names in 𝒮 one by one.

A direct conclusion is that the forgetting operation does not rely on the order in which
concept and role names are forgotten.
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Corollary 3.3 Let 𝒦 be an ℒ-KB and 𝒮1,𝒮2 ⊆ Sig(ℒ). Then
forget(forget(𝒦,𝒮1),𝒮2) ≡ forget(forget(𝒦,𝒮2),𝒮1).
As more concepts and roles are forgotten, the result of forgetting becomes logically

weaker.

Proposition 3.6 Let 𝒦 be an ℒ-KB and 𝒮1,𝒮2 ⊆ Sig(ℒ). If 𝒮1 ⊆ 𝒮2, then forget(𝒦,𝒮1) ∣=
forget(𝒦,𝒮2).
Proof Letℳ′ = {ℐ′ ∣ ∃ℐ ∈ Mod(𝒦), ℐ ∼𝒮1

ℐ′} andℳ′′ = {ℐ′ ∣ ∃ℐ ∈ Mod(𝒦), ℐ ∼𝒮2

ℐ′}. If 𝒮1 ⊆ 𝒮2, thenℳ′ ⊆ℳ′′.

Definition 3.1 clearly captures our informal understanding of forgetting. However, given
a DL-Lite𝒩bool KB 𝒦 and a set 𝒮 of concept and role names, a result of forgetting about 𝒮
in 𝒦 may not be expressible in DL-Lite𝒩bool . The following example provides some intuition
about this point.

Example 3.2 From the KB𝒦 in Example 2.1, we know that John has at least 5 publications.
Suppose we want to forget about role name hasPublications in 𝒦, we need to express in the
result of forgetting that there are at least 5 publications for the whole center. However, it
seems that DL-Lite𝒩bool is unable to express such a constraint unless new individual names
or new role names are introduced.

However, if 𝒮 contains only concept names, we have the following positive result.

Theorem 3.1 Let 𝒦 be an ℒ-KB and 𝒮 a set of concept names. Then forget(𝒦,𝒮) is always
expressible in DL-Lite𝒩bool .

A natural question is whether the result of forgetting about concept names from a DL-
Lite𝒩horn KB is still expressible in DL-Lite𝒩horn . Unfortunately, this is not always the case.
This can be seen from Example 3.1: One cannot express non-membership relations in DL-
Lite𝒩horn KBs, e.g., ¬RA(John) is not expressible.

However, when the ABox of a KB is empty, we have the following positive result.

Theorem 3.2 For any DL-Lite𝒩horn KB𝒦 = ⟨𝒯 , ∅⟩ and any set 𝒮 of concept names, forget(𝒦,𝒮)
is always expressible in DL-Lite𝒩horn .

In the next section, we will introduce an algorithm for computing the result of forgetting
concept names in a DL-Lite𝒩bool KB. From the soundness and completeness of the algorithm,
we can immediately conclude the correctness of Theorems 3.1 and 3.2.

4 Computing Concept Forgetting in DL-Lite퓝bool

In this section, we introduce an algorithm for computing the results of forgetting about
concepts in DL-Lite𝒩bool KBs. We prove that our algorithm is sound and complete with
respect to the semantic definition of forgetting in the previous section. Our algorithm shows
that the result of forgetting about concepts in a DL-Lite𝒩bool KB can always be obtained
using simple syntax-based transformations.

Before presenting the algorithm, we will first show that each DL-Lite𝒩bool KB can be
equivalently transformed into a normal form. In what follows, we will call a basic concept
or its negation a literal concept.

We first introduce a normal form for TBoxes in DL-Lite𝒩bool .
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Definition 4.1 A TBox 𝒯 in DL-Lite𝒩bool is in normal form if all of its inclusions are of the
form 𝐵1 ⊓ . . . ⊓ 𝐵𝑚 ⊑ 𝐵𝑚+1 ⊔ . . . ⊔ 𝐵𝑛 where 0 ≤ 𝑚 ≤ 𝑛 and 𝐵1, . . . , 𝐵𝑛 are basic
concepts such that 𝐵𝑖 ∕= 𝐵𝑗 for all 𝑖 ∕= 𝑗.

Algorithm 1 shows that every DL-Lite𝒩bool TBox can be transformed into an equivalent
TBox in normal form.

Algorithm 1 (Transform a DL-Lite𝒩bool TBox into normal form)
Input: A TBox 𝒯 in DL-Lite𝒩bool .
Output: A TBox 𝒯 ′ in normal form.
Method:
Step 1. For each inclusion 𝐶 ⊑ 𝐷, replace 𝐶 with its DNF and replace 𝐷 with its CNF.
Step 2. For each resulting inclusion 𝐶1 ⊔ ⋅ ⋅ ⋅ ⊔ 𝐶𝑚 ⊑ 𝐷1 ⊓ ⋅ ⋅ ⋅ ⊓ 𝐷𝑛, where each 𝐶𝑖 is a conjunction of
literal concepts and each 𝐷𝑗 is a disjunction of literal concepts, replace the inclusion with the set of inclusions
{𝐶𝑖 ⊑ 𝐷𝑗 ∣ 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛 }.
Step 3. Replace each inclusion 𝐶′

𝑖 ⊓¬𝐵 ⊑ 𝐷𝑗 , where 𝐵 is a basic concept, with 𝐶′
𝑖 ⊑ 𝐵 ⊔𝐷𝑗 to eliminate

the negation. Similarly, replace each 𝐶𝑖 ⊑ ¬𝐵 ⊔𝐷′
𝑗 with 𝐶𝑖 ⊓𝐵 ⊑ 𝐷′

𝑗 .
Step 4. Remove any inclusion with the same concept names appearing on both sides of the inclusion, and
return the resulting TBox as 𝒯 ′.

Fig. 1 Transform DL-Lite𝒩bool TBoxes into normal form

Lemma 4.1 For any DL-Lite𝒩bool TBox 𝒯 , the TBox 𝒯 ′ returned in Algorithm 1 is in normal
form and is equivalent to 𝒯 .

Proof It is not hard to see that Steps 1, 2 and 4 preserve the equivalence of the inclusions.
We only need to show Step 3 transforms the inclusions equivalently.

We want to show that for general concepts 𝐶1, 𝐶2 and 𝐶3, the following two inclusions
are equivalent:

𝐶1 ⊓ 𝐶2 ⊑ 𝐶3 and 𝐶1 ⊑ ¬𝐶2 ⊔ 𝐶3.
For each model ℐ of the first inclusion, we have 𝐶ℐ

1 ∩𝐶ℐ
2 ⊆ 𝐶ℐ

3 . Thus 𝐶ℐ
1 ⊆ 𝐶ℐ

2 ∪𝐶ℐ
3 ,

where 𝐶ℐ
2 = 𝛥ℐ −𝐶ℐ

2 . That is, ℐ is also a model of the second inclusion. Similarly we can
show that each model of the second inclusion is also a model of the first inclusion.

In our algorithm for computing the result of forgetting in a KB, we need also to transform
each DL-Lite𝒩bool ABox into a normal form.

Definition 4.2 A DL-Lite𝒩bool ABox 𝒜 is in normal form if 𝒜 = {𝐶1(𝑎1), . . . , 𝐶𝑠(𝑎𝑠)} ∪
𝒜𝑟 for some 𝑠 ≥ 0 and the following conditions are satisfied:

1. 𝒜𝑟 contains only role assertions,
2. 𝑎𝑖 ∕= 𝑎𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑠, and
3. 𝐶𝑖 is in DNF, for each 1 ≤ 𝑖 ≤ 𝑠.

Algorithm 2 explains how to transform a DL-Lite𝒩bool ABox into normal form.
Note that after ABox 𝒜 is transformed into its normal form, each individual 𝑎 is associ-

ated with only one assertion 𝐶(𝑎) in 𝒜, and 𝐶 is in DNF.

Lemma 4.2 Given a DL-Lite𝒩bool ABox𝒜, the ABox𝒜′ returned in Algorithm 2 is in normal
form and is equivalent to 𝒜.
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Algorithm 2 (Transform a DL-Lite𝒩bool ABox into normal form)
Input: An ABox 𝒜 in DL-Lite𝒩bool .
Output: An ABox 𝒜′ in normal form.
Method:
Step 1. Let 𝑎1, . . . , 𝑎𝑠 be the distinct individual names in 𝒜 and let As(𝑎𝑖) = {𝐶(𝑎𝑖) ∣ 𝐶(𝑎𝑖) ∈ 𝒜},
for 𝑖 = 1, . . . , 𝑠. Replace each set of assertions As(𝑎𝑖) = {𝐶1(𝑎𝑖), . . . , 𝐶𝑛(𝑎𝑖)}, with a single assertion
(𝐶1 ⊓ . . . ⊓ 𝐶𝑛)(𝑎𝑖).
Step 2. Transform each assertion (𝐶1 ⊓ ⋅ ⋅ ⋅ ⊓ 𝐶𝑛)(𝑎) into its DNF, i.e., 𝐶(𝑎) = (𝐷1 ⊔ ⋅ ⋅ ⋅ ⊔ 𝐷𝑚)(𝑎),
where each 𝐷𝑘 is a conjunction of literal concepts, and no conjunction contains both a literal concept and its
negation.
Step 3. Return the resulting set of concept assertions 𝐶(𝑎) together with the original role assertions in 𝒜.

Fig. 2 Transform DL-Lite𝒩bool ABoxes into normal form

A KB is said to be in normal form if both its TBox and ABox are in normal form.
We are now ready to present our algorithm for computing the result of forgetting about

a set 𝒮 of concept names in a DL-Lite𝒩bool KB 𝒦. The basic idea of Algorithm 3 is to first
transform the given KB into its normal form, and after generating all inclusions and asser-
tions that should be included in the result of forgetting, remove all occurrences of concepts
in 𝒮.

Algorithm 3 (Compute the result of forgetting a set of concept names in a DL-Litebool KB)
Input: A DL-Litebool KB 𝒦 = ⟨𝒯 ,𝒜⟩ and a set 𝒮 of concept names.
Output: forget(𝒦,𝒮).
Method:
Step 1. Using Algorithms 1 and 2, transform the KB 𝒦 into its normal form.
Step 2. For each pair of inclusions 𝐴 ⊓ 𝐶 ⊑ 𝐷 and 𝐶′ ⊑ 𝐴 ⊔ 𝐷′ in 𝒯 , where 𝐴 ∈ 𝒮, add inclusion
𝐶 ⊓ 𝐶′ ⊑ 𝐷 ⊔𝐷′ to 𝒯 if it contains no concept name 𝐴′ appearing on both sides of the inclusion.
Step 3. For each concept name 𝐴 ∈ 𝒮 occurring in 𝒜, add 𝐴 ⊑ ⊤ and ⊥ ⊑ 𝐴 to 𝒯 ;
Step 4. For each assertion 𝐶(𝑎) in 𝒜, each inclusion 𝐴 ⊓ 𝐷1 ⊑ 𝐷2 and each inclusion 𝐷3 ⊑ 𝐴 ⊔ 𝐷4

in 𝒯 , where 𝐴 ∈ 𝒮, add 𝐶′(𝑎) to 𝒜, where 𝐶′ is obtained by replacing each occurrence of 𝐴 in 𝐶 with
¬𝐷1 ⊔𝐷2 and ¬𝐴 with ¬𝐷3 ⊔𝐷4, and 𝐶′ is transformed into its DNF.
Step 5. Remove all inclusions of the form 𝐶 ⊑ ⊤ or ⊥ ⊑ 𝐶, and all assertions of the form ⊤(𝑎).
Step 6. Remove all inclusions and assertions that contain any concept name in 𝒮.
Step 7. Return the resulting KB as forget(𝒦,𝒮).

Fig. 3 Forget concepts in a DL-Litebool KB.

In Algorithm 3, Step 1 transforms the input KB into normal form. For each concept
name 𝐴, Step 2 forgets about 𝐴 from TBox inclusions in a resolution-like manner. How-
ever, the original inclusions are not discarded immediately because they will be used in
performing forgetting in the ABox. After Step 2, all the inclusions to be included in the
result of forgetting have been generated. Step 3 is to make the specification of Step 4 sim-
pler, by ensuring that the subsumer and subsumee of 𝐴 is explicitly stated. In Step 4, each
positive occurrence of 𝐴 in the ABox is replaced by its subsumer, and each negative occur-
rence by its subsumee. Note that in each assertion 𝐶(𝑎), 𝐶 is always in DNF. Finally, Step 5
eliminates redundant inclusions and assertions, and Step 6 removes the original inclusions
and assertions containing concept names in 𝒮.

Algorithm 3 is demonstrated in the following example.
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Example 4.1 (Cont. of Example 2.1) To compute forget(𝒦, {Professor}), note that 𝒦 is
already in its normal form. In Step 2, two new inclusions are generated,

Researcher ⊑⩾ 5 hasPublications ⊔ RA and
Researcher ⊓ RA ⊑ RA.

The second inclusion contains concept RA on both sides and is not added to the TBox.
Then, in Step 4, two assertions ⩾ 5 hasPublications(John) and ¬RA(John) are added

into 𝒜.
After all inclusions and assertions containing concept Professor are removed in Step 6,

the algorithm returns the KB in Example 3.1 as forget(𝒦, {Professor}).
It is easy to see that Algorithm 3 always terminates. In the worst case, the algorithm is

exponential in time. However, the exponential blow up is introduced only by Step 1, where
the given KB is transformed into its normal form. Note that the transformations in Steps 2
and 4 take only polynomial time. If the input KB is in normal form, Algorithm 3 takes only
polynomial time to compute the result of forgetting.

Algorithm 3 is sound and complete with respect to the semantic definition of forgetting.

Theorem 4.1 Let 𝒦 be a DL-Lite𝒩bool KB and 𝒮 a set of concept names. Then Algorithm 3
always returns forget(𝒦,𝒮).

Suppose the size of 𝒮 is fixed. When the input 𝒦 is in normal form, the time complexity
of Algorithm 3 is 𝑂(∣𝒦∣3).

Before proving Theorem 4.1, we first show the following lemma.

Lemma 4.3 In Algorithm 3, Steps 2 – 5 are equivalence-preserving transformations for
KBs.

Proof Step 2: We want to show that each inclusion added in this step is a logical
consequence of 𝒯 . As shown in the proof of Lemma 4.1, each 𝐴 ⊓ 𝐶 ⊑ 𝐷 is equivalent
to 𝐴 ⊑ ¬𝐶 ⊔ 𝐷, and each 𝐶′ ⊑ 𝐴 ⊔ 𝐷′ to 𝐶′ ⊓ ¬𝐷′ ⊑ 𝐴. Thus each new inclusion
𝐶 ⊓ 𝐶′ ⊑ 𝐷 ⊔ 𝐷 added, which is equivalent to 𝐶′ ⊓ ¬𝐷′ ⊑ ¬𝐶 ⊔ 𝐷, is a logical conse-
quence of 𝒯 . Note that any inclusion containing concept name 𝐴′ on both sides is a tautology
inclusion. Thus we have shown that Step 2 is a equivalence-preserving transformation.
Step 3: Each inclusion added in this step is a tautology inclusion.
Step 4: Again, each 𝐴⊓𝐷1 ⊑ 𝐷2 is equivalent to 𝐴 ⊑ ¬𝐷1 ⊔𝐷2 while each 𝐷3 ⊑ 𝐴⊔𝐷4

is equivalent to ¬𝐴 ⊑ ¬𝐷3 ⊔𝐷4. For each assertion of the form[ ⊔
(𝐴 ⊓𝐷𝑖) ⊔

⊔
(¬𝐴 ⊓𝐷𝑗) ⊔

⊔
𝐷𝑘

]
(𝑎)

in 𝒜, where each 𝐷 with subscript is a conjunction of literal concepts and does not contain
𝐴, the new assertion added in Step 4,[ ⊔(

(¬𝐷1 ⊔𝐷2) ⊓𝐷𝑖

) ⊔⊔(
(¬𝐷3 ⊔𝐷4) ⊓𝐷𝑗

) ⊔⊔𝐷𝑘

]
(𝑎),

is a logical consequence of 𝒦.
Step 5: Each inclusion or assertion removed in this step is a tautology inclusion or assertion.

With Lemma 4.1, 4.2 and 4.3, we are now ready to present the proof of Theorem 4.1.
Proof of Theorem 4.1 By Lemma 4.1 and 4.2, Step 1 transforms a KB into an equivalent
KB. By Lemma 4.3, each of Steps 2 – 5 also transforms a KB into an equivalent KB. 1 KW: Rodney, is

”order-insensitive” a right
word here?

1 Note that in Step 6, the removal of inclusions and assertions is order-insensitive. With-
out loss of generality, we assume:
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– the inclusions and assertions that are added in Step 2 – 4 are firstly removed;
– suppose 𝒮 = {𝐴1, . . . , 𝐴𝑛}, then the inclusions and assertions containing 𝐴𝑖 are re-

moved before those containing 𝐴𝑖+1 for 𝑖 = 1, . . . , 𝑛− 1;
– assertions are removed first, followed by inclusions of the form 𝐴⊓𝐶 ⊑ 𝐷, and then of

the form 𝐶 ⊑ 𝐴 ⊔𝐷.

Let 𝒦0 be the KB obtained in Step 6 after removing all inclusions and assertions con-
taining concepts in 𝒮 that are added in Steps 2 – 4. Denote 𝒦𝑖+1 to be the resulting KB
obtained from 𝒦𝑖 by removing one assertion or inclusion containing some concept name
𝐴 ∈ 𝒮. To prove the result returned in Step 7 is forget(𝒦,𝒮), by Proposition 3.1, we only
need to show that for each 𝑖 > 0 and each model ℐ′ of 𝒦𝑖+1, there always exists a model ℐ
of 𝒦𝑖 s.t. ℐ ∼{𝐴} ℐ′.

Consider the following three cases:
Case 1. Consider removing assertion

[ ⊔
(𝐴 ⊓ 𝐷𝑖) ⊔

⊔
(¬𝐴 ⊓ 𝐷𝑗) ⊔

⊔
𝐷𝑘

]
(𝑎), which

is equivalent to
[
(𝐴 ⊓ 𝐶1) ⊔ (¬𝐴 ⊓ 𝐶2) ⊔ 𝐶3

]
(𝑎) where 𝐶1 =

⊔
𝐷𝑖, 𝐶2 =

⊔
𝐷𝑗 and

𝐶3 =
⊔

𝐷𝑘:
For each model ℐ′ of 𝒦𝑖+1, denote 𝛤 =

∩
(𝐴⊓𝐷1⊑𝐷2)∈𝒦𝑖+1

(¬𝐷1 ⊔ 𝐷2)
ℐ′

and 𝛤 ′ =∩
(𝐷3⊑𝐴⊔𝐷4)∈𝒦𝑖+1

(¬𝐷3 ⊔𝐷4)
ℐ′

. Then 𝛤 ′ ⊆ 𝐴ℐ′ ⊆ 𝛤 . Construct ℐ such that ℐ ∼{𝐴} ℐ′
and satisfies one of the following three conditions:

(1) 𝐴ℐ = 𝐴ℐ′ ∪ {𝑎ℐ′}, if 𝑎ℐ
′ ∈ (𝛤 −𝐴ℐ′

) ∩ (𝐶ℐ′
1 − 𝐶ℐ′

2 );

(2) 𝐴ℐ = 𝐴ℐ′ − {𝑎ℐ′}, if 𝑎ℐ
′ ∈ 𝐴ℐ′ ∩ 𝛤 ′ ∩ (𝐶ℐ′

2 − 𝐶ℐ′
1 );

(3) 𝐴ℐ = 𝐴ℐ′
otherwise.

To show that ℐ ∣= 𝒦𝑖, we only need to show that ℐ satisfies each assertion or inclusion
in 𝒦𝑖 containing 𝐴.

Consider the removed assertion
[
(𝐴⊓𝐶1)⊔ (¬𝐴⊓𝐶2)⊔𝐶3

]
(𝑎), and we want to show

that
𝑎ℐ ∈ (𝐴ℐ ∩ 𝐶ℐ

1 ) ∪ (𝐴ℐ ∩ 𝐶ℐ
2 ) ∪ 𝐶ℐ

3 . (∗)
For each inclusion 𝐴 ⊓𝐷1 ⊑ 𝐷2 and each inclusion 𝐷3 ⊑ 𝐴 ⊔𝐷4 in 𝒦𝑖+1, assertion[ (

(¬𝐷1 ⊔𝐷2) ⊓ 𝐶1

) ⊔ ((¬𝐷3 ⊔𝐷4) ⊓ 𝐶2

) ⊔ 𝐶3

]
(𝑎)

has been added into the KB in Step 4. These assertions are still in 𝒦𝑖+1, and thus satisfied
by ℐ′. Combining all such assertions, we have

𝑎ℐ
′ ∈ (𝛤 ∩ 𝐶ℐ′

1 ) ∪ (𝛤 ′ ∩ 𝐶ℐ′
2 ) ∪ 𝐶ℐ′

3 .

In case (1), we have 𝑎ℐ
′ ∈ 𝐴ℐ ∩ 𝐶ℐ′

1 , thus (∗) holds. In case (2), we have 𝑎ℐ
′ ∈

𝐴ℐ ∩ 𝐶ℐ′
2 , and (∗) still holds. In case (3), we have either 𝑎ℐ

′ ∈ 𝐴ℐ′ ∩ (𝐶ℐ′
1 − 𝐶ℐ′

2 ), or
𝑎ℐ

′ ∈ 𝐴ℐ′ ∩ (𝐶ℐ′
2 − 𝐶ℐ′

1 ), or 𝑎ℐ
′ ∈ 𝐶ℐ′

1 ∩ 𝐶ℐ′
2 . That is, (∗) always holds.

As all the assertions added in Steps 2 – 4 are removed first,
[
(𝐴 ⊓ 𝐶1) ⊔ (¬𝐴 ⊓ 𝐶2) ⊔

𝐶3

]
(𝑎) is the only assertion about 𝑎 in 𝒦𝑖. Obviously, ℐ also satisfies the other assertions

in 𝒦𝑖.
Now we consider inclusions containing 𝐴 in 𝒦𝑖. For each inclusion 𝐴⊓𝐷1 ⊑ 𝐷2, since

it is also in 𝒦𝑖+1, we have 𝐴ℐ′ ⊆ 𝐷ℐ′
1 ∪𝐷ℐ′

2 . In case (1), from 𝛤 ⊆ 𝐷ℐ′
1 ∪𝐷ℐ′

2 , we have
𝑎ℐ

′ ∈ 𝐷ℐ′
1 ∪𝐷ℐ′

2 , and thus 𝐴ℐ ⊆ 𝐷ℐ
1 ∪𝐷ℐ

2 . In case (2) or (3), obviously, 𝐴ℐ ⊆ 𝐷ℐ
1 ∪𝐷ℐ

2 .
That is, ℐ satisfies 𝐴⊓𝐷1 ⊑ 𝐷2. For each inclusion 𝐷3 ⊑ 𝐴⊔𝐷4 in 𝒦, it can be shown in
a similar way that ℐ also satisfies 𝐷3 ⊑ 𝐴 ⊔𝐷4.
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We have shown that ℐ ∣= 𝒦𝑖.
Case 2. Consider removing inclusion 𝐴 ⊓ 𝐶 ⊑ 𝐷: For each model ℐ′ of 𝒦𝑖+1, construct
ℐ such that ℐ ∼{𝐴} ℐ′ and 𝐴ℐ = 𝐴ℐ′ ∩ (¬𝐶 ⊔ 𝐷)ℐ

′
. Since assertions containing 𝐴 are

removed first, we only need to show that ℐ satisfies each inclusion in 𝒦𝑖 containing 𝐴.
Obviously, ℐ satisfies 𝐴⊓𝐶 ⊑ 𝐷 and all the other inclusions in𝒦𝑖 of the form 𝐴⊓𝐷1 ⊑

𝐷2. For each inclusion in 𝒦𝑖 of the form 𝐷3 ⊑ 𝐴 ⊔ 𝐷4, it is also in 𝒦𝑖+1 and we have
𝐷ℐ′

3 ⊆ 𝐴ℐ′ ∪𝐷ℐ′
4 . Also, inclusion 𝐶 ⊓𝐷3 ⊑ 𝐷 ⊔𝐷4 has been added into the KB in Step 2

and is still in 𝒦𝑖. Thus, we have 𝐷ℐ′
3 ⊆ 𝐶ℐ′ ∪𝐷ℐ′ ∪𝐷ℐ′

4 . Combining these two facts, we
have 𝐷ℐ′

3 ⊆ (𝐴ℐ′ ∩ (¬𝐶 ⊔ 𝐷)ℐ
′
) ∪ 𝐷ℐ′

4 , which is 𝐷ℐ
3 ⊆ 𝐴ℐ ∪ 𝐷ℐ

4 . That is, ℐ satisfies
𝐷3 ⊑ 𝐴 ⊔𝐷4.

We have shown that ℐ ∣= 𝒦𝑖.
Case 3. Consider removing inclusion 𝐶 ⊑ 𝐴 ⊔ 𝐷: For each model ℐ′ of 𝒦𝑖+1, construct
ℐ such that ℐ ∼{𝐴} ℐ′ and 𝐴ℐ = 𝐴ℐ′ ∪ (𝐶 ⊓ ¬𝐷)ℐ

′
. Obviously, ℐ satisfies 𝐶 ⊑ 𝐴 ⊔ 𝐷

and all the other inclusions in 𝒦𝑖 of the form 𝐶′ ⊑ 𝐴⊓𝐷′. And, again, we have shown that
ℐ ∣= 𝒦𝑖.

Based on the discussions of Cases 1 – 3, we can draw the conclusion that the KB re-
turned in Step 7 is forget(𝒦,𝒮).

Last, we show that the computational complexity of this algorithm is in polynomial time
when the input 𝒦 is in normal form. Let 𝑛 be the size of 𝒦.

Since the size of 𝒮 is a constant, without loss of generality, we assume that 𝒮 contains
only one concept name 𝐴. In Step 2, at most 𝑛2 pairs of inclusions are considered. In Step 4,
at most 𝑛3 triples of assertion and inclusions are considered. Moreover, it is in linear time
to transform the resulting concept description 𝐶′. The other steps except for Step 1 are
obviously in linear time. Therefore, the time complexity of Algorithm 3 is 𝑂(∣𝒦∣3) when
the input is in normal form.

If the original KB is in DL-Lite𝒩horn , then the KB is already in normal form, and we can
apply Steps 2 – 7 of Algorithm 3 directly to the KB. Note that the new inclusions added in
Step 2 are still inclusions in DL-Lite𝒩horn . But, after Step 4 is done, the resulting ABox may
not be in DL-Lite𝒩horn . However, when the ABox is empty, the result of forgetting is always
in DL-Lite𝒩horn .

Theorem 4.2 Let 𝒦 be a DL-Lite𝒩horn KB s.t. 𝒦 = ⟨𝒯 , ∅⟩, and 𝒮 be a set of concept names.
Then forget(𝒦,𝒮) can be computed by Algorithm 3 in polynomial time and the result is in
DL-Lite𝒩horn .

Proof We only need to show that the result is in DL-Lite𝒩horn . It is enough to note that
in Step 2, for each pair 𝐴 ⊓𝐷 ⊑ 𝐵 and 𝐷′ ⊑ 𝐴, where 𝐵 is a basic concept and 𝐷,𝐷′ are
conjunctions of basic concepts, the new inclusion added, 𝐷 ⊓𝐷′ ⊑ 𝐵, is in DL-Lite𝒩horn .

Theorems 3.1 and 3.2 are direct consequences of the above two theorems.

5 Query-Based Forgetting for DL-Lite Knowledge Bases

As mentioned in Section 1, three forms of forgetting have been proposed for DL-Lite TBoxes
in the literature, which are complementary to each other. It is also argued in [21] that prac-
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tical application domains may need different definitions of forgetting. In the setting of DL-
Lite KBs, we have the same requirement from ontology applications (i.e., various forms of
forgetting might co-exist). A natural question arises: Can we establish a unifying framework
for defining and comparing various definitions of forgetting for DL-Lite KBs? To this end,
we introduce a hierarchy of forgetting for DL-Lite𝒩bool KBs, which can be used as a unify-
ing framework for forgetting in DL-Lite𝒩bool KBs. In particular, we show that three forms
of forgetting for DL-Lite𝒩bool KBs can be defined/embedded in our framework (two are nat-
ural generalizations of those two forgettings for TBoxes in [21], while the other one is the
model-based forgetting defined in Definition 3.1)

As the DL-Lite family is especially designed for efficient query answering, our hierarchy
of forgetting is defined in terms of preserving query answering.2 KW: check this para

2

5.1 Definitions and Basic Properties

The intuition behind our query-based forgetting is based on the following conditions that are
naturally obtained from the informal description of forgetting described earlier. Specifically,
the result of forgetting about a signature 𝒮 in 𝒦 should be a KB 𝒦′ such that (1) 𝒦′ does
not contain new concepts or roles, or any occurrence of concept or role name in 𝒮, (2) 𝒦′ is
weaker than 𝒦, and (3) 𝒦 and 𝒦′ give the same answers to all queries that is irrelevant to 𝒮
in a given query language.

In this section, we assume that 𝒬 is a query language for DL-Lite𝒩bool and in particular,
specifies an inference relation𝒦 ∣= 𝑞 for every KB𝒦 in DL-Lite𝒩bool and every query 𝑞 in𝒬.
Note that the notion of query is very general here. A query can be an assertion, an inclusion,
or even a formula in a logic language such as the first order logic.

Definition 5.1 (query-based forgetting) Let 𝒦 be an ℒ-KB, 𝒮 be a signature and 𝒬 be a
query language for ℒ. A KB𝒦′ is a result of𝒬-forgetting about 𝒮 in𝒦 if the following three
conditions are satisfied:

– Sig(𝒦′) ⊆ Sig(𝒦)− 𝒮,
– 𝒦 ∣= 𝒦′, and
– 𝒦 ∣= 𝑞 implies 𝒦′ ∣= 𝑞, for any grounded query 𝑞 in 𝒬 with Sig(𝑞) ∩ 𝒮 = ∅.

Definition 5.1 generalizes the b-forgetting and u-forgetting in [21] in at least two ways:
1) it is defined for KBs rather only TBoxes; 2) it is a parameterized definition of forgetting
in the sense that each query language determines a definition of forgetting.

In Section 5.2, we will identify three interesting query languages and thus three query-
based forgettings are defined. By proving that one of them coincides with the model-based
forgetting, we show that the model-based forgetting can be embedded in our parameterized
framework. We remark that Definition 5.1 applies to any other DL languages.

One thing worth mentioning here is that 𝒦′ does not necessarily query entail 𝒦 2, as
query entailment requires an arbitrary ABox. This also shows the difference of𝒬-forgetting
for KBs and u-forgetting for TBoxes ( Definition 20 in [21]).

The results of 𝒬-forgetting are not necessarily unique up to KB equivalence in general.
An example of this is given as follows. Suppose we take𝒬 as the set of all inclusions. Given
a consistent ℒ-KB 𝒦, if ℒ-KB ⟨𝒯 ′,𝒜′⟩ is a result of 𝒬-forgetting in 𝒦, then for any subset

2 query entailment is defined in [21], TBox 𝒯 ′ query entails 𝒯 iff for any ABox 𝒜 and query 𝑞, ⟨𝒯 ,𝒜⟩ ∣=
𝑞 implies ⟨𝒯 ′,𝒜⟩ ∣= 𝑞.
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𝒜′′ of 𝒜′, ⟨𝒯 ′,𝒜′′⟩ is also a result of 𝒬-forgetting in 𝒦. This is because all the inclusion
consequences of a consistent ℒ-KB is entailed from its TBox.

We will denote the set of all results of 𝒬-forgetting about 𝒮 in 𝒦 as Forget𝒬(𝒦,𝒮).
The model-based forgetting requires preserving model equivalence and thus the result

of model-based forgetting is also a result of 𝒬-forgetting for any query language 𝒬. In this
sense, the model-based forgetting is the strongest notion of forgetting for DL-Lite𝒩bool .

Theorem 5.1 Let 𝒦 be an ℒ-KB, 𝒮 be a signature and 𝒬 be a query language for ℒ. Then

1. forget(𝒦,𝒮) ∈ Forget𝒬(𝒦,𝒮), and
2. for each 𝒦′ ∈ Forget𝒬(𝒦,𝒮), we have forget(𝒦,𝒮) ∣= 𝒦′.

Proof 1. First, note that 𝒦 ∣= forget(𝒦,𝒮). For any grounded query 𝑞 such that Sig(𝑞) ∩
𝒮 = ∅, we need only to show that 𝒦 ∣= 𝑞 implies forget(𝒦,𝒮) ∣= 𝑞.

In fact, for each model ℐ′ of forget(𝒦,𝒮), by the definition of model-based forgetting,
there exists a model ℐ of 𝒦 such that ℐ ∼𝒮 ℐ′. If 𝒦 ∣= 𝑞, then ℐ ∣= 𝑞. However, notice that
ℐ′ and ℐ coincide on Sig(ℒ)− 𝒮 and 𝑞 does not contain any symbol in 𝒮. Thus ℐ′ ∣= 𝑞.

2. Similarly, we can show that for any KB 𝒦′ over Sig(𝒦) − 𝒮, 𝒦 ∣= 𝒦′ implies
forget(𝒦,𝒮) ∣= 𝒦′.

This theorem shows that Algorithm 3 can also be used to compute a result of𝒬-forgetting.
In general, a larger query language defines a stronger notion of query-based forgetting.

Proposition 5.1 Let 𝒦 be an ℒ-KB and 𝒮 be a signature. If 𝒬 and 𝒬′ are two query lan-
guages for ℒ such that 𝒬′ ⊆ 𝒬, then Forget𝒬(𝒦,𝒮) ⊆ Forget𝒬

′
(𝒦,𝒮).

Proof For each 𝒦′ ∈ Forget𝒬(𝒦,𝒮), we have for any grounded query 𝑞 ∈ 𝒪′ with
Sig(𝑞) ∩ 𝒮 = ∅, 𝒦 ∣= 𝑞 implies 𝒦′ ∣= 𝑞. That is 𝒦′ ∈ Forget𝒬

′
(𝒦,𝒮).

5.2 Specific Query-Based Forgetting

In what follows, we will examine three interesting query languages for DL-Lite𝒩bool and the
corresponding notions of query-based forgetting. We will also show how model-based for-
getting is characterized by query-based forgetting. Proofs of most results in this subsection
are given in the next subsection.

We note that several results in this section generalize the corresponding results in [21]
but proofs of these results show that the generalizations from TBoxes to KBs are highly
non-trivial as we can see in the next subsection.

The first choice of 𝒬 is the set of concept inclusions 𝐶1 ⊑ 𝐶2, assertions 𝐶(𝑎) and
𝑅(𝑎, 𝑏) in the DL-Lite𝒩bool language ℒ, denoted 𝒬ℒ. We can see that 𝒬ℒ-forgetting for KBs
extends the b-forgetting for TBoxes in [21] (note that assertions are not needed for TBoxes
in their case).

Example 5.1 (Cont. of Example 2.1) One result of𝒬ℒ-forgetting about role name hasPublications
in 𝒦, denoted 𝒦′, consists of the following inclusions and assertions:

Professor ⊑ Researcher ,
Researcher ⊑ Professor ⊔ RA,
Professor ⊓ RA ⊑ ⊥,
Professor(John), and Paper(P75 ).
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𝒬ℒ-forgetting possesses most desirable properties that hold for model-based forgetting.
Before presenting these properties, we first note the following lemma.

Lemma 5.1 Let 𝒦 and 𝒦′ be two ℒ-KBs. Then 𝒦 ≡ 𝒦′ iff for every 𝑞 ∈ 𝒬ℒ, 𝒦 ∣= 𝑞 iff
𝒦′ ∣= 𝑞.

Proof The “only if” direction is obvious. We only need to show the “if” direction. For
each inclusion or assertion 𝛼 in 𝒦′, 𝛼 ∈ 𝒬ℒ and thus 𝒦′ ∣= 𝛼, which implies 𝒦 ∣= 𝛼 for
every 𝛼 ∈ 𝒦′. That is, 𝒦 ∣= 𝒦′. Similarly, 𝒦′ ∣= 𝒦.

KB Implication holds for 𝒬ℒ-forgetting, as long as the results are expressible in DL-
Lite𝒩bool . This can be seen from the fact that, given 𝒦1 ∣= 𝒦2 and the results 𝒦′

1,𝒦′
2 of 𝒬ℒ-

forgetting about 𝒮 in, respectively,𝒦1 and𝒦2, if𝒦′
1,𝒦′

2 are both expressible in DL-Lite𝒩bool ,
then for any inclusion or assertion 𝛼 in 𝒦′

2, we have by the definition of 𝒬ℒ-forgetting,
𝒦′

1 ∣= 𝛼.
Uniqueness holds for 𝒬ℒ-forgetting, as a direct consequence of KB Implication. That

is, the result of 𝒬ℒ-forgetting is unique in DL-Lite𝒩bool , up to KB equivalence. However, as
we will show later, when more expressive languages are considered (e.g., DL-Lite𝑢bool ), the
uniqueness of results may not hold anymore.

Also, it follows directly from the definition that 𝒬ℒ-forgetting satisfies Consistency,
Coherence and Consequence Invariance. We recall that a KB 𝒦 is inconsistent if and only
if 𝒦 ∣= (⊤ ⊑ ⊥), and 𝒦 is incoherent over 𝒮 if and only if for some concept name 𝐴 ∈ 𝒮,
𝒦 ∣= (𝐴 ⊑ ⊥), or for some role name 𝑃 ∈ 𝒮, 𝒦 ∣= (∃𝑃 ⊑ ⊥).

Another important property of 𝒬ℒ-forgetting is Signature Union.
However, 𝒬ℒ-forgetting does not possess PEQ Invariance and KB Union in general.

This can be seen from the following example. 33 KW: example(s)?

Example 5.2 Consider a knowledge base 𝒦0 = ⟨𝒯0,𝒜0⟩ where
𝒯0 = {Professor ⊑⩾ 5 hasPublications, ∃hasPublications− ⊑ Paper} and
𝒜0 = {Professor(𝐽𝑜ℎ𝑛)}.
Then KB 𝒦′

0 = ⟨∅,𝒜0⟩ is a result of 𝒬ℒ-forgetting about role name hasPublications in
𝒦0. Thus we can see that

(1) For PEQ 𝑞 of the form ∃𝑥.Paper(𝑥), we have 𝒦0 ∣= 𝑞 but 𝒦′
0 ∕∣= 𝑞. That is, PEQ

Invariance does not hold.
(2) Let 𝒦1 = ⟨{Paper ⊑ ⊥}, ∅⟩. Then 𝒦0 ∪ 𝒦1 is inconsistent, and thus 𝒦0 ∪ 𝒦1 ∣=

(⊤ ⊑ ⊥), but 𝒦′
0 ∪ 𝒦1 ∕∣= (⊤ ⊑ ⊥). That is, 𝒦′

0 ∪ 𝒦1 is not a result of 𝒬ℒ-forgetting about
role hasPublications in 𝒦0 ∪ 𝒦1. It shows that KB Union does not hold either.

An advantage of 𝒬ℒ-forgetting is that it possesses nice existence property, that is, there
always exists a result of 𝒬ℒ-forgetting that is expressible in DL-Lite𝒩bool .

Theorem 5.2 (Existence) Let 𝒦 be an ℒ-KB and 𝒮 a signature. Then there always exists a
DL-Lite𝒩bool KB 𝒦′ such that 𝒦′ is a result of 𝒬ℒ-forgetting about 𝒮 in 𝒦.

The above result generalizes Theorem 18 in [21] which is stated only for TBoxes.
To obtain a more expressive form of forgetting, an extension of DL-Lite𝒩bool named DL-

Lite𝑢bool is introduced in [21], which extends DL-Lite𝒩bool by introducing new concepts of the
form ∃𝑢.𝐶, where 𝐶 is a concept in DL-Lite𝒩bool . Given an interpretation ℐ, (∃𝑢.𝐶)ℐ = 𝛥ℐ

if 𝐶ℐ ∕= ∅ and (∃𝑢.𝐶)ℐ = ∅ if 𝐶ℐ = ∅. Informally, ∃𝑢.𝐶 is used to represent the fact that
concept 𝐶 is nonempty.
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Define 𝒬𝑢
ℒ to be the query language extending 𝒬ℒ with inclusions 𝐶1 ⊑ 𝐶2 and asser-

tions 𝐶3(𝑎), where 𝐶𝑖’s are concepts in DL-Lite𝑢bool , negated role assertions ¬𝑅(𝑎, 𝑏), and
unions

⋁
𝑞𝑖 of queries 𝑞𝑖 in 𝒬𝑢

ℒ
3.

𝒬𝑢
ℒ-forgetting generalizes the u-forgetting for TBoxes introduced in Definition 20 of

[21], and is logically stronger than 𝒬ℒ-forgetting.
As with 𝒬ℒ-forgetting, 𝒬𝑢

ℒ-forgetting satisfies KB Implication when the results are
expressible in DL-Lite𝑢𝑏𝑜𝑜𝑙, and the result of𝒬𝑢

ℒ-forgetting is Unique within DL-Lite𝑢𝑏𝑜𝑜𝑙, up
to KB equivalence. Also, 𝒬𝑢

ℒ-forgetting satisfies Consistency, Coherence, Consequence
Invariance, and Signature Union.

In contrast to 𝒬ℒ-forgetting, 𝒬𝑢
ℒ-forgetting satisfies PEQ Invariance and KB Union.

Proposition 5.2 Let 𝒦 be an ℒ-KB and 𝒮 a signature. Suppose 𝒦′ is a result of 𝒬𝑢
ℒ-

forgetting about 𝒮 in 𝒦, then for any grounded PEQ 𝑞 with Sig(𝑞) ∩ 𝒮 = ∅, 𝒦′ ∣= 𝑞 iff
𝒦 ∣= 𝑞.

Proposition 5.3 Let𝒦1,𝒦2 be twoℒ-KBs and 𝒮 a signature, satisfying Sig(𝒦1)∩ Sig(𝒦2)∩
𝒮 = ∅. Suppose 𝒦′

1 and 𝒦′
2 are results of 𝒬𝑢

ℒ-forgetting about 𝒮 in, respectively, 𝒦1 and
𝒦2. Then 𝒦′

1 ∪ 𝒦′
2 is a result of 𝒬𝑢

ℒ-forgetting about 𝒮 in 𝒦1 ∪ 𝒦2.

While possessing similar properties to model-based forgetting, 𝒬𝑢
ℒ-forgetting is not

equivalent to model-based forgetting. It is still a logically weaker notion than model-based
forgetting. This means, on the one hand, 𝒬𝑢

ℒ-forgetting may possess better expressibility
properties than model-based forgetting. On the other hand, it suffers information loss when
𝒬𝑢

ℒ-forgetting is performed. This can be seen as follows: the KB 𝒦′ in Example 5.1 is also
a result of 𝒬𝑢

ℒ-forgetting about role name hasPublications in 𝒦, whereas model-based for-
getting is not expressible (as discussed in Example 3.2). The knowledge “the whole center
has at least 5 publications” is missing after 𝒬𝑢

ℒ-forgetting.
Although 𝒬𝑢

ℒ-forgetting has better expressibility properties than model-based forget-
ting, similar to the case of TBoxes [21], the results of 𝒬𝑢

ℒ-forgetting in KBs may not be
expressible in DL-Lite𝒩bool either. Recall the KB 𝒦0 in Example 5.2. 𝒦0 ∣= (Professor ⊑
∃𝑢.Paper), i.e., Paper is nonempty whenever Professor is nonempty, but this fact is not
expressible in DL-Lite𝒩bool . Note that saying “Paper is nonempty” is different from “Paper
is a satisfiable concept” or “𝒦0 is coherent”, as the first statement requires all the models of
𝒦0 to interpret Paper with only nonempty sets, whereas the second and the third statements
require at least one model to interpret Paper with a nonempty set.

However, there always exists a result of𝒬𝑢
ℒ-forgetting that is expressible in DL-Lite𝑢bool .

Theorem 5.3 (Existence) Let 𝒦 be an ℒ-KB and 𝒮 a signature. Then there always exists a
DL-Lite𝑢bool KB 𝒦′ such that 𝒦′ is a result of 𝒬𝑢

ℒ-forgetting about 𝒮 in 𝒦.

Recall Example 5.2, the result of𝒬𝑢
ℒ-forgetting about role name hasPublications in 𝒦0

is KB ⟨{Professor ⊑ ∃𝑢.Paper},𝒜0⟩. Note that this KB is also a result of 𝒬ℒ-forgetting
about hasPublications in 𝒦0 (by Proposition 5.1). We have shown in Example 5.2 that
⟨∅,𝒜0⟩ is a result of 𝒬ℒ-forgetting about hasPublications in 𝒦0. It shows that Uniqueness
holds for𝒬ℒ-forgetting only in DL-Lite𝒩bool . Similarly, we can show that Uniqueness holds
for 𝒬𝑢

ℒ-forgetting only in DL-Lite𝑢bool .

3 Union of queries can be informally understood as disjunction of queries. See the definition of union of
conjuctive queries in [8].
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Now we consider how to characterize model-based forgetting by query-based forgetting.
As Example 3.2 shows, the results of model-based forgetting may not be expressible in DL-
Lite𝒩bool or DL-Lite𝑢bool . The major reason for this is that they do not have a construct to
represent the cardinality of a concept.

For this reason, we extend DL-Lite𝑢bool further to DL-Lite𝑐bool by introducing new con-
cepts of the form ⩾ 𝑛 𝑢.𝐶, where 𝐶 is a concept in DL-Lite𝒩bool and 𝑛 is a natural number.
Given an interpretation ℐ, (⩾ 𝑛 𝑢.𝐶)ℐ = 𝛥ℐ if ♯(𝐶ℐ) ≥ 𝑛 and (⩾ 𝑛 𝑢.𝐶)ℐ = ∅ if
♯(𝐶ℐ) ≤ 𝑛− 1.

Define 𝒬𝑐
ℒ to be the query language extending 𝒬𝑢

ℒ with inclusions 𝐶1 ⊑ 𝐶2 and as-
sertions 𝐶3(𝑎), where 𝐶𝑖’s are concepts in DL-Lite𝑐bool , and unions

⋁
𝑞𝑖 of queries 𝑞𝑖 in

𝒬𝑐
ℒ.

We can show 𝒬𝑐
ℒ-forgetting is equivalent to model-based forgetting.

Theorem 5.4 Let 𝒦 be an ℒ-KB and 𝒮 a signature. Then the following two assertions are
equivalent:

(1) 𝒦′ is a result of 𝒬𝑐
ℒ-forgetting about 𝒮 in 𝒦, and

(2) 𝒦′ is a result of model-based forgetting about 𝒮 in 𝒦, i.e., forget(𝒦,𝒮) = 𝒦′.

Example 5.3 (Cont. of Example 2.1) The result of model-based forgetting about role name
hasPublications in 𝒦, i.e.,
forget(𝒦, {hasPublications}), consists of the following inclusions and assertions:

Professor ⊑ Researcher ,
Researcher ⊑ Professor ⊔ RA,
Professor ⊓ RA ⊑ ⊥,
Professor ⊑⩾ 5 𝑢.Paper ,
Professor(John), and Paper(P75 ).

However, the results of 𝒬𝑐
ℒ-forgetting in an ℒ-KB may not always expressible in DL-

Lite𝑐bool . The following example can help us in informally understanding this.

Example 5.4 Let 𝒦2 be an ℒ-KB whose TBox consisting of the following inclusions:

Professor ⊑ ∃hasID ,
∃hasID− ⊑ IDNumber , and
IDNumber ⊓ ⩾ 2 hasID− ⊑ ⊥.

𝒦2 says that every professor has some ID number, and each ID number can only be
associated with no more than one professor. Then if we have 𝑛 professors, we must have at
least 𝑛 ID numbers.

After forgetting about role name hasID in 𝒦2, the above relation between Professor

and IDNumber should still hold. That is, by the definition of model-based forgetting, for
any model ℐ of the result of forgetting, we must have ♯(Professorℐ) ≤ ♯(IDNumberℐ).
This can only be expressed through

⩾ 𝑛𝑥 𝑢.Professor ⊑⩾ 𝑛𝑥 𝑢.IDNumber

with a variable 𝑛𝑥 ranging over natural numbers. However, such an expression seems already
beyond the expressibility of first order logic.

Table 1 summarizes the properties of the three specific query-based forgettings.
It would be interesting to identify various query languages in terms of computational

complexity and requirements from practical applications.
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in KBs in TBoxes Existence KB Impl. Uniqueness Sign. Union
𝒬ℒ-forgetting b-forgetting [21] ✓ ✓* ✓* ✓
𝒬𝑢

ℒ-forgetting u-forgetting [21] ✓ ✓** ✓** ✓
𝒬𝑐

ℒ-forgetting forgetting [34] ✓ ✓ ✓
Consistency Coherence Cons. Inva. PEQ Inva. KB Union

𝒬ℒ-forgetting ✓ ✓ ✓
𝒬𝑢

ℒ-forgetting ✓ ✓ ✓ ✓ ✓
𝒬𝑐

ℒ-forgetting ✓ ✓ ✓ ✓ ✓

Table 1 Properties of 𝒬-forgettings (‘*’ holds only for DL-Lite𝒩bool , and ‘**’ holds only for DL-Lite𝑢bool )

5.3 Type-Based Characterizations of Query-Based Forgetting

In this subsection, based on the notion of types, we first introduce an alternative semantics
for DL-Lite𝒩bool and then present characterizations for the three specific query-based forget-
tings introduced in last subsection. In turn, these semantic characterizations pave a way for
proofs of the results in Section 5.2.

Since DL-Lite𝑐bool is defined as supremum of both DL-Lite𝒩bool and DL-Lite𝑢bool , without
specification, the KBs mentioned in this subsection are all in DL-Lite𝑐bool , and the model-
theoretic characterizations also apply to KBs in DL-Lite𝒩bool or DL-Lite𝑢bool .

Let 𝒮 be a signature and 𝑁 a set of natural numbers including 1. We call a literal concept
over signature 𝒮 with number parameters in 𝑁 an 𝒮𝑁 -literal. An 𝒮𝑁 -type is a set 𝜏 of 𝒮𝑁 -
literals containing ⊤ and satisfying the following three conditions:

– for every 𝒮𝑁 -literal 𝐿, 𝐿 ∈ 𝜏 iff ¬𝐿 ∕∈ 𝜏 ;
– for any 𝑚,𝑛 ∈ 𝑁 with 𝑚 < 𝑛, ⩾ 𝑛 𝑅 ∈ 𝜏 implies ⩾ 𝑚 𝑅 ∈ 𝜏 ;
– for any 𝑚,𝑛 ∈ 𝑁 with 𝑚 < 𝑛, ⩽ 𝑚 𝑅 ∈ 𝜏 implies ⩽ 𝑛 𝑅 ∈ 𝜏 .

For ease of presentation, in what follows, we assume 𝒮 and 𝑁 are fixed, and we treat
the conjunction of all its literals,

d
𝐿∈𝜏 𝐿 as an alternative representation of a type 𝜏 .

Each general concept 𝐶 over 𝒮 and 𝑁 in DL-Lite𝒩bool can be equivalently represented as
a disjunction of 𝒮𝑁 -types. If we denote the set of all such types for 𝐶 as Ts(𝐶), then 𝐶 is
equivalent to

⊔
𝜏∈Ts(𝐶)

d
𝐿∈𝜏 𝐿. Similarly, ¬𝐶 is equivalent to

⊔
𝜏∈Ts(𝐶)

d
𝐿∈𝜏 𝐿 where

Ts(𝐶) = {𝜏 ∣ 𝜏 is a 𝒮𝑁 -type, but 𝜏 ∕∈ Ts(𝐶)}.
Given an interpretation ℐ and an individual 𝑑 ∈ 𝛥ℐ , the type realized by ℐ on 𝑑 is defined

as the 𝒮𝑁 -type 𝜏ℐ(𝑑) = {𝐿 ∣ 𝐿 is a 𝒮𝑁 -literal s.t. 𝑑 ∈ 𝐿ℐ}. Define 𝛯ℐ = {𝜏ℐ(𝑑) ∣ 𝑑 ∈
𝛥ℐ} to be the 𝒮𝑁 -type set realized by ℐ. Given a KB 𝒦, define 𝛯𝒦 =

∪
ℐ∈Mod(𝒦) 𝛯ℐ to

be the 𝒮𝑁 -type set realized by 𝒦.
The definition of types are previously introduced in [21] as a model-theoretic character-

ization for TBox concept/query entailment in DL-Lite𝒩bool . Now we extend it to provide a
model-theoretic characterization for ABoxes.

Given a set 𝒪 of individual names (objects), we define an 𝒪-graph over 𝒮 and 𝑁 ,
denoted 𝒢 = (𝒪, 𝐸, 𝐹 ), to be a finite directed graph such that each node 𝑎 ∈ 𝒪 is labeled by
a set 𝐹 (𝑎) of 𝒮𝑁 -types and each edge (𝑎, 𝑏) ∈ 𝐸 is labeled by a set 𝐹 (𝑎, 𝑏) of role names
in 𝒮.

We are mainly interested in those𝒪-graphs that are determined by interpretations. Given
an interpretation ℐ, the 𝒪-graph realized by ℐ is defined as follows:

– for each 𝑎 ∈ 𝒪, 𝐹 (𝑎) is a singleton of the type realized by ℐ on 𝑎, i.e., 𝐹 (𝑎) = {𝜏ℐ(𝑎ℐ)};
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– for each pair 𝑎, 𝑏 ∈ 𝒪, 𝐹 (𝑎, 𝑏) is the set of roles relating 𝑎 and 𝑏 in ℐ, i.e., (𝑎, 𝑏) ∈ 𝐸 iff
there exists a role name 𝑃 ∈ 𝒮 with (𝑎ℐ , 𝑏ℐ) ∈ 𝑃ℐ , and 𝐹 (𝑎, 𝑏) = {𝑃 ∈ 𝒮 ∣ (𝑎ℐ , 𝑏ℐ) ∈
𝑃ℐ}.

An 𝒪-graph realized by some interpretation can be viewed as a ‘Herbrand interpretation’
for ABoxes over 𝒪.

Alternatively, we will also omit 𝐸 and use the pair (𝒪, 𝐹 ) to represent an 𝒪-graph
𝒢 = (𝒪, 𝐸, 𝐹 ) by defining 𝐹 (𝑎, 𝑏) = ∅ for every (𝑎, 𝑏) ∕∈ 𝐸.

Given a KB𝒦, the𝒪-graph realized by𝒦, denoted 𝒢𝒦 = (𝒪, 𝐹𝒦), is the graph obtained
by combining 𝒪-graphs 𝒢ℐ = (𝒪, 𝐹ℐ) realized by the models ℐ of 𝒦:

– for each 𝑎 ∈ 𝒪, 𝐹𝒦(𝑎) =
∪

ℐ∈Mod(𝒦) 𝐹ℐ(𝑎);
– for each pair 𝑎, 𝑏 ∈ 𝒪, 𝐹𝒦(𝑎, 𝑏) =

∩
ℐ∈Mod(𝒦) 𝐹ℐ(𝑎, 𝑏).

For two 𝒪-graphs 𝒢1 = (𝒪, 𝐹1) and 𝒢2 = (𝒪, 𝐹2), we call 𝒢2 a sub-graph of 𝒢1 if

– for each 𝑎 ∈ 𝒪, 𝐹1(𝑎) ⊆ 𝐹2(𝑎);
– for each pair 𝑎, 𝑏 ∈ 𝒪, 𝐹2(𝑎, 𝑏) ⊆ 𝐹1(𝑎, 𝑏).

Denote 𝒢1 = 𝒢2 if 𝒢1 and 𝒢2 are sub-graphs of each other.
Recall that, for a KB𝒦, Ind(𝒦) denotes the set of all individual names in𝒦 and Num(𝒦)

the set of all numerical parameters in 𝒦 together with 1.
The following lemma shows that the entailment of inclusions and assertions in DL-

Lite𝒩bool can be charaterized by, respectively, the type set and 𝒪-graph realized by the KB.

Lemma 5.2 Let 𝒦1,𝒦2 be two KBs, 𝒮 be a signature, 𝑁 be a set of natural numbers in-
cluding 1 and 𝒪 be a set of individual names. Then,

(1) 𝛯𝒦1
⊆ 𝛯𝒦2

iff for any ℒ-inclusion 𝛼 over 𝒮 and 𝑁 , 𝒦2 ∣= 𝛼 implies 𝒦1 ∣= 𝛼;
(2) 𝒢𝒦2

is a sub-graph of 𝒢𝒦1
iff for any ℒ-assertion 𝛽 over 𝒮, 𝑁 and 𝒪, 𝒦2 ∣= 𝛽 implies

𝒦1 ∣= 𝛽.

We note that Theorem 11 in [21] is a special case of the above item (1) when 𝒦 is a
TBox.
Proof Since the type set 𝛯𝒦 is independent of the ABox of 𝒦, the item (1) immediately
follows from Theorem 11 in [21]. So we only need to show the item (2). Let 𝒢𝒦1

= (𝒪, 𝐹1)

and 𝒢𝒦2
= (𝒪, 𝐹2).

The “if” direction: On the contrary, suppose 𝒢𝒦2
is not a sub-graph of 𝒢𝒦1

. There are two
possible cases:

- There exists some 𝑎 ∈ 𝒪 and 𝒮𝑁 -type 𝜏 such that 𝜏 ∈ 𝐹1(𝑎) but 𝜏 ∕∈ 𝐹2(𝑎). In this
case, we have for each model ℐ2 of 𝒦2, 𝑎ℐ2 ∕∈ (

d
𝐿∈𝜏 𝐿)ℐ2 . That is, 𝒦2 ∣= (¬d

𝐿∈𝜏 𝐿)(𝑎),
where (¬d

𝐿∈𝜏 𝐿)(𝑎) is an ℒ-assertion over 𝒪, 𝒮 and 𝑁 . However, 𝒦1 ∕∣= (¬d
𝐿∈𝜏 𝐿)(𝑎).

- There exists a pair 𝑎, 𝑏 ∈ 𝒪 and 𝑃 ∈ 𝒮 such that 𝑃 ∈ 𝐹2(𝑎, 𝑏) but 𝑃 ∕∈ 𝐹1(𝑎, 𝑏). In this
case, every model of 𝒦2 satisfies 𝑃 (𝑎, 𝑏), that is, 𝒦2 ∣= 𝑃 (𝑎, 𝑏). 𝑃 (𝑎, 𝑏) is an ℒ-assertion
over 𝒪 and 𝒮 but 𝒦1 ∕∣= 𝑃 (𝑎, 𝑏).

In both cases, we have shown that there always exists an ℒ-assertion 𝛽 over 𝒮, 𝑁 and 𝒪
such that 𝒦2 ∣= 𝛽 but 𝒦1 ∕∣= 𝛽.

The “only if” direction: Suppose that there exists an ℒ-assertion 𝛽 over 𝒮, 𝑁 and 𝒪 such
that 𝒦2 ∣= 𝛽 but 𝒦1 ∕∣= 𝛽.

- If 𝛽 is of the form 𝐶(𝑎), then there exists a model ℐ1 of𝒦1 with 𝑎ℐ1 ∈ (¬𝐶)ℐ1 . Denote
𝜏 = 𝜏ℐ1

(𝑎ℐ1). We have 𝜏 ∈ 𝐹1(𝑎) and 𝜏 ∈ Ts(𝐶). For each model ℐ2 of 𝒦2, 𝑎ℐ2 ∈ 𝐶ℐ2 . It
must be the case that 𝐹2(𝑎) ⊆ Ts(𝐶) and thus, 𝜏 ∕∈ 𝐹2(𝑎). That is, 𝐹1(𝑎) ∕⊆ 𝐹2(𝑎).
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- If 𝛽 is of the form 𝑃 (𝑎, 𝑏) or 𝑃−(𝑏, 𝑎) with 𝑃 a role name, then every model of 𝒦2

satisfies 𝑃 (𝑎, 𝑏), which implies 𝑃 ∈ 𝐹2(𝑎, 𝑏). However, there exists a model ℐ1 of 𝒦1 with
ℐ1 ∕∣= 𝑃 (𝑎, 𝑏). This implies that 𝑃 ∕∈ 𝐹1(𝑎, 𝑏) and thus 𝐹2(𝑎, 𝑏) ∕⊆ 𝐹1(𝑎, 𝑏).

In either case, 𝒢𝒦2
is not a sub-graph of 𝒢𝒦1

.

We present the model-theoretic characterization for 𝒬ℒ-forgetting as follows.

Theorem 5.5 Let 𝒦 be a KB and 𝒮 a signature. Denote 𝛴 = Sig(𝒦) − 𝒮, 𝑁 = Num(𝒦)
and 𝒪 = Ind(𝒦). Given a KB 𝒦′ with Sig(𝒦′) ⊆ 𝛴 such that 𝒦 ∣= 𝒦′, the following two
conditions are equivalent:

(1) 𝒦′ is a result of 𝒬ℒ-forgetting about 𝒮 in 𝒦;
(2) 𝒦 and 𝒦 realize the same 𝛴𝑁 -type set and 𝒪-graph.

Proof (1) ⇒ (2): From the definition of 𝒬ℒ-forgetting, 𝒦 ∣= 𝑞 iff 𝒦′ ∣= 𝑞 for any
query 𝑞 ∈ 𝒬ℒ over 𝛴, 𝑁 and𝒪. Since 𝑞 can be an arbitrary ℒ-inclusion or ℒassertion, from
Lemma 5.2, we have 𝛯𝒦 = 𝛯𝒦′ and 𝒢𝒦 = 𝒢𝒦′ , i.e., (2) holds.

(2) ⇒ (1): By Lemma 5.2, we have 𝒦 ∣= 𝑞 implies 𝒦′ ∣= 𝑞 for any query 𝑞 ∈ 𝒬ℒ over
𝛴, 𝑁 and 𝒪.

When extending 𝛴 to any larger signature 𝛴′ s.t. 𝛴′ ∩ 𝒮 = ∅, and 𝑁,𝒪 to, respectively
𝑁 ′,𝒪′, the corresponding 𝛴′𝑁 ′-type set and 𝒪′-graph realized by 𝒦 is just the trivial ex-
tension of the original one. From 𝒦 ∣= 𝒦′, the 𝛴′𝑁 ′-type set and 𝒪′-graph realized by 𝒦′

must also be trivially extended. Thus we still have 𝛯𝒦 = 𝛯𝒦′ and 𝒢𝒦 = 𝒢𝒦′ . As a result,
the above conclusion can be extended to a larger query set (over 𝛴′, 𝑁 ′ and𝒪′). That is, for
any query 𝑞 ∈ 𝒬ℒ such that Sig(𝑞) ∩ 𝒮 = ∅, 𝒦 ∣= 𝑞 implies 𝒦′ ∣= 𝑞.

To provide model-theoretic characterization for 𝒬𝑢
ℒ-forgetting, we need to introduce a

notion of multiple model, which is originally introduced in [21]. The idea of introducing
multiple model is to include copies of a given model in one model so that two models whose
domains have different cardinalities can be compared while the semantics is not changed.

Denote ℐ𝑛 the interpretation obtained from ℐ and a number 𝑛 ≥ 1 in the following way:

– 𝛥ℐ𝑛

= {𝑑(𝑖) ∣ 𝑑 ∈ 𝛥ℐ , 1 ≤ 𝑖 ≤ 𝑛};
– for each individual name 𝑎, 𝑎ℐ

𝑛

= (𝑎ℐ)(1);
– for each concept name 𝐴, 𝐴ℐ𝑛

= {𝑑(𝑖) ∣ 𝑑 ∈ 𝐴ℐ , 1 ≤ 𝑖 ≤ 𝑛}.
– for each role name 𝑃 , 𝑃ℐ𝑛

= {(𝑑(𝑖), 𝑒(𝑖)) ∣ (𝑑, 𝑒) ∈ 𝑃ℐ , 1 ≤ 𝑖 ≤ 𝑛}.
Note that the second item above requires that under ℐ𝑛, every individual name is assigned
to an element of the first copy.

Then we have the following observations:
(1) for any inclusion, assertion or grounded PEQ 𝛽, ℐ ∣= 𝛽 iff ℐ𝑛 ∣= 𝛽;
(2) 𝜏ℐ𝑛(𝑑(𝑖)) = 𝜏ℐ(𝑑) for all 1 ≤ 𝑖 ≤ 𝑛;
(3) 𝛯ℐ = 𝛯ℐ𝑛 and 𝒢ℐ = 𝒢ℐ𝑛 .

When 𝑛 is infinitely large, we will denote ℐ𝑛 as ℐ∞.
The following lemma shows that if two KBs have models realizing the same type sets

and 𝒪-graphs, then some correspondence can be found between their models. Specificly,
a weak model equivalence relation (over their multiple models) holds for corresponding
models.
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Lemma 5.3 Let 𝒦1,𝒦2 be two KBs and 𝒮 a signature. Let 𝛴 = Sig(𝒦1) − 𝒮, 𝑁 =

Num(𝒦1), 𝒪 = Ind(𝒦1) and Sig(𝒦2) ⊆ 𝛴.
Given a model ℐ2 of 𝒦2, suppose that there is a model ℐ1 of 𝒦1 such that ℐ1 realizes

the same 𝛴𝑁 -type set and 𝒪-graph as ℐ2. Then there exists a model ℐ of 𝒦1 such that
ℐ ∼𝒮 ℐ∞2 .

Proof Since ℐ1 and ℐ2 realize the same type set, ℐ∞1 and ℐ∞2 also realize the same
type set, denoted as 𝛯. Given each type in 𝛯 is realized by ℐ∞1 and ℐ∞2 , respectively, with
infinitely many individuals, there is a bijection 𝑓 : 𝛥ℐ∞

1 → 𝛥ℐ∞
2 , such that for all 𝑑 ∈ 𝛥ℐ∞

1 ,
ℐ∞1 realize the same type on 𝑑 with ℐ∞2 on 𝑓(𝑑), i.e., 𝜏ℐ∞

1
(𝑑) = 𝜏ℐ∞

2
(𝑓(𝑑)) .

Also, since ℐ1 and ℐ2 realize the same𝒪-graph, ℐ1 and ℐ2 realize the same type on each
individual 𝑎 ∈ 𝒪, i.e., 𝜏ℐ1

(𝑎ℐ1) = 𝜏ℐ2
(𝑎ℐ2). We have ℐ∞1 and ℐ∞2 realize the same type

on each 𝑎. Thus 𝑓 is still well-defined if we require, additionally, 𝑓(𝑎ℐ
∞
1 ) = 𝑎ℐ

∞
2 for each

𝑎 ∈ 𝒪.
We will construct ℐ from ℐ∞1 and ℐ∞2 in the following way:

– take 𝛥ℐ = 𝛥ℐ∞
2 ;

– for each 𝑎 ∈ 𝒪, 𝑎ℐ = 𝑎ℐ
∞
2 ;

– for each concept name 𝐴, if 𝐴 ∈ 𝒮, 𝐴ℐ = {𝑓(𝑑) ∣ 𝑑 ∈ 𝐴ℐ∞
1 }, otherwise, 𝐴ℐ = 𝐴ℐ∞

2 ;
– for each role name 𝑃 , if 𝑃 ∈ 𝒮, 𝑃ℐ = {(𝑓(𝑑), 𝑓(𝑒)) ∣ (𝑑, 𝑒) ∈ 𝑃ℐ∞

1 }, otherwise,
𝑃ℐ = 𝑃ℐ∞

2 .

By the construction of ℐ we can see that ℐ ∼𝒮 ℐ∞2 . We only need to show that ℐ ∣= 𝒦1.
For each concept name 𝐴 and each individual 𝑑 ∈ 𝛥ℐ∞

1 , suppose 𝐴 ∈ 𝒮, according to
the definition of ℐ, we have 𝑑 ∈ 𝐴ℐ∞

1 iff 𝑓(𝑑) ∈ 𝐴ℐ . Otherwise if 𝐴 ∕∈ 𝒮, since 𝜏ℐ∞
1
(𝑑) =

𝜏ℐ∞
2
(𝑓(𝑑)), we have 𝑑 ∈ 𝐴ℐ∞

1 iff 𝑓(𝑑) ∈ 𝐴ℐ∞
2 . Since 𝐴ℐ = 𝐴ℐ∞

2 in this case, we still
have 𝑑 ∈ 𝐴ℐ∞

1 iff 𝑓(𝑑) ∈ 𝐴ℐ . Similarly, we can show that for any concept ⩾ 𝑛 𝑅 with
𝑛 ∈ 𝑁 , 𝑑 ∈ (⩾ 𝑛 𝑅)ℐ

∞
1 iff 𝑓(𝑑) ∈ (⩾ 𝑛 𝑅)ℐ . Thus for any general concept 𝐶, 𝑑 ∈ 𝐶ℐ∞

1 iff
𝑓(𝑑) ∈ 𝐶ℐ .

Now we have shown that for any inclusion 𝐶1 ⊑ 𝐶2 in 𝒦1, 𝐶ℐ∞
1

1 ⊆ 𝐶
ℐ∞
1

2 iff 𝐶ℐ
1 ⊆ 𝐶ℐ

2 .
Since ℐ∞1 ∣= (𝐶1 ⊑ 𝐶2) iff ℐ1 ∣= (𝐶1 ⊑ 𝐶2), we have ℐ1 ∣= (𝐶1 ⊑ 𝐶2) iff ℐ ∣= (𝐶1 ⊑ 𝐶2).

For each assertion 𝐶(𝑎) in 𝒦1, as shown above, 𝑎ℐ
∞
1 ∈ 𝐶ℐ∞

1 iff 𝑓(𝑎ℐ
∞
1 ) ∈ 𝐶ℐ . Since

for each 𝑎 ∈ 𝒪, 𝑓(𝑎ℐ
∞
1 ) = 𝑎ℐ

∞
2 = 𝑎ℐ , and ℐ∞1 ∣= 𝐶(𝑎) iff ℐ1 ∣= 𝐶(𝑎), we have ℐ1 ∣= 𝐶(𝑎)

iff ℐ ∣= 𝐶(𝑎).
For each assertion 𝑃 (𝑎, 𝑏) or 𝑃−(𝑏, 𝑎) in 𝒦1, if 𝑃 ∈ 𝒮, according to the definition of

ℐ, (𝑎ℐ
∞
1 , 𝑏ℐ

∞
1 ) ∈ 𝑃ℐ∞

1 iff (𝑓(𝑎ℐ
∞
1 ), 𝑓(𝑏ℐ

∞
1 )) ∈ 𝑃ℐ . Since 𝑓(𝑎ℐ

∞
1 ) = 𝑎ℐ

∞
2 = 𝑎ℐ and

𝑓(𝑏ℐ
∞
1 ) = 𝑏ℐ

∞
2 = 𝑏ℐ , we have ℐ∞1 ∣= 𝑃 (𝑎, 𝑏) iff ℐ ∣= 𝑃 (𝑎, 𝑏). That is, ℐ1 ∣= 𝑃 (𝑎, 𝑏) iff ℐ ∣=

𝑃 (𝑎, 𝑏). Otherwise, 𝑃 ∕∈ 𝒮, we have 𝑃ℐ = 𝑃ℐ∞
2 . Since ℐ1 and ℐ2 realize the same𝒪-graph,

ℐ∞1 ∣= 𝑃 (𝑎, 𝑏) iff ℐ∞2 ∣= 𝑃 (𝑎, 𝑏). As 𝑎ℐ
∞
2 = 𝑎ℐ and 𝑏ℐ

∞
2 = 𝑏ℐ , we have ℐ∞2 ∣= 𝑃 (𝑎, 𝑏) iff

ℐ ∣= 𝑃 (𝑎, 𝑏). Thus, ℐ∞1 ∣= 𝑃 (𝑎, 𝑏) iff ℐ ∣= 𝑃 (𝑎, 𝑏), and again, ℐ1 ∣= 𝑃 (𝑎, 𝑏) iff ℐ ∣= 𝑃 (𝑎, 𝑏).
Since ℐ ∣= 𝛼 for each inclusion or assertion 𝛼 ∈ 𝒦1, we have shown that ℐ ∣= 𝒦1.

The following result shows that 𝒬𝑢
ℒ-forgetting can be charaterized by the type sets and

𝒪-graphs realised by the models of the KB.

Theorem 5.6 Let 𝒦 be a KB and 𝒮 a signature. Denote 𝛴 = Sig(𝒦) − 𝒮, 𝑁 = Num(𝒦)
and 𝒪 = Ind(𝒦). Given a KB 𝒦′ with Sig(𝒦′) ⊆ 𝛴 such that 𝒦 ∣= 𝒦′, the following three
conditions are equivalent:

(1) 𝒦′ is a result of 𝒬𝑢
ℒ-forgetting about 𝒮 in 𝒦;
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(2) for each model ℐ′ of 𝒦′, there always exists a model ℐ of 𝒦 such that ℐ and ℐ′ realize
the same 𝛴𝑁 -type set and 𝒪-graph;

(3) for each model ℐ′ of 𝒦′, there always exists a model ℐ of 𝒦 such that ℐ ∼𝒮 (ℐ′)∞.

Proof (1) ⇒ (2): Conversely, suppose there is a model ℐ′ of 𝒦′ realizing 𝛴𝑁 -type set
𝛯 and𝒪-graph 𝒢 = (𝒪, 𝐹 ), such that there exists no model of 𝒦 realizing the same type set
and 𝒪-graph. We want to construct a query 𝑞 ∈ 𝒬𝑢

ℒ over 𝛴, 𝑁 and 𝒪, such that 𝒦 ∣= 𝑞 but
𝒦′ ∕∣= 𝑞.

For each model ℐ of 𝒦, denote the 𝛴𝑁 -type set realized by ℐ as 𝛯ℐ , and the 𝒪-graph
realized by ℐ as 𝒢ℐ = (𝒪, 𝐹ℐ). Let 𝒫 = { 𝑃 (𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ 𝒪, 𝑃 ∕∈ 𝐹 (𝑎, 𝑏) but 𝑃 ∈
𝐹ℐ(𝑎, 𝑏) for some ℐ ∈ Mod(𝒦) }.

We can construct a query 𝑞, which is the union of all (possibly negated role) assertions
of the following forms in DL-Lite𝑢bool :

– ¬(∃ 𝑢.d𝐿∈𝜏 𝐿)(𝑎𝜏 ) with 𝜏 ∈ 𝛯, where 𝑎𝜏 is a new individual name for 𝜏 ;
– (∃ 𝑢.d𝐿∈𝜏 𝐿)(𝑎𝜏 ) with 𝜏 a 𝛴𝑁 -type but 𝜏 ∕∈ 𝛯, and 𝑎𝜏 a new individual name for 𝜏 ;
– ¬(d𝐿∈𝜏𝑎

𝐿)(𝑎) with 𝑎 ∈ 𝒪 and 𝐹 (𝑎) = {𝜏𝑎};
– ¬𝑃 (𝑎, 𝑏) with 𝑎, 𝑏 ∈ 𝒪 and 𝑃 ∈ 𝐹 (𝑎, 𝑏);
– 𝑃 (𝑎, 𝑏) with 𝑃 (𝑎, 𝑏) ∈ 𝒫 .

Informally, the first two types of assertions capture the difference between 𝛯ℐ and 𝛯,
for some model ℐ of 𝒦, and the other three capture the difference between 𝒢ℐ and 𝒢. Since
there exists no model of 𝒦 realizing exactly the type set 𝛯 and 𝒪-graph 𝒢, we have ℐ ∣= 𝑞

for each model ℐ of 𝒦. That is, 𝒦 ∣= 𝑞. However, as model ℐ′ does not satisfy 𝑞, 𝒦′ ∕∣= 𝑞.
(2)⇒ (3) follows directly from Lemma 5.3.
(3) ⇒ (1): For any query 𝑞 ∈ 𝒬𝑢

ℒ with Sig(𝑞) ∩ 𝒮 = ∅, suppose 𝒦′ ∕∣= 𝑞, then there is
a model ℐ′ of 𝒦′ such that ℐ′ ∕∣= 𝑞. There exists a model ℐ of 𝒦 with ℐ ∼𝒮 (ℐ′)∞. Since
(ℐ′)∞ ∕∣= 𝑞, we have ℐ ∕∣= 𝑞, and thus 𝒦 ∕∣= 𝑞.

In𝒬𝑐
ℒ, one is allowed to inquire cardinality of concepts. In order to generalize the above

model-theoretic characterization of 𝒬𝑢
ℒ-forgetting to apply to 𝒬𝑐

ℒ-forgetting, a notion of
type-cardinality is needed.

Given an interpretation ℐ and a type 𝜏 , we define Cardℐ(𝜏) = ♯({𝑑 ∈ 𝛥ℐ ∣ 𝜏ℐ(𝑑) =

𝜏}). That is, Cardℐ(𝜏) is the number of individuals on which 𝜏 is realized in ℐ. Note that
Cardℐ(𝜏) can be∞.

We have the following lemma, which is similar to Lemma 5.3 but with additional re-
striction on the cardinality of types and guaranteeing a stronger model equivalence relation.

Lemma 5.4 Let 𝒦1,𝒦2 be two KBs, 𝒮 be a signature, and Sig(𝒦2) ⊆ Sig(𝒦1)−𝒮. Denote
𝛴 = Sig(𝒦1) − 𝒮, 𝑁 = Num(𝒦1) and 𝒪 = Ind(𝒦1). Given a model ℐ2 of 𝒦2, suppose
there is a model ℐ1 of 𝒦1 such that

– ℐ1 and ℐ2 realize the same 𝛴𝑁 -type set 𝛯;
– for each type 𝜏 ∈ 𝛯, ℐ1 and ℐ2 realize 𝜏 with the same number of individuals;
– ℐ1 and ℐ2 realize the same 𝒪-graph.

Then there exists a model ℐ of 𝒦1 such that ℐ ∼𝒮 ℐ2.

Proof Since Cardℐ1
(𝜏) = Cardℐ2

(𝜏) for each 𝜏 ∈ 𝛯, we have ♯(𝛥ℐ1) = ♯(𝛥ℐ2), and
there is a bijection 𝑓 : 𝛥ℐ1 → 𝛥ℐ2 , such that 𝜏ℐ1

(𝑑) = 𝜏ℐ2
(𝑓(𝑑)) for all 𝑑 ∈ 𝛥ℐ1 . Also,

since ℐ1 and ℐ2 realize the same 𝒪-graph, 𝑓 is still well-defined if we require, additionally,
𝑓(𝑎ℐ1) = 𝑎ℐ2 for each 𝑎 ∈ 𝒪.

We will construct ℐ from ℐ1 and ℐ2 in the following way:
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– we take 𝛥ℐ = 𝛥ℐ2 ;
– for each individual name 𝑎 ∈ 𝒪, 𝑎ℐ = 𝑎ℐ2 ;
– for each concept name 𝐴, if 𝐴 ∈ 𝒮, 𝐴ℐ = {𝑓(𝑑) ∣ 𝑑 ∈ 𝐴ℐ1}, otherwise, 𝐴ℐ = 𝐴ℐ2 ;
– for each role name 𝑃 , if 𝑃 ∈ 𝒮, 𝑃ℐ = {(𝑓(𝑑), 𝑓(𝑒)) ∣ (𝑑, 𝑒) ∈ 𝑃ℐ1}, otherwise,

𝑃ℐ = 𝑃ℐ2 .

By the construction of ℐ we have ℐ ∼𝒮 ℐ2. Similar to the proof of Lemma 5.3, we can also
show that ℐ ∣= 𝒦1.

Also, we have the following similar result as Theorem 5.6.

Theorem 5.7 Let 𝒦 be a KB and 𝒮 a signature. Denote 𝛴 = Sig(𝒦) − 𝒮, 𝑁 = Num(𝒦)
and 𝒪 = Ind(𝒦). Given a KB 𝒦′ with Sig(𝒦′) ⊆ 𝛴 such that 𝒦 ∣= 𝒦′, the following three
conditions are equivalent:

(1) 𝒦′ is a result of 𝒬𝑐
ℒ-forgetting about 𝒮 in 𝒦;

(2) for each model ℐ′ of 𝒦′, there always exists a model ℐ of 𝒦 such that (𝑎) ℐ and ℐ′
realize the same 𝛴𝑁 -type set 𝛯, (𝑏) for each type 𝜏 ∈ 𝛯, Cardℐ(𝜏) = Cardℐ′(𝜏), and
(𝑐) ℐ and ℐ′ realize the same 𝒪-graph;

(3) for each model ℐ′ of 𝒦′, there always exists a model ℐ of 𝒦 such that ℐ ∼𝒮 ℐ′.

Proof (1) ⇒ (2): Conversely, suppose there exists a model ℐ′ of 𝒦′ realizing 𝛴𝑁 -type
set 𝛯 and 𝒪-graph 𝒢 = (𝒪, 𝐹 ), such that for each model ℐ of 𝒦, realizing type set 𝛯ℐ and
𝒪-graph 𝒢ℐ = (𝒪, 𝐹ℐ), at least one of the following three conditions holds: (𝐴) 𝛯ℐ ∕= 𝛯,
(𝐵) Cardℐ(𝜏) ∕= Cardℐ′(𝜏) for some type 𝜏 ∈ 𝛯, and (𝐶) 𝒢ℐ ∕= 𝒢.

We want to construct a query 𝑞 ∈ 𝒬𝑐
ℒ over 𝛴, 𝑁 and 𝒪, such that 𝒦 ∣= 𝑞 but 𝒦′ ∕∣= 𝑞.

Let 𝒫 = {𝑃 (𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ 𝒪, 𝑃 ∕∈ 𝐹 (𝑎, 𝑏) but 𝑃 ∈ 𝐹ℐ(𝑎, 𝑏) for some ℐ ∈ Mod(𝒦)}.
We can construct a query 𝑞, which is the union of all (possibly negated role) assertions

of the following forms in DL-Lite𝑐bool :

–
¬ (⩾ Cardℐ′(𝜏) 𝑢.

l
𝐿∈𝜏

𝐿⊓ ⩽ Cardℐ′(𝜏) 𝑢.
l
𝐿∈𝜏

𝐿)(𝑎𝜏 )

with 𝜏 ∈ 𝛯, where 𝑎𝜏 is a new individual name for 𝜏 ;
– (∃ 𝑢.d𝐿∈𝜏 𝐿)(𝑎𝜏 ) with 𝜏 a 𝛴𝑁 -type but 𝜏 ∕∈ 𝛯, and 𝑎𝜏 a new individual name for 𝜏 ;
– ¬(d𝐿∈𝜏𝑎

𝐿)(𝑎) with 𝑎 ∈ 𝒪 and 𝐹 (𝑎) = {𝜏𝑎};
– ¬𝑃 (𝑎, 𝑏) with 𝑎, 𝑏 ∈ 𝒪 and 𝑃 ∈ 𝐹 (𝑎, 𝑏);
– 𝑃 (𝑎, 𝑏) with 𝑃 (𝑎, 𝑏) ∈ 𝒫 .

Similar to the proof of Theorem 5.6, the first two types of assertions correspond to
items (𝐴) and (𝐵), and the other three correspond to (𝐶). Since for each model ℐ of 𝒦,
either (𝐴), or (𝐵), or (𝐶) holds, we have ℐ ∣= 𝑞 for each model ℐ of 𝒦. That is, 𝒦 ∣= 𝑞.
However, as model ℐ′ does not satisfy 𝑞, 𝒦′ ∕∣= 𝑞.

(2)⇒ (3) follows directly from Lemma 5.4.
(3)⇒ (1): For any query 𝑞 ∈ 𝒬𝑐

ℒ with Sig(𝑞)∩𝒮 = ∅ such that𝒦′ ∕∣= 𝑞, there is a model
ℐ′ of 𝒦′ such that ℐ′ ∕∣= 𝑞. There exists a model ℐ of 𝒦 with ℐ ∼𝒮 ℐ′. We have ℐ ∕∣= 𝑞, and
thus 𝒦 ∕∣= 𝑞.
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5.4 Proofs for Section 5.2

In what follows, we use the model-theoretic characterizations introduced in previous section
to provide proofs for results in Section 5.2.

We show the existence of 𝒬ℒ-forgetting by constructing a result of forgetting from the
type set and 𝒪-graph realized by the original KB.
Proof of Theorem 5.2 Let 𝛴 = Sig(𝒦) − 𝒮, 𝑁 = Num(𝒦) and 𝒪 = Ind(𝒦). Let 𝛯 and
𝒢 = (𝒪, 𝐹 ) be, respectively, the type set and 𝒪-graph realized by 𝒦 over 𝛴 and 𝑁 . We can
construct 𝒦′ = ⟨𝒯 ′,𝒜′⟩ from 𝛯 and 𝒢 in the following way:

Let 𝒯 ′ = { d
𝐿∈𝜏 𝐿 ⊑ ⊥ ∣ 𝜏 is a 𝛴𝑁 -type, but 𝜏 ∕∈ 𝛯 }, and

𝒜′ = { (⊔𝜏∈𝐹 (𝑎)

d
𝐿∈𝜏 𝐿)(𝑎) ∣ 𝑎 ∈ 𝒪} ∪ {𝑃 (𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ 𝒪, 𝑃 ∈ 𝐹 (𝑎, 𝑏) }.

Obviously, 𝒦′ is over Sig(𝒦) − 𝒮. As we can show, 𝒦′ is constructed to satisfy the
following two conditions:
(1) 𝒦 ∣= 𝒦′. That is, for each model ℐ of 𝒦, ℐ is also a model of 𝒦′:

– (
d

𝐿∈𝜏 𝐿)ℐ = ∅ for each 𝜏 ∕∈ 𝛯;
– for each 𝑎 ∈ 𝒪, 𝑎ℐ ∈ (

d
𝐿∈𝜏 𝐿)ℐ for some 𝜏 ∈ 𝐹 (𝑎);

– for each pair 𝑎, 𝑏 ∈ 𝒪, (𝑎ℐ , 𝑏ℐ) ∈ 𝑃ℐ for each 𝑃 ∈ 𝐹 (𝑎, 𝑏).

(2) Denote 𝛯′ and 𝒢′ = (𝒪, 𝐹 ′) to be, respectively, the type set and 𝒪-graph realized by 𝒦′

over 𝛴 and 𝑁 . We have 𝛯′ = 𝛯 and 𝒢′ = 𝒢. This can be seen from that:

– clearly, 𝛯′ ⊆ 𝛯, and for each 𝜏 ∈ 𝛯, we can always construct a model ℐ of 𝒦′ (satisfy-
ing 𝒯 ′) with some 𝑑 ∈ (

d
𝐿∈𝜏 𝐿)ℐ , that is, 𝜏 is also in 𝛯′;

– 𝐹 (𝑎) ⊆ 𝐹 ′(𝑎) for each 𝑎 ∈ 𝒪, and given a model ℐ of 𝒦′, 𝒜′ states 𝑎ℐ ∈ (
d

𝐿∈𝜏 𝐿)ℐ

for some 𝜏 ∈ 𝐹 (𝑎), that is, 𝐹 ′(𝑎) ⊆ 𝐹 (𝑎);
– 𝐹 ′(𝑎, 𝑏) is exactly 𝐹 (𝑎, 𝑏) for each pair 𝑎, 𝑏 ∈ 𝒪.

By Theorem 5.5, 𝒦′ is a result of 𝒬ℒ-forgetting about 𝒮 in 𝒦.

Based on the model-theoretic charaterization of 𝒬𝑢
ℒ-forgetting, we can show the proofs

for Propositions 5.2, 5.3 and Theorem 5.2.
Proof of Proposition 5.2 Suppose 𝒦′ ∕∣= 𝑞. Then there exists a model ℐ′ of 𝒦′ such that
ℐ′ ∕∣= 𝑞 for each grounded PEQ 𝑞 with Sig(𝑞)∩𝒮 = ∅. By Theorem 5.6, there exists a model
ℐ of 𝒦 such that ℐ ∼𝒮 (ℐ′)∞. Since (ℐ′)∞ ∕∣= 𝑞, we have ℐ ∕∣= 𝑞, and thus 𝒦 ∕∣= 𝑞.

Proof of Proposition 5.3 Obviously, Sig(𝒦′
1 ∪ 𝒦′

2) ⊆ Sig(𝒦1 ∪ 𝒦2)− 𝒮 and 𝒦1 ∪ 𝒦2 ∣=
𝒦′

1 ∪ 𝒦′
2. We only need to show that for any 𝑞 ∈ 𝒬𝑢

ℒ with Sig(𝑞) ∩ 𝒮 = ∅, 𝒦1 ∪ 𝒦2 ∣= 𝑞

implies 𝒦′
1 ∪ 𝒦′

2 ∣= 𝑞.
Suppose 𝒦′

1∪𝒦′
2 ∕∣= 𝑞, then there exists a model ℐ′ of both 𝒦′

1 and 𝒦′
2 such that ℐ′ ∕∣= 𝑞.

By Theorem 5.6, there exists a model ℐ1 of 𝒦1 with ℐ1 ∼𝒮 (ℐ′)∞ and a model ℐ2 of 𝒦2

with ℐ2 ∼𝒮 (ℐ′)∞. Thus (ℐ′)∞ ∼𝒮 ℐ1 ∼𝒮 ℐ2.
Similar to the proof of Proposition 3.4, we can construct an interpretation ℐ such that

(1) ℐ ∼𝒮 (ℐ′)∞; (2) ℐ and ℐ𝑖 coincide on Sig(𝒦𝑖)∩𝒮 for 𝑖 = 1, 2. Obviously, ℐ is a model
of 𝒦1 ∪ 𝒦2 and ℐ ∕∣= 𝑞. Thus, 𝒦1 ∪ 𝒦2 ∕∣= 𝑞.

Now let us prove Theorem 5.3.
Proof of Theorem 5.3 Denote 𝛴 = Sig(𝒦)−𝒮, 𝑁 = Num(𝒦) and𝒪 = Ind(𝒦). Let 𝛯 and
𝒢 = (𝒪, 𝐹 ) be, respectively, the type set and 𝒪-graph realized by 𝒦 over 𝛴 and 𝑁 . Similar
to the proof of Theorem 5.2, we can construct 𝒦′ = ⟨𝒯 ′,𝒜′⟩ from 𝛯 and 𝒢 as follows.
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Let
𝒯 ′ = { d

𝐿∈𝜏 𝐿 ⊑ ⊥ ∣ 𝜏 is a 𝛴𝑁 -type, but 𝜏 ∕∈ 𝛯 }
∪ { d

𝐿∈𝜏 𝐿 ⊑ ⊔
𝛯′∈𝛺𝜏

(
d

𝜏 ′∈𝛯′ ∃𝑢.d𝐿∈𝜏 ′ 𝐿) ∣ 𝜏 ∈ 𝛯 }

where for each 𝜏 ∈ 𝛯, 𝛺𝜏 is the set of all minimal sets 𝛯′ of 𝛴𝑁 -types such that {𝜏} ∪𝛯′

is realized by some model ℐ of 𝒦.
𝒜′ = {(⊔𝜏∈𝐹 (𝑎)

d
𝐿∈𝜏 𝐿)(𝑎) ∣ 𝑎 ∈ 𝒪} ∪ {𝑃 (𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ 𝒪, 𝑃 ∈ 𝐹 (𝑎, 𝑏)}.

Obviously, Sig(𝒦′) ⊆ Sig(𝒦) − 𝒮, and 𝒦′ is constructed to satisfy the following two
conditions:
(1) 𝒦 ∣= 𝒦′. That is, for each model ℐ of 𝒦, ℐ is also a model of 𝒦′. Compared to the
KB constructed in the proof of Theorem 5.2, the only difference here is that 𝒦′ contains
inclusions of the form

d
𝐿∈𝜏 𝐿 ⊑ ⊔

𝛯′∈𝛺𝜏
(
d

𝜏 ′∈𝛯′ ∃𝑢.d𝐿∈𝜏 ′ 𝐿). Given 𝜏 ∈ 𝛯, there al-
ways exists some 𝛯′ ∈ 𝛺𝜏 such that {𝜏}∪𝛯′ ⊆ 𝛯ℐ . Thus, each 𝜏 ′ ∈ 𝛯′ is realized by ℐ and(d

𝜏 ′∈𝛯′ ∃𝑢.d𝐿∈𝜏 ′ 𝐿)
)ℐ

= 𝛥ℐ . That is, ℐ satisfies
d

𝐿∈𝜏 𝐿 ⊑ ⊔
𝛯′∈𝛺𝜏

(
d

𝜏 ′∈𝛯′ ∃𝑢.d𝐿∈𝜏 ′ 𝐿).
(2) For each inclusion or assertion 𝑞 ∈ 𝒬𝑢

ℒ with Sig(𝑞) ∩ 𝒮 = ∅, 𝒦 ∣= 𝑞 implies 𝒦′ ∣= 𝑞.
When 𝑞 is a DL-Lite𝑢bool inclusion, the above relation has been proved in (the proof of

Theorem 22 in) [21]. The intuition is that, for each model ℐ′ of 𝒦′ and type set 𝛯′ realized
by ℐ′, it is always possible to construct a model ℐ of 𝒦 realizing the same type set 𝛯′.
Detailed proof for the inclusion case is omitted here. In what follows, we only consider
assertions 𝑞 of the form 𝐶(𝑎) or 𝑅(𝑎, 𝑏) in DL-Lite𝑢bool . Note that negated role assertions
¬𝑅(𝑎, 𝑏) cannot follow from any DL-Litebool KB, and thus are not taken into consideration.

For assertion 𝑞 of the form 𝐶(𝑎), without loss of generality, we can assume 𝐶 is in its
DNF. That is, 𝐶 =

⊔d
𝐸, where each 𝐸 is either an ℒ-literal concept 𝐿, or a DL-Lite𝑢bool

literal of the form (¬)∃𝑢.𝐷 (with 𝐷 a ℒ-concept). We want to show that for each 𝐸(𝑎),
𝒦 ∣= 𝐸(𝑎) implies 𝒦′ ∣= 𝐸(𝑎): If 𝐸 is a ℒ-literal concept, the above relation is proved in
the proof of Theorem 5.2. If 𝐸 is a DL-Lite𝑢bool literal, by the definition of ∃𝑢.𝐷, assertion
(∃𝑢.𝐷)(𝑎) is equivalent to inclusion ⊤ ⊑ ∃𝑢.𝐷, and ¬(∃𝑢.𝐷)(𝑎) to ∃𝑢.𝐷 ⊑ ⊥. Since the
inclusion case is already proved, we have 𝒦 ∣= 𝐸(𝑎) implies 𝒦′ ∣= 𝐸(𝑎). For assertion
𝑞 of the form 𝑅(𝑎, 𝑏), it is shown in the proof of Theorem 5.2 that 𝒦 ∣= 𝑅(𝑎, 𝑏) implies
𝒦′ ∣= 𝑅(𝑎, 𝑏).

By the definition of 𝒬𝑢
ℒ-forgetting, we have shown that 𝒦′ is a result of 𝒬𝑢

ℒ-forgetting
about 𝒮 in 𝒦.

With Theorem 5.7, Theorem 5.4 is easily shown as follows.
Proof of Theorem 5.4 From Theorem 5.1, forget(𝒦,𝒮) is a result of 𝒬𝑐

ℒ-forgetting about
𝒮 in 𝒦.

For the other direction, By Theorem 5.7 and Proposition 3.1, it is readily seen that
forget(𝒦,𝒮) = 𝒦′.

6 Related Work

The issue of defining suitable operators for ontology reuse, merging and update in DLs
has received much interest recently and several approaches have been proposed, including
conservative extension [13,26], module extraction [15,20,19], forgetting [34,21,18], update
and erasure [14,25], and ontology repair [17,22,27–30].
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Technically, forgetting is very close to the concept of uniform interpolant [32]. In some
cases they are even identical. [31] investigates the uniform interpolant for concept descrip-
tions in 𝒜ℒ𝒞 and [13] briefly discusses a definition of uniform interpolant for TBoxes in
𝒜ℒ𝒞 . As explained in Section 1, the work in this paper is a significant extension of our
conference paper [34], where the model-based forgetting is proposed for DL-Lite TBoxes.
Subsequently, [21] then introduce two alternative forgettings for DL-Lite TBoxes (namely,
b-forgetting and u-forgetting).

To the best of our knowledge, forgetting in DL-Lite KBs has not been investigated be-
fore. Therefore, one major contribution of this paper is the extension of results for TBox
forgetting to KB forgetting. Such an extension is non-trivial because of the involvement of
ABoxes, which can be seen from the algorithms and proofs presented. The model-based for-
getting introduced in this paper also generalizes the forgetting in [34] to the more expressive
DL-Lite𝒩bool . This generalization increases the complexity of algorithms, and also affects the
expressibility results. Our query-based forgetting generalizes b-forgetting and u-forgetting
in two ways. First, query-based forgetting is defined for KBs, although the extension is
straightforward. Second, we use query-based forgetting to provide a unifying framework for
defining and comparing different definitions of forgetting. In particular, we have shown that
three definitions of forgetting can be embedded in our framework. [10] investigated forget-
ting for OWL/RDF ontologies by translating an ontology into a logic program. However,
their approach is applicable to only a small class of OWL/RDF ontologies.

Conservative extension and module extraction have some similarity with forgetting, but
they are different in that the first two approaches support only removing inclusions and
assertions, but cannot modify them. As a result, if a TBox 𝒦′ has a conservative extension
𝒦, then𝒦′ is a result of forgetting in𝒦, but a result of forgetting may not be a (conservative)
module.

Update and erasure operations in DL-Lite are discussed in [14]. While both erasure
and forgetting are concerned with eliminating information from an ontology, they are quite
different. When erasing an assertion 𝐴(𝑎) from a DL KB 𝒦, only the membership relation
between individual 𝑎 and concept 𝐴 is removed, while concept name 𝐴 is not necessarily
removed from𝒦. However, forgetting about 𝐴 in𝒦 involves eliminating all logical relations
(e.g., subsumption relation, membership relation, etc.) that refer to 𝐴 in 𝒦.

Another stream of research is about ontology repair, where the major issue is to recover
the consistency of an inconsistent ontology by removing a smallest subset from the ontology.
Obviously, ontology repair has quite different motivation and assumptions from forgetting.

7 Conclusion

Forgetting provides a promising way of extracting, reusing and merging ontologies. How-
ever, it is rarely investigated how to adapt forgetting to knowledge bases in Description
Logics. To the best of our knowledge, this paper is the first attempt towards investigating
forgetting for KBs in DLs. In this paper, we have introduced model-based forgetting for
KBs in DL-Lite𝒩bool and shown that all major properties of forgetting are satisfied by our
forgetting. In particular, we have developed a resolution-like algorithm for computing the
result of concept forgetting in DL-Lite𝒩bool KBs and proved that this algorithm is sound and
complete. To define and compare various definitions of forgetting, we have established a
hierarchy of forgetting by introducing a parameterized query-based forgetting. After show-
ing how b-forgetting and u-forgetting for TBoxes in [21] can be extended to KBs, we have
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proved that model-based forgetting, b-forgetting and u-forgetting can be characterized by
query-based forgetting.

There are still several interesting issues for future research. First, we are currently work-
ing on generalizing the results in this paper to expressive DLs, such as 𝒜ℒ𝒞 and 𝒮ℋℐ𝒬 .
While it is straightforward to generalize definitions of forgetting, it is less clear whether
these notions of forgetting are suitable for expressive DLs and how to compute the result of
KB forgetting in these DLs. Second, we have obtained some results on forgetting in other
members of DL-Lite (including a more recent member DL-Lite𝒩 ,ℛ

bool ). Further investigation
is under way. In particular, a systematic comparison of forgetting for various members of
DL-Lite will be presented in a separate paper. Third, a systematic study on the complexity
of forgetting is needed. In the setting of DL-Lite, the problem of computing forgetting is
exponential in general. We plan to investigate the complexity of various reasoning tasks re-
lated to forgetting in the DL-Lite family, ℰℒ family and expressive DLs including 𝒜ℒ𝒞 and
𝒮ℋℐ𝒬 . As a result, tractable classes will be identified. Last, one important issue might be
the applications of forgetting in extracting, modularizing, reusing and merging ontologies.
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