
Computational Intelligence, Volume 30, Number 2, 2014

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES
IN EXPRESSIVE DESCRIPTIVE LOGICS

KEWEN WANG,1 ZHE WANG,2 RODNEY TOPOR,3 JEFF Z. PAN,4 AND GRIGORIS ANTONIOU5

1Griffith University Brisbane, Queensland, Australia
2University of Oxford, Oxford, United Kingdom

3Griffith University, Brisbane, Queensland, Australia
4University of Aberdeen, Aberdeen, United Kingdom

5University of Huddersfield, Huddersfield, United Kingdom

Forgetting is an important tool for reducing ontologies by eliminating some redundant concepts and roles while
preserving sound and complete reasoning. Attempts have previously been made to address the problem of forgetting
in relatively simple description logics (DLs), such as DL-Lite and extended EL . However, the issue of forgetting
for ontologies in more expressive DLs, such as ALC and OWL DL, is largely unexplored. In particular, the problem
of characterizing and computing forgetting for such logics is still open. In this paper, we first define semantic
forgetting about concepts and roles in ALC ontologies and state several important properties of forgetting in this
setting. We then define the result of forgetting for concept descriptions in ALC, state the properties of forgetting for
concept descriptions, and present algorithms for computing the result of forgetting for concept descriptions. Unlike
the case of DL-Lite, the result of forgetting for an ALC ontology does not exist in general, even for the special case
of forgetting in TBoxes. This makes the problem of computing the result of forgetting in ALC more challenging.
We address this problem by defining a series of approximations to the result of forgetting for ALC ontologies and
studying their properties. Our algorithms for computing approximations can be directly implemented as a plug-in
of an ontology editor to enhance its ability of managing and reasoning in (large) ontologies.

Received 9 November 2010; Revised 10 April 2012; Accepted 18 April 2012; Published online 26 June 2012

Key words: DLs, forgetting, ontology.

1. INTRODUCTION

The amount of semantically annotated data available on the Web is growing rapidly.
For example, it is estimated that there are currently 5 billion linked data items available
online (Heath 2009). Accordingly, the Web is rapidly emerging as a large-scale platform for
publishing and sharing knowledge using formal models (Peroni, Motta, and d’Aquin 2008).
Ontologies have been widely used by automated tools to provide advanced services, such
as more accurate web search, intelligent software agents, and knowledge management. An
ontology is a formal specification for a common set of terms that are used to describe and
represent an application domain. Because more ontologies are used for annotating data on
the Web, and because the populated ontologies become larger and more comprehensive,
it becomes increasingly important for the future Web to provide abilities for constructing
and managing such ontologies. Examples of large ontologies currently in use include the
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT)1 containing 380K
concepts, the National Cancer Institute (NCI) Thesaurus2 containing over 60K axioms, and
the OBO Foundry3 containing about 80 biomedical ontologies.

Although it is expensive to construct large ontologies, it is even more expensive to host,
manage, and use a large, comprehensive ontology when a module of the ontology on a

Address correspondence to Kewen Wang, School of Information and Communication Technology, Griffith University,
Brisbane, QLD 4111, Australia; e-mail: k.wang@griffith.edu.au

1 http://www.fmrc.org.au/snomed/
2 http://ncit.nci.nih.gov/
3 http://www.obofoundry.org/

C© 2012 Wiley Periodicals, Inc.

206 COMPUTATIONAL INTELLIGENCE

smaller alphabet would suffice. Therefore, tools to reduce large ontologies to new ontologies
on a smaller alphabet that meet the needs of specific applications aid and encourage the use
of existing ontologies. However, because the tool evaluation study in Dzbor et al. (2006)
shows, existing tools, such as Protégé,4 NeOn,5 and TopBraid,6 are far from satisfactory for
this purpose.

Ontology engineers, thus, face the task of reducing existing, large ontologies to smaller
(in terms of alphabet), better focused ontologies by hiding or forgetting irrelevant concepts
and roles while preserving required reasoning capabilities. Such ontology reductions can
be applied to ontology extraction, ontology summary, ontology integration, and ontology
evolution.

We consider two typical scenarios, in ontology extraction and ontology summary,
respectively.

Ontology extraction: To reduce the high cost of building ontologies by hand, it has been
the focus of some research to construct ontologies automatically. One promising approach
to constructing new ontologies is to search and reuse ontologies that already exist on the
Web. In many cases, large ontologies need to be tailored first and only relevant parts to be
reused. Consider a scenario discussed in Cuenca Grau, Parsia, and Sirin (2005): suppose we
want to design an ontology Pets describing properties of domestic animals, such as cats and
dogs. Rather than starting from scratch, we would first search the Web and try to find similar
ontologies that can be reused. Suppose that we found a large ontology Animals on the Web
describing domestic animals as well as wild animals, such as lions and tigers. In this case,
we can forget about those terms of animals in the ontology Animal that are not considered
as pets and obtain a smaller ontology in terms of alphabet.

Ontology summary: Compared to ontology extraction, existing tools are even more
limited in providing support for navigating and making sense of the ontologies. As argued in
Alani, Harris, and O’Neil (2006) and Peroni et al. (2008), a key problem faced by an ontology
engineer is so-called ontology summary. When considering the reuse of a large ontology, it
is important to obtain a view of the ontology in making decisions about the suitability of the
ontology in question for the current ontology engineering development project. In general,
a process of ontology summary consists of two stages: The first stage is to identify the key
concepts in the large ontology. There have been some algorithms for accomplishing this task
(Alani et al. 2006; Peroni et al. 2008). After a set of key concepts are found, the next stage
in ontology summary is to hide/forget the concepts that are not key concepts.

However, an ontology is often represented as a logical theory, and the removal of one
term may influence other terms in the ontology. Thus, more advanced methods for dealing
with large ontologies and reusing existing ontologies are desired.

Forgetting has previously been studied for propositional logic, first-order logic (FOL),
and logic programming (Lin and Reiter 1994; Lang, Liberatore, and Marquis 2003; Eiter
and Wang 2008), where it has proved a useful technique for reducing a logical theory
while preserving sound and complete reasoning in the resulting smaller theory (in terms of
alphabet).

However, description logic (DL; Baader et al. 2002) is a different and important knowl-
edge representation framework, which is the basis for ontology languages such as OWL, that
are widely used in the Semantic Web.

4 http://protege.stanford.edu
5 http://www.neon-toolkit.org
6 http://www.topquadrant.com/products/TB_Composer.html

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 207

Although most DLs are equivalent to fragments of FOL, the forgetting for FOL intro-
duced in Lin and Reiter (1994) is not directly applicable to DLs for at least two reasons. First,
the correspondence between DLs and FOL does not help much in investigating forgetting
for DLs because the result of forgetting in a theory of the FOL may not be expressible in
FOL. Second, it is preferable to perform forgetting in DLs directly rather than transforming
an ontology into a first-order theory, forgetting and then transforming back to an ontology,
because in DLs, we may not need a form of forgetting to preserve all consequences in the
FOL and also we want to utilize some advantages of DLs, such as tractability and decidability,
in implemting forgetting for DLs.

The issue of forgetting for ontologies in expressive DLs is largely unexplored. In partic-
ular, the problem of characterizing and computing forgetting for such logics is still open.

In this paper, we first give a semantic definition of forgetting for ontologies in the DL
ALC and state several important properties of forgetting. We choose ALC to study in this
paper because it allows all boolean operations and quantifiers, and most expressive DLs are
based on it. Moreover, some researchers, e.g., Rector, Brandt, and Kola (2008), have argued
that practical ontologies, such as, SNOMED CT would benefit from a more expressive DL.
Unlike forgetting in DL-Lite (Wang et al. 2010), the result of forgetting for an ALC ontology
does not exist in general, even for the special case of forgetting concepts. This makes the
problem of computing forgetting for ALC ontologies even more challenging. We address this
problem by introducing a way of approximating the result of forgetting for ALC ontologies.
This technique of approximation is based on forgetting for concept descriptions in ALC and
algorithms for computing the result of forgetting for concept descriptions. Our algorithms
for computing approximations can be embedded into an ontology editor to enhance its ability
to manage and reason in large ALC ontologies.

The contribution of this work can be summarized as follows:

(i) This is the first attempt to investigate the theory of forgetting for TBoxes and KBs,
while a definition of interpolation for ALC TBoxes is mentioned in Definition 17 of
Ghilardi, Lutz, and Wolter (2006). However, they did not provide any further results
on the concept of interpolation.

(ii) In our paper, forgetting (KB-forgetting) is defined for general KBs and properties of
KB-forgetting are investigated. In particular, the properties of KB-forgetting are new,
even just for TBoxes.

(iii) We provide a novel way of dealing with the issue of approximating KB-forgetting
(n-forgetting). Especially, we present an algorithm for computing n-forgetting for
TBoxes and its correctness is proven.

(iv) Although a similar algorithm for computing interpolant for concept descriptions (c-
forgetting) was given by ten Cate et al., the proof sketch in their proof does not provide
much detail. In this sense, we provide the first detailed proof for the correctness of
Algorithm 1.

The work presented here appeared in an abridged form in two conference papers (Wang
et al. 2009a,b). Most proofs appear here for the first time as well as some formal properties
of forgetting. A few long proofs are included in the Appendix at the end of the paper.

2. RELATED WORK

In ontology engineering, there have been many efforts to deal with large and complex
ontologies that are represented in logic-based ontology languages, such as DLs, and the latest

208 COMPUTATIONAL INTELLIGENCE

W3C standard (Calvanese et al. 2009). One stream of this research area is to obtain certain
modules of a given ontology that is usually large and complex.

In the last few years, conservative extensions have been identified as a crucial technique
for formalizing modularity in ontology design and reuse (e.g., Antoniou and Kehagias
2000; Cuenca Grau et al. 2005, 2007a,b; Ghilardi et al. 2006; Kontchakov, Wolter, and
Zakharyaschev 2007; Lutz, Walther, and Wolter 2007; Cuenca Grau et al. 2008). Informally,
an ontology O is a (deductive) conservative extension of another ontology O ′ with regard
to an alphabet � (equivalently, O ′ is a module of O) if O ′ ⊆ O and they are “equivalent”
on �. For some ontology application domains such as ontology summary, it is required
that a module of an ontology should contain only the symbols from a given alphabet �
(Kontchakov, Wolter, and Zakharyaschev 2008, 2010; Konev, Walther, and Wolter 2009).
Although the concept of modules based on conservative extensions is simple and intuitive,
in some cases, for a given ontology O , there may not exist such a module containing
only symbols in an alphabet �. One source for this phenomenon is the requirement that a
module must be a subset of the original ontology. For example, consider O = {Penguin �
Bird ,Bird � Animal} and � = {Penguin,Animal}. Then the ontology O does not have a
module containing only symbols in {Penguin,Animal}. Intuitively, it would be reasonable
to treat O ′′ = {Penguin � Animal} as a module of O , whereas O is not a conservative
extension of O ′′ because O ′′ is not a subset of O . This simple example demonstrates that the
notion of modularity based on deductive conservative extensions is probably insufficient for
addressing some issues of modularity and reuse in logic-based ontology languages.

Forgetting generalizes the notion of conservative extensions and the corresponding def-
inition of modules in the sense that a result of forgetting does not necessarily a subset of
the original ontology. In the above example, the ontology O ′′ = {Penguin � Animal} is a
result of forgetting about Bird in O = {Penguin � Bird ,Bird � Animal} as we will see
later. Attempts have been made to address the issue of forgetting in relatively simple DLs,
such as DL-Lite (Wang et al. 2008) and EL (Konev et al. 2009). In Wang et al. (2008), a
definition of forgetting for DL-Lite is introduced, which is based on the classical equivalence
of two logical theories, and an algorithm for computing the forgetting is developed. In some
practical applications, different notions of forgetting might be needed. For example, one may
need only to guarantee that two ontologies are equivalent with regard to a given set of queries
(for instance, if the set of queries consists of only concept inclusions, the resulting equiva-
lence is weaker than the classical equivalence in the sense that the new equivalence preserves
fewer consequences than classical equivalence). Based on this observation, (Kontchakov
et al. 2008, 2010) introduced two variants of forgetting for DL-Lite. (Wang et al. 2010)
further developed these results and proposed the notion of parameterized forgetting. An
approach to forgetting for ontologies in EL is investigated in (Konev et al. 2009) and it has
been used to extract modules from realistic medical ontologies. In our view, the concept of
forgetting provides a more suitable approach to modular ontologies. However, as explained
in the last section, previous approaches to forgetting for DLs are limited in that forgetting
is investigated for only very simple ontology languages and DLs instead of expressive ones
such as ALC and OWL DL.

Another concept that is well known in classical logic and closely related to forgetting
is interpolation. Originally, it was proposed and investigated in pure mathematical logic,
specifically, in proof theory. Given a theory T , the interpolation property for T says that
if T � φ → ψ for two formulas φ and ψ , then there is a formula I (φ,ψ) in the language
containing only the shared symbols, say S, such that T � φ → I (φ,ψ) and T � I (φ,ψ) →
ψ . Such a I (φ,ψ) is referred as an interpolant. The notion of uniform interpolation is
a strengthening of interpolation property such that the interpolant can be obtained from
either φ and S or from ψ and S. The uniform interpolation for various propositional modal

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 209

logics has been investigated, e.g., Visser (1996) and Ghilardi (1995). A definition of uniform
interpolation for the DL ALC is given in ten Cate et al. (2006) and it is used in investigating
the definability of TBoxes for ALC. We note that the concept of interpolation for ALC is
only defined for concept descriptions rather than ALC ontologies.

Forgetting and uniform interpolation have different intuitions behind them and are in-
troduced by different communities. Uniform interpolation is originally investigated as a
syntactic concept and forgetting is a semantic one. However, if the axiom system is sound
and complete, they can be characterized by each other. In particular, as we will see later, the
uniform interpolation is equivalent to the forgetting for concept descriptions.

3. DESCRIPTION LOGIC ALC
DLs are a family of concept-based knowledge representation languages. They are equiv-

alent to fragments of FOL. A DL knowledge base has two components: a TBox and an
ABox. The TBox specifies the terminology of an application domain, including concepts
and roles and their relations. The ABox contains assertions about membership of named
individuals. For example, we may have a concept named Area , which specifies a set of
areas in computer science, and another concept Expert which is a set of names of experts
in computer science. Also, we can have a role expertIn which relates Expert to Area . The
TBox {Expert � ∃expertIn.Area} means that each expert must have expertize in an area of
computer science; the set {Expert(John), expertIn(John,AI)} is an ABox.

Different DLs have different languages. In this section, we briefly recall some prelimi-
naries of ALC, a basic DL which contains all boolean operators. Further details of ALC and
other DLs can be found in (Baader et al. 2002).

First, we introduce the syntax of concept descriptions for ALC. To this end, we assume
that NC is a set of concept names (or concepts), NR is a set of role names (or roles), and NI
is a set of individuals. In this paper, a variable is either a concept name or a role name.

Complex concept descriptions are built inductively as follows: A (atomic concept);
	 (universal concept); ⊥ (empty concept); ¬C (negation); C � D (conjunction); C � D
(disjunction); ∀R.C (universal quantification); and ∃R.C (existential quantification). Here,
A ∈ NC , C and D are concept descriptions, and R ∈ NR .

An interpretation I is a pair (�I , ·I) where �I is a nonempty set called the domain
and ·I is an interpretation function which associates each individual a with an element aI of
�I , each (atomic) concept A with a subset AI of �I and each atomic role R with a binary
relation RI ⊆ �I ×�I . The function ·I can be naturally extended to complex descriptions

	I = �I , ⊥I = ∅, (¬C)I = �I − C I ,

(C � D)I = C I ∩ DI , (C � D)I = C I ∪ DI ,

(∀R.C)I = {a ∈ �I : for all b, (a, b) ∈ RI implies b ∈ C I },
(∃R.C)I = {a ∈ �I : for some b, (a, b) ∈ RI and b ∈ C I }.

A concept description C is satisfiable if C I �= ∅ for some interpretation I . Otherwise,
we say C is unsatisfiable.

An inclusion axiom (simply inclusion, or axiom) is of the form C � D (C is subsumed
by D), where C and D are concept descriptions. C ≡ D (C is equivalent to D) is an
abbreviation of two inclusions C � D and D � C . A terminology box, or TBox, is a finite
set of inclusions. An interpretation I satisfies an inclusion C � D if C I ⊆ DI . I is a model

210 COMPUTATIONAL INTELLIGENCE

of a TBox T , denoted I |=T , if I satisfies every inclusion of T . T |= C � D if for any I ,
I |= T implies I |= C � D. We note that C is unsatisfiable if |= C ≡ ⊥.

An assertion is a concept assertion of the form C(a) or a role assertion of the form
R(a, b), where a, b ∈ NI , C is a concept description, and R ∈ NR . An assertion box, or
ABox, is a finite set of assertions. Ac and Ar denote the set of concept assertions and the set
of role assertions, respectively.

An interpretation I satisfies a concept assertion C(a) if aI ∈ C I , a role assertion R(a, b)
if (aI, bI) ∈ RI . If an assertion α is satisfied by I , it is denoted I |= α. An interpretation I
is a model of an ABox A, written I |= A, if it satisfies all assertions in A.

Formally, a knowledge base (KB) K is a pair (T ,A) of a TBox T and an ABox A. An
interpretation I is a model of K if I is a model of both T and A, denoted I |= K. A KB is
consistent if it has at least one model. If α is an axiom or an assertion, K |= α if every model
of K satisfies α. Two KBs K and K′ are equivalent, written K ≡ K′, if they have the same
models. “≡” can be similarly defined for TBoxes and ABoxes.

The signature of a concept description C , written sig(C), is the set of all concept and
role names in C . Similarly, we can define sig(T) for a TBox T , sig(A) for an ABox A, and
sig(K) for a KB K.

We use sub(C) to denote the set of all sub-concepts occurring in C . And sub(K) is
defined similarly.

4. FORGETTING IN ALC ONTOLOGIES

In this section, we will first give a semantic definition of what it means to forget about a
set of variables (i.e., concepts and roles) in an ALC KB, and then state and discuss several
important properties of forgetting that justify the definition chosen. This is the first study of
forgetting both concepts and roles for arbitrary knowledge bases in ALC.

As explained earlier, given an ontology K on signature S and V ⊂ S, in ontology
engineering it is often desirable to obtain a new ontology K′ on S − V such that the results
of some reasoning tasks on S − V are still preserved in K′ (e.g., query answering). As
a result, K′ is logically weaker than or as strong as K in general. Unlike the concept of
conservative extensions, K′ may not be a subset of K. This intuition is formalized in the
following definition.

Definition 1. [KB-forgetting] Let K be a KB in ALC and V be a set of variables. A KB
K′ over the signature sig(K) − V is a result of forgetting about V in K if

• K |= K′;
• K |= C � D implies K′ |= C � D for each concept inclusion C � D in ALC over

sig(K) − V;
• K |= C(a) implies K′ |= C(a) for each concept assertion C(a) in ALC over sig(K) − V;
• K |= R(a, b) implies K′ |= R(a, b) for each role assertion R(a, b) in ALC such that

R ∈ sig(K) − V .

Conditions (KF3) and (KF4) extend two corresponding conditions in Ghilardi et al.
(2006) that are used in the definition of uniform interpolants for (only) TBoxes. We note that
if K is a TBox (with empty ABox), then we need only the conditions (KF1) and (KF2) in the
above definition. And if K is an ABox (with empty TBox), condition (KF2) is unnecessary.
To illustrate the above definition of semantic forgetting and how forgetting can be used in

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 211

ontology extraction, consider the following example of designing an ALC ontology about
flu.

Example 1. Suppose we have searched the Web and found an ontology about human
diseases (such a practical ontology could be very large)

(1) Disease � ∀attacks.Human,
(2) Human � Infected � ∃ shows.Symptom,
(3) Disease ≡ Infectious � Noninfectious,
(4) Influenza � Infectious,
(5) Influenza(H1N1), (6) attacks(H1N1,P1) and (7) Infected(P1).

We want to construct an ontology only about flu by reusing the above ontology (i.e.,
smaller in terms of alphabet). This is done by forgetting about the undesired concepts
{Disease, Infectious,Noninfectious}. The result is obtained by replacing (1), (3), and (4)
with

Influenza � ∀attacks.Human .
To forget about concept Infected , the result can be obtained by removing (2), and

replacing (7) with
∃shows.Symptom(P1).
The next example shows that the result of forgetting in an ALC ontology may not exist

in some cases.

Example 2. Let K = (T ,A) be an ALC KB where T = { A � B, B � C, C �
∀R.C, C � D }, and A = { B(a), R(a, b) }.

Take K1 = (T1,A1), where T1 = { A � C, C � ∀R.C, C � D } and A1 =
{ C(a), R(a, b) }. Then, K1 is a result of forgetting about concept B in K.

But there does not exist a result of forgetting about {B,C} in K. To understand this, we
note that the result of forgetting about {B,C} in K should include the following inclusions
and assertions:

A � D, A � ∀R.D, A � ∀R.∀R.D, . . . , and
D(a), (∀R.D)(a), (∀R.∀R.D)(a), . . . , and
R(a, b), D(b), (∀R.D)(b), (∀R.∀R.D)(b), . . .

However, there is no finite ALC KB which is equivalent to the above infinite set of
inclusions.

If the result of forgetting about V in K is expressible as an ALC KB, we say V is
forgettable from K.

In the rest of this section, we state and discuss some important consequences of this
definition of forgetting for KBs in ALC. These properties provide an evidence that the
definition is appropriate.

Proposition 1. [Uniqueness] Let K be an ALC KB and V a set of variables. If both K′
and K′′ in ALC are results of forgetting about V in K, then K′ ≡ K′′.

This proposition says that the result of forgetting inALC is unique up to KB equivalence.
We will leave the proof till a more general result (Proposition 2) is introduced. Given this
result, we write forget(K,V) to denote any result of forgetting about V in K in ALC. In

212 COMPUTATIONAL INTELLIGENCE

particular, forget(K,V) = K′ means that K′ is a result of forgetting about V in K. For
convenience, we assume that the result of forgetting about V in K exists when forget(K,V)
is mentioned.

The following result, which generalizes Proposition 1, shows that forgetting preserves
implication and equivalence relations between KBs.

Proposition 2. [Implication Invariance] Let K1,K2 be two KBs in ALC and V a set of
variables. Then,

• K1 |= K2 implies forget(K1,V) |= forget(K2,V);
• K1 ≡ K2 implies forget(K1,V) ≡ forget(K2,V).

Proof . We need only to show the first statement. For each inclusion or assertion α in
forget(K2,V), we have K2 |= α, and thus K1 |= α. Because α does not contain any
variable in V , by the definition of forgetting, we have forget(K1,V) |= α. Thus, we have
shown forget(K1,V) |= forget(K2,V). �

However, the converse of Proposition 2 is not true in general. Consider K and K1 in
Example 2, it is obvious that forget(K, {B}) ≡ forget(K1, {B}). However, K and K1 are not
equivalent.

Consistency checking and entailment are two major reasoning tasks in DLs. It is a key
requirement for a reasonable definition of forgetting to preserve these two reasoning forms.

Proposition 3. Let K be an ALC KB and V a set of variables. Then,

(i) Consistency: K is consistent iff forget(K,V) is consistent;
(ii) Entailment Invariance: for any inclusion or assertion α over sig(K) − V , K |= α iff

forget(K,V) |= α.

Proof . (1): Because K |= forget(K,V), the consistency of K implies the consistency
of forget(K,V). If K is inconsistent, we have K |= (� ⊥), which implies that
forget(K,V) |= (� ⊥). That is, forget(K,V) is also inconsistent.

2) It follows from Definition 1. �

The next result shows that the forgetting operation can be divided into steps, with a part
of the signature forgotten in each step.

Proposition 4. [Variable Splitting] LetK be anALC KB andV1,V2 two sets of variables.
Then, we have

forget(K,V1 ∪ V2) ≡ forget(forget(K,V1),V2).

Proof . For each inclusion or assertion α in forget(forget(K,V1),V2), we have
forget(K,V1) |= α, and thus K |= α. Because α contains no variable from V1 or
V2. By the definition of forgetting, we have forget(K,V1 ∪ V2) |= α. We have shown
forget(K,V1 ∪ V2) |= forget(forget(K,V1),V2).

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 213

For each inclusion or assertion α in forget(K,V1 ∪ V2), we have K |= α and α contains
no variable fromV1 ∪ V2. Again, according to the definition of forgetting, forget(K,V1) |= α,
and thus forget(forget(K,V1),V2) |= α. That is forget(forget(K,V1),V2) |= forget(K,V1 ∪
V2). �

Thus, computing the result of forgetting about V in K is equivalent to forgetting the
variables in V one by one, i.e., forgetting can be computed incrementally. By Proposition 4,
it is easy to see that, as more variables are forgotten, the results are getting logically weaker.

Corollary 1. Let K be an ALC KB and V1,V2 two sets of variables. Then V1 ⊆ V2
implies forget(K,V1) |= forget(K,V2) if they are treated as two KBs on sig(K).

Another property useful for the computation of forgetting is that, forgetting in TBoxes
is independent of ABoxes.

Proposition 5. Let T be an ALC TBox and V a set of variables. Then, for any ALC
ABox A such that (T ,A) is consistent, T ′ is the TBox of forget((T ,A),V) iff T ′ is the TBox
of forget((T ,∅),V).

Proof . Observe that (T ,A) |= C � D iff (T ,∅) |= C � D for any inclusion C � D,
TBox T and ABox A such that (T ,A) is consistent. Thus,

• (T ,A) |= T ′ iff (T ,∅) |= T ′; and
• for each concept inclusion C � D in ALC not containing any variables in V , (T ,A) |=

C � D iff (T ,∅) |= C � D iff T ′ |= C � D. �

For simplicity, we write forget(T ,V) for forget((T ,∅),V) and call it the result of TBox-
forgetting about V in T . Similarly, we use forget(A,V) when the TBox is empty.

5. FORGETTING IN ALC CONCEPT DESCRIPTIONS

Uniform interpolation in ALC is proposed for studying the definability of concepts in
ten Cate et al. (2006). It is also reformulated and investigated in terms of variable forgetting
(briefly, c-forgetting) in Wang et al. (2009b) but only one variable can be forgotten each time.
In this section, we reformulate the definition of the forgetting in ALC concept descriptions
to allow forgetting a set of variables at the same time and present some results that will be
used in the next section. From the viewpoint of ontology management, the issue of forgetting
in concept descriptions might be less important than that for KBs and TBoxes. However, we
will see later that the problem of computing KB-forgetting in ALC TBoxes can be reduced
to that of computing c-forgetting.

Intuitively, the result C ′ of forgetting about a set of variables from a concept description
C should not be logically stronger than C and at the same time, semantically as close to C as
possible. For example, after the concept Male is forgotten from a concept description for a
“Male Australian student,” Australian � Student � Male, then we should obtain a concept
description Australian � Student for an “Australian student”. More specifically, C ′ should
be a concept description that defines a minimal (w.r.t. subsumption) concept description

214 COMPUTATIONAL INTELLIGENCE

among all concept descriptions that subsume C and are syntactically irrelevant to V (i.e.,
variables in V do not appear in the concept description).

Definition 2. [c-forgetting] Let C be anALC concept description andV a set of variables.
An ALC concept description C ′ on the signature sig(C) − V is a result of c-forgetting about
V in C if the following conditions are satisfied:

• |= C � C ′.
• |= C � C ′′ implies |= C ′ � C ′′, for every ALC concept description C ′′ with sig(C ′′) ⊆

sig(C) − V .

The above (CF1) and (CF2) correspond to the conditions (2) and (3) of Theorem 8 in
ten Cate et al. (2006). A fundamental property of c-forgetting in ALC concept descriptions
is that the result of c-forgetting is unique under concept description equivalence.

Proposition 6. [Uniqueness] Let C be an ALC concept description and V a set of
variables. If two ALC concept descriptions C ′ and C ′′ are results of c-forgetting about V in
C, then |= C ′ ≡ C ′′.

Proof . Because both C ′,C ′′ are on sig(C) − V , by the definition of c-forgetting, we have
|= C ′ � C ′′ and |= C ′′ � C ′. Thus |= C ′ ≡ C ′′. �

As all results of c-forgetting are equivalent, we write cforget(C,V) to denote an arbitrary
result of c-forgetting about V in C .

We use the following examples of concept descriptions to illustrate our semantic def-
inition of c-forgetting for ALC. We will introduce an algorithm later and explain how we
can compute a result of c-forgetting through a series of syntactic transformations of concept
descriptions.

Example 3. Suppose the concept “Influenza Carrier” is defined by C = Human �
(Male � Female) � ∃infected .Influenza where Human , Male, Female, and Influenza are
all concepts; infected is a role and infected (x, y) means that x is infected by y.

• If the concept description C is used only for humans, we may wish to forget about
Human: cforget(C,Human) = (Male � Female) � ∃infected .Influenza .

• cforget(C,Male) = Human � ∃infected .Influenza . This means that if it is not neces-
sary to distinguish men from women, then it does not make any sense to keep either Male
or Female here.

• If we want to generalize the concept to any virus carrier, then the filter Influenza can be
forgotten: cforget(C, Influenza) = Human � (Male � Female) � ∃infected .	.

• If we want to use the concept to describe all possible affected persons, then he or she
may not be really infected: cforget(C, infected) = Human � (Male � Female).

C-forgetting for ALC concept descriptions possesses several important properties.
First of all, c-forgetting for ALC preserves the subsumption and equivalence relation

between concept descriptions.

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 215

Proposition 7. [Subsumption Invariance] Let C1,C2 be two concept descriptions inALC
and V a set of variables. Then,

• |= C1 � C2 implies |= cforget(C1,V) � cforget(C2,V);
• |= C1 ≡ C2 implies |= cforget(C1,V) ≡ cforget(C2,V).

Proof . We need only to show the first assertion: Because |= C1 � C2 and |= C2 �
forget(C2,V), we have |= C1 � forget(C2,V). By the definition of c-forgetting, we have
|= forget(C1,V) � forget(C2,V). �

The converses of the above statements are not true in general. As we can see in
Example 3, let D = cforget(C,Human), we have |= cforget(C,Human) ≡
cforget(D,Human), but �|= C ≡ D.

Recall that a concept description C is satisfiable iff C I �= ∅ for some interpretation I .
By Definition 2, c-forgetting also preserves satisfiability of concept descriptions.

Proposition 8. [Satisfiability Invariance] Let C be an ALC concept description, and V
be a set of variables. Then C is satisfiable iff cforget(C,V) is satisfiable.

Proof . If C is satisfiable, then forget(C,V) is satisfiable, because |= C � forget(C,V).
If C is unsatisfiable, that is |= C ≡ ⊥. Obviously, forget(C,V) = ⊥. �

Similar to forgetting in KB, the c-forgetting operation can be divided into steps.

Proposition 9. [Variable Splitting] Let C be an ALC concept description and V1,V2
two sets of variables. Then we have

|= cforget(C,V1 ∪ V2) ≡ cforget(cforget(C,V1),V2).

Proof . Denote C1 = forget(C,V1), C2 = forget(C1,V2) and C3 = forget(C,V1 ∪ V2).
We want to show that |= C2 ≡ C3.
Because |= C � C1 and |= C1 � C2, we have |= C � C2. Together with sig(C2) ∩ (V1 ∪
V2) = ∅, by the definition of c-forgetting, we have |= C3 � C2.
On the other hand, if |= C2 � C3, |= C � C3 and sig(C3) ∩ V1 = ∅ imply |= C1 � C3,
which is based on the definition of c-forgetting. Together with sig(C3) ∩ V2 = ∅, again,
by the definition of c-forgetting, we have |= C2 � C3. �

Given the above result, when we want to forget about a set of variables, they can be
forgotten one by one. Also, the ordering of c-forgetting operation is irrelevant to the result.

The following result, which is not obvious, shows that c-forgetting distributes over
union �.

Proposition 10. [Disjunction Distributivity] Let C1, . . . ,Cn be concept descriptions in
ALC. For any set V of variables, we have

|= cforget(C1 � · · · � Cn,V) ≡ cforget(C1,V) � · · · � cforget(Cn,V).

216 COMPUTATIONAL INTELLIGENCE

Proof . We only need to show that for any two concepts C1 and C2, forget(C1,V) �
forget(C2,V) is a result of forgetting about V in concept C1 � C2. We show that the
conditions in the definition of c-forgetting are satisfied.
It is easy to see that (CF1) is satisfied: Because |= Ci � forget(Ci ,V) for i = 1, 2, we
have |= C1 � C2 � forget(C1,V) � forget(C2,V).
To show that (CF2) is true, suppose C ′ is a concept such that sig(C ′) ∩ V = ∅ and |=
C1 � C2 � C ′. We have |= Ci � C ′ for i = 1, 2. Thus, by the definition of c-forgetting,
|= forget(Ci ,V) � C ′, which implies |= forget(C1,V) � forget(C2,V) � C ′. �

However, c-forgetting forALC does not distribute over intersection �. For example, if the
concept description C = A � ¬A, then cforget(C, A) = ⊥, Because |= C ≡ ⊥. However,
cforget(A, A) � cforget(¬A, A) ≡ 	.

An important reason for this is that c-forgetting does not distribute over negation.
Actually, by the definition of forgetting

|= ¬cforget(C,V) � cforget(¬C,V).

These subsumptions may be strict, e.g., if C is A � B and V is {A}, then ¬cforget(C,V) is
¬B, but cforget(¬C,V) is 	.

The next result shows that c-forgetting distributes over quantifiers. Because c-forgetting
does not distribute over negation, the two statements in the following proposition do not
necessarily imply each other.

Proposition 11. [Quantifier Distributivity] Let C be an ALC concept description such
that �|= C ≡ ⊥, R be a role name and V be a set of variables. Then,

• cforget(∀R.C,V) = 	 for R ∈ V , and cforget(∀R.C,V) = ∀R.cforget(C,V) for R �∈
V;

• cforget(∃R.C,V) = 	 for R ∈ V , and cforget(∃R.C,V) = ∃R.cforget(C,V) for R �∈
V .

These results suggest a way of computing c-forgetting about a set V of variables in
a complex ALC concept description C . That is, distribute the c-forgetting computation to
subconcepts of C . The proof of this result is tedious and thus we put it in the Appendix at
the end of the paper.

In what follows, we introduce an algorithm for computing the result of c-forgetting
through rewriting of concept descriptions (syntactic concept transformations; ten Cate et al.
2006). This algorithm consists of two stages: (1) C is first transformed into an equivalent
disjunctive normal form (DNF), which is a disjunction of conjunctions of simple concept
descriptions; (2) the result of c-forgetting about V in each such simple concept description
is obtained by removing some parts of the conjunct.

Before we introduce DNF, some notation and definitions are in order. We call an (atomic)
concept A or its negation ¬A a literal concept or simply a literal. A pseudo-literal with role
R is a concept description of the form ∃R.F or ∀R.F , where R is a role name and F is an
arbitrary concept. A generalized literal is either a literal or a pseudo-literal. Every arbitrary
concept description can be transformed into an equivalent disjunction of conjunctions of
generalized literals, using De Morgan’s laws, distributive laws and simplifications. First, we
define a very basic DNF for ALC.

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 217

Basic DNF: A concept D is in basic disjunctive normal form or basic DNF if D = ⊥
or D = 	 or D is a disjunction of conjunctions of generalized literals D = D1 � · · · � Dn ,
where each Di �≡ ⊥ and Di is of the form

�L � �
R∈R

(
�

j
∀R.UR, j � �

k
∃R.ER,k

)

where L is a set of literals, R is the set of role names that occur in Di , and each UR, j and
each ER,k is a concept description in basic DNF.

Note that each conjunction in basic DNF can be an empty conjunction, which is equivalent
to 	.

The reason for transforming a concept into its disjunctive normal form is that c-forgetting
distributes over � (Proposition 10). Now we only need to consider the computation of
the result of c-forgetting in a conjunction of generalized literals. It can be shown that
the result of c-forgetting about an (atomic) concept A in a conjunction of literals can be
obtained just by extracting A (or ¬A) from the conjuncts (extracting a conjunct equals
replacing it by). However, when C is a conjunction containing pseudo-literals, it is
more complicated to compute the result of c-forgetting about A in C . For example, let
C = ∀R.A � ∀R.¬A. Through simple transformation we can see C ≡ ∀R.⊥ is the result of
c-forgetting about A in C , while simply extracting A and ¬A results in 	. A similar example
is when C = ∀R.(A � B) � ∃R.(¬A � B), the result of c-forgetting about {A} in C is ∃R.B
rather than ∃R.	. It is worth noting that ∀R.C1 � ∃R.C2 � ∃R.(C1 � C2).

According to above concerns, a key step in our algorithm is to further transform each of
the conjunctions through the following laws:

∀R.C1 � ∀R.C2 � ∀R.(C1 � C2)

∀R.C1 � ∃R.C2 � ∀R.C1 � ∃R.(C1 � C2).

By applying the above transformations to the concept description and to the subconcepts
in the scopes of value and existential restrictions recursively, we can obtain the following
disjunctive normal form of the concept description. Since the number of conjuncts in each
conjunction and the depth of value (existential) restrictions are finite, it is easy to see the
transformation always terminates.

Definition 3. A concept description D is in DNF if D = ⊥ or D = 	 or D is a disjunction
of conjunctions of generalized literals D = D1 � · · · � Dn , where each Di �≡ ⊥ (1 ≤ i ≤ n)
is a conjunction �L of literals, or of the form

�L � �
R∈R

[
∀R.UR � �

k
∃R.(ER,k � UR)

]

where R is the set of role names that occur in Di , and each UR and each ER,k � UR is a
concept description in DNF.

Note that UR = 	 if any Di contains no universal quantification as its conjunct. For con-
venience, each Di is called a normal conjunction in this paper. To guarantee the correctness
of the algorithm, the above DNF forALC is more complex than we have in classical logic and
DL-Lite. The concepts UR and ER,k � UR need to be transformed into DNF separately and
their lengths can be exponential in the length of the input concept. For instance, the concept
description �n

i=1∀R.(Ai � Bi) will produce a UR with the disjunction of all 2n combinations
of Ai and Bi .

218 COMPUTATIONAL INTELLIGENCE

FIGURE 1. Forgetting in concept descriptions.

Once an ALC concept description D is in the normal form, the result of c-forgetting
about a set V of variables in D can be obtained from D by simple symbolic manipulations
(ref. Algorithm 1).

According to Algorithm 1, an input concept description must first be transformed into
the normal form before the steps for forgetting are applied. For instance, if we want to forget
A in the concept description D = A � ¬A � B, D is transformed into the normal form,
which is ⊥, and then obtain cforget(D, A) = ⊥. We note that B is not a result of forgetting
about A in D.

Example 4. Given a concept D = (A � ∃R.¬B) � ∀R.(B � C), we want to forget about
concept name B in D. In Step 1 of Algorithm 1, D is first transformed into its DNF D′ =
[A � ∀R.(B � C)] � [∀R.(B � C) � ∃R.(¬B � C)]. Note that ∃R.(¬B � C) is transformed
from ∃R.[¬B � (B � C)]. Then in Step 2, each occurrence of B in D′ is replaced by 	, and
∀R.(� F) is replaced with 	. We obtain cforget(D, {B}) = A � ∃R.C . To forget about
role R in D, Algorithm 1 replaces each pseudo-literal in D′ of the form ∀R.F or ∃R.F with
	, and returns cforget(D, {R}) = 	.

Obviously, the major cost of Algorithm 1 is in transforming the given concept description
into its DNF. For this reason, the algorithm is exponential time in the worst case. However, if
the concept description C is in DNF, Algorithm 1 takes only linear time (with regard to the
size of C) to compute the result of c-forgetting about V in C . And the result of c-forgetting
is always in DNF.

Theorem 1. Let V be a set of concept and role names and C be an ALC concept
description. Then Algorithm 1 always returns cforget(C,V).

It can be seen from the results in this and last sections that they have several similar
properties although KB-forgetting and c-forgetting differ in several ways. We summarize
these differences and similarities in Table 1 according to their properties. A major difference
is that the result of c-forgetting always exist but a result of forgetting may not exist for some
KBs and some sets of variables. We note that Subsumption Invariance for c-forgetting cor-
responds to Implication Invariance for KB-forgetting whereas Satisfiability for c-forgetting
is a counterpart of Consistency for KB-forgetting.

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 219

TABLE 1. Summary for Properties of Forgetting.

Property KB-forgetting c-forgetting

Existence N Y
Uniqueness invariance Y Y
Implication/Subsumption invariance Y Y
Consistency/Satisfiability invariance Y Y
Entailment invariance Y N/A
Variable splitting Y Y
Disjunction distributivity N/A Y
Quantifier distributivity N/A Y

6. APPROXIMATE FORGETTING FOR ALC TBOXES

As we have shown in Section 4, the result of forgetting for an ALC KB (or just TBox)
may not exist. Even if it exists, given the inherent complexity of KB-forgetting in ALC, it
is hard to design efficient algorithms for computing the (whole) result of KB-forgetting. As
a result, two interesting issues arise: (1) When the result of KB-forgetting exists, can we
compute only its part that is sufficient for ontology applications of interest? (2) When the
result of KB-forgetting does not exist, can we still find a new KB so that it can act as a result
of KB-forgetting for our ontology applications?

It is possible address these two issues in a uniform way. The basic idea of our approach
is to provide an approximation to the result of KB-forgetting, called n-forgetting, no matter
whether the result of KB-forgetting exists or not. Such an approach has several advantages:
(1) It resolves the nonexistence problem of forgetting in a certain sense; (2) When we
compute the approximation, we do not need to determine if the result of KB-forgetting
exists or not; and (3) Since only a part of the ontology forget(K,V) is computed in the
approximation, it is possible to develop efficient algorithms. In this section, we first introduce
the concept of n-forgetting as an approximation to KB-forgetting and then develop an
algorithm for computing n-forgetting by employing the algorithm for forgetting in concept
descriptions.

Because it is still very difficult to compute n-forgetting for a general KB, we are only
able to provide an algorithm for n-forgetting in TBoxes (ontologies with empty ABoxes),
whereas the concept of n-forgetting is formulated for general KBs. We note that many
practical applications of forgetting in ontologies need only TBoxes instead of general KBs
(e.g., extracting ontology summary). So the algorithm is still general enough for such practical
applications. Recall that the motivation for forgetting about V in an ontology K is to find a
new ontology K′ on a smaller alphabet sig(K) − V than sig(K) such that K′ is equivalent to
K with regard to entailment against all assertions and axioms on sig(K) − V . The concept
of n-forgetting is to find a new ontology K′′ on sig(K) − V such that K′′ is equivalent to K
with regard to entailment against only assertions and axioms, whose sizes are bounded by a
given value, on sig(K) − V .

Definition 4. [n-Forgetting] Let K be an ALC KB, V be a set of variables, and n be a
natural number. A KB K′ over the signature sig(K) − V is a result of n-forgetting about V
in K if,

220 COMPUTATIONAL INTELLIGENCE

• (NF1) K |= K′.
• (NF2) K |= C � D iff K′ |= C � D, for any concepts C, D over sig(K) − V

s.t.|sub(C) ∪ sub(D) ∪ sub(K)| ≤ n.
• (NF3) K |= C(a) iff K′ |= C(a), for any concept C over sig(K) − V

s.t.|sub(C) ∪ sub(K)| ≤ n, and any individual name a in K.
• (NF4) K |= R(a, b) iff K′ |= R(a, b) for any role name R ∈ sig(K) − V and individ-

uals a, b ∈ K.

A key idea behind n-forgetting is to partially satisfy the conditions (KF2), (KF3), and
(KF4) but in a parameterized way. In particular, these conditions will be fully satisfied when
n is large enough. For this reason, we are more interested in relatively large n.

In general, the results of n-forgetting about V in K may not be logically equivalent. We
use Forgetn(T ,V) to denote the set of all results of n-forgetting about V in a TBox T . So,
K′ ∈ Forgetn(K,V) means that K′ is a result of n-forgetting about V in K.

It is not hard to see that a result of n-forgetting is always logically weaker than or
equivalent to a result of forgetting. In particular, if the result of KB-forgetting about V in K
exists, then it is also an n-forgetting about V in K for any n ≥ 0.

Proposition 12. Let K be an ALC KB and V a set of variables. Then, for any n ≥ 0 and
any K′ ∈ Forgetn(K,V),

(i) forget(K,V) |= K′.
(ii) forget(K,V) ∈ Forgetn(K,V).

Recall from the definition of KB-forgetting that, with respect to entailment against ax-
ioms and assertions not containing variables in V , K is equivalent to forget(K,V). Definition
4 tells us that if we know what types of axioms and assertions not containing variables in
V we wish to reason about in advance, then we can determine a value for n, find a KB
K′ ∈ Forgetn(K,V), and use K′ as a replacement for the result of KB-forgetting about V in
K. In this way, n-forgetting is a useful approximation to KB-forgetting.

In the rest of this section, we introduce a novel method to compute a result of n-forgetting
using algorithms for c-forgetting. We observe that each TBox T corresponds to a concept

con(T) = �
C�D∈T

(¬C � D).

Thus, each TBox T can be transformed into a TBox of the form {	 � con(T)} that is
equivalent to T . In this sense, a TBox T is completely determined by the concept con(T).
We note that con(T) is always finite.

In general, the result of forgetting in a TBox cannot be immediately obtained by per-
forming c-forgetting on each side of the axioms. In fact, for an axiom C � D in T ,
cforget(C,V) � cforget(D,V) may not even be a logical consequence of forget(T ,V)
in general. For example, let T = {A � B}. Then forget(T , A) = {	 � 	} ≡ ∅ and
cforget(A, A) � cforget(B, A) is the axiom 	 � B. It is obvious that forget(T , A) �|= 	 �
B.

However, when T is transformed into the singleton TBox {	 � con(T)}, we note that
the axiom 	 � cforget(con(T),V), denoted α0, is a logical consequence of T . The sin-
gleton TBox {α0} is not necessarily equivalent to forget(T ,V) but it can be a starting
point for constructing a sequence of TBoxes whose limit is forget(T ,V). Because T is
also equivalent to {	 � con(T) � ∀R.con(T)} for an arbitrary role name R in T , the axiom
	 � cforget(con(T) � ∀R.con(T),V), denoted α1, is a logical consequence of T . Similarly,

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 221

we define α2 to be 	 � cforget(con(T) � ∀R.con(T) � ∀R.∀R.con(T),V), It can be
seen that each TBox {αi+1} (i ≥ 0) is logically stronger than or equivalent to {αi }. That is,
forget(T ,V) |= {αi+1} and {αi+1} |= {αi } for i ≥ 0. In this way, we can construct a sequence
of TBoxes with increasing logical strength, whose limit is forget(T ,V).

Formally, given a finite concept C and a number n ≥ 0, define

C (n) = � n
k=0 �

R1,...,Rk∈R
∀R1 · · · ∀Rk .C,

where R is the set of role names in C . Note that C (0) = C , and |= C (n+1) � C (n) for any
n ≥ 0.

The following result shows that a result of n-forgetting always exists for TBoxes.

Theorem 2. Let T be an ALC TBox and V be a set of variables. For each n = 2k with
k ≥ 0, the TBox

T (n)
V = { 	 � cforget(con(T)(n),V) }

is a result of n-forgetting about V in T .
To prove Theorem 2, we need a lemma in ten Cate et al. (2006).

Lemma 1. Let T be an ALC TBox, C1 and C2 are two concepts. Then T |= C1 � C2 iff
|= (C1 � con(T)(n)) � C2 where n ≥ 2|sub(C1)∪sub(C2)∪sub(K)|.

Proof of Theorem 2. (NF1). To prove that T |= T (n)
V , we need to show that I |= T (n)

V for
each model I of T .

For each axiom C � D in T , (¬C � D)I = �I . Thus (�C�D∈T (¬C � D))I = �I . For
any number i ≥ 0 and arbitrary roles R1, · · · , Ri , (∀R1 · · · ∀Ri . �C�D∈T (¬C � D))I = �I .
Hence, (con(T)(n))I = �I . Because (con(T)(n))I ⊆ (cforget(con(T)(n),V))I , we have�I ⊆
(cforget(con(T)(n),V))I . That is, I satisfies T (n)

V .

(NF2). We only need to show that T |= C � D implies T (n)
V |= C � D. By Lemma 1,

if T |= C � D, then

|= C � �n
i=0 �

R1,...,Ri ∈R
∀R1 · · · ∀Ri .cforget(con(T)(n),V) � D.

This implies |= C � (con(T)(n)) � D, which is equivalent to |= con(T)(n) � ¬C � D.
Because neither C nor D contains any variables in V , by the definition of c-forgetting, we
have |= cforget(con(T)(n),V) � ¬C � D, which implies |= C � cforget(con(T)(n),V) �
D. Thus,

|= C � � n
i=0 �

R1,...,Ri ∈R
∀R1 · · · ∀Ri .cforget(con(T)(n),V) � D. �

By Theorem 2, the TBoxes T (n)
V (n = 2k, k ≥ 0) actually provide a sequence of results

of n-forgetting Because approximations to the result of forgetting in TBoxes. Note that the
above n-forgetting for TBoxes is computed in terms of forgetting in concept descriptions
(c-forgetting).

Example 5. Consider the TBox T in Example 2. Then,
con(T) = (¬A � B) � (¬B � C) � (¬C � ∀R.C) � (¬C � D),
con(T)(0) = con(T), con(T)(1) = con(T) � ∀R.con(T),

222 COMPUTATIONAL INTELLIGENCE

and for n = 2k with k ≥ 1,
con(T)(n) = con(T) � ∀R.con(T)(n−1).
Let V = {B,C}. For each n ≥ 0, T (n)

V can be computed Because follows.

T (0)
V = { 	 � ¬A � D }, which is equivalent to { A � D }.

T (1)
V = { 	 � ¬A � (D � ∀R.D) }, which is equivalent to { A � D, A � ∀R.D }.

· · · · · ·
T (n)
V = { A � D, A � ∀R.D, . . . , A � ∀R.∀R · · · ∀R︸ ︷︷ ︸

n Rs

.D }.

Proposition 12 shows that, for any n ≥ 0, each T (n)
V is logically weaker than forget(T ,V).

Also, because the number n is sufficiently large, T (n)
V preserves more and more consequences

of T . Therefore, the sequence of TBoxes {T (n)
V }n≥0 is nondecreasing with respect to semantic

consequence as the next proposition shows.

Proposition 13. Let T be an ALC TBox and V a set of variables. Then, for any n ≥ 0,
we have T (n+1)

V |= T (n)
V .

Proof . Note that con(T)(n+1) = con(T)(n) � Dwhere D = �R1,...,Rn+1∈R∀R1
· · · ∀Rn+1.con(T).

By the definition of c-forgetting, we have |= cforget(con(T)(n+1),V) �
cforget(con(T)(n),V). For any model I of K(n+1)

V , because I satisfies T (n+1)
V , we

have �I ⊆ (cforget(con(T)(n+1),V))I . Thus, �I ⊆ (cforget(con(T)(n),V))I . That is, I
satisfies T (n)

V . �

Based on Propositions 12 and 13, we can show the main theorem of this section because
follows, which states that the limit of the sequence of {T (n)

V }n≥0 captures the result of
forgetting.

Theorem 3. Let T be an ALC TBox and V a set of variables. Then

forget(T ,V) =
∞⋃

n=0

T (n)
V .

Proof . By Definition 4, the limit of n-forgetting satisfies the conditions in
Definition 1. �

So, by Theorem 3, we can compute forget(T ,V), if it exists, using the above algorithms.
As we can see from Example 2, given a TBox T , the sizes of its consequences on sig(T) −
sig(V) may not have a finite upper bound. In this case, we can always choose n large
enough to provide an approximation to TBox-forgetting that is sufficient for the ontology
application at hand. Although the computation of approximations uses DNF-based algorithm
for computing c-forgetting, our approach indeed provides a general framework which can
approximate forgetting using arbitrary c-forgetting methods.

7. CONCLUSION

We have presented a theory and methods for forgetting in knowledge bases in the
expressive DL ALC. This is the first work that deals with forgetting about concepts and

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 223

roles in ALC knowledge bases. Because the result of KB-forgetting may not exist for ALC
knowledge bases, we have defined a sequence of finite TBoxes that approximate the result of
TBox-forgetting and serve as a basis for query answering over the ontology with forgotten
concepts and roles. We have provided algorithms for computing these approximations, using
algorithms for forgetting in concept descriptions, and proved their correctness. We note that
when this paper was under review, the decidability of the existence of ALC forgetting was
proved in Lutz and Wolter (2011) and in particular, their proof was based on our method of
approximating forgetting developed in the last section.

There are still a few interesting issues for future research. First, we plan to extend the
results of this paper to even more expressive DLs. Second, the approximation algorithm is
not incremental in the sense that the computation of K(n+1)

V is not based on K(n)
V . It is unclear

if an incremental approximation can be developed for KB-forgetting. Another related issue
is to find a way to measure how close K(n)

V is to forget(K,V). Last, it would be useful to
implement our algorithms and incorporate them into ontology editors such as Protégé (see
http://www.ict.griffith.edu.au/ kewen/DLForget for our progress on this task).

ACKNOWLEDGMENTS

The authors would like to thank the three anonymous referees for their detailed and
helpful comments, which have greatly helped in improving the quality of the paper. This work
was supported by the Australia Research Council (ARC) Discovery Projects DP1093652 and
DP110101042. A major part of this work was done when Zhe Wang was at Griffith University.

REFERENCES

ALANI, H., S. HARRIS, and B. O’NEIL. 2006. Winnowing ontologies based on application use. In Proceedings of
the 3rd European Semantic Web Conference (ESWC-06), Budva, Montenegro, pp. 185–199.

ANTONIOU, G., and K. KEHAGIAS. 2000. A note on the refinement of ontologies. International Journal of Intelligent
Systems, 15:623–632.

BAADER, F., D. CALVANESE, D. MCGUINNESS, D. NARDI, and P. PATEL-SCHNEIDER. 2002. The Description Logic
Handbook. Cambridge University Press: Cambridge, UK.

BAADER, F., S. BRANDT, and C. LUTZ. 2005. Pushing the EL envelope. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, UK, pp. 364–369.

BIZER, C., T. Health, and T. BERNERS-LEE. 2009. Linked data - The story so far. International Journal Semantic
Web Information Systems, 5(3): 1–22.

CALVANESE, D., G. De GIACOMO, D. LEMBO, M. LENZERINI, and R. ROSATI. 2005. DL-Lite: tractable description
logics for ontologies. In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-05),
Pittsburgh, PA, pp. 602–607.

CALVANESE, D., G. De GIACOMO, D. LEMBO, M. LENZERINI, and R. ROSATI. 2007. Tractable reasoning and
efficient query answering in description logics: the DL-Lite family. Journal of Automated Reasoning,
39(3):385–429.

CALVANESE, D., J. CARROLL, G. De GIACOMO, J. HENDLER, I. HERMAN, B. PARSIA, P. PATEL-SCHNEIDER, A.
RUTTENBERG, U. SATTLER, and M. SCHNEIDER. 2009. OWL 2 web ontology language. W3C Recommenda-
tion, October 2009. Available at: http://www.w3.org/TR/owl2-overview/. Accessed May 26, 2012.

CUENCA GRAU, B., I. HORROCKS, Y. KAZAKOV, and U. SATTLER. 2007a. A logical framework for modular
integration of ontologies. In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI-07), Hyderabad, India, pp. 298–303.

224 COMPUTATIONAL INTELLIGENCE

CUENCA GRAU, B., I. HORROCKS, Y. KAZAKOV, and U. SATTLER. 2008. Modular reuse of ontologies: theory and
practice. Journal of Artificial Intelligence Research, 31:273–318.

CUENCA GRAU, B., B. PARSIA, and E. SIRIN. 2006. Combining OWL ontologies using E-connections. Journal of
Web Semantics, 4(1): 40–59.

CUENCA GRAU, B., I. HORROCKS, and U. SATTLER. 2007b. Just the right amount: Extracting modules from ontolo-
gies. In Proceedings of the 16th International World Wide Web Conference (WWW-07), Banff, Canada, pp.
717–726.

DZBOR, M., E. MOTTA, C. BUIL, J. M. GOMEZ, O. GÖRLITZ, and H. LEWEN. 2006. Developing ontologies in
OWL: An observational study. In Proceedings of the OWLED-06 Workshop on OWL: Experiences and
Directions, Athens, GA.

EITER, T., and K. WANG. 2008. Semantic forgetting in answer set programming. Artificial Intelligence, 14:
1644–1672.

GHILARDI, S. 1995. An algebraic theory of normal forms. Annals of Pure and Applied Logic, 71(3):189–245.

GHILARDI, S., C. LUTZ, and F. WOLTER. 2006. Did I damage my ontology? A case for conservative extensions
in description logics. In Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR-06), Lake District, UK, pp. 187–197.

KONEV, B., D. WALTHER, and F. WOLTER. 2009. Forgetting and uniform interpolation in large-scale description
logic terminologies. In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI-09), Pasadena, CA, pp. 830–835.

KONTCHAKOV, R., F. WOLTER, and M. ZAKHARYASCHEV. 2007. Modularity in DL-Lite. In Proceedings of the
2007 International Workshop on Description Logics (DL-07), Brixen-Bressanone, Italy.

KONTCHAKOV, R., F. WOLTER, and M. ZAKHARYASCHEV. 2008. Can you tell the difference between DL-Lite
ontologies? In Proceedings of the 11th International Conference on Principles of Knowledge Representation
and Reasoning (KR-08), Sydney, Australia, pp. 285–295.

KONTCHAKOV, R., F. WOLTER, and M. ZAKHARYASCHEV. 2010. Logic-based ontology comparison and module
extraction, with an application to DL-Lite. Artificial Intelligence, 174(15):1093–1141.

LANG, J., P. LIBERATORE, and P. MARQUIS. 2003. Propositional independence: formula variable independence
and forgetting. Journal of Artificial Intelligence Research, 18:391–443.

LIN, F., and R. REITER. 1994. Forget it. In Proceedings of the AAAI Fall Symposium on Relevance, New Orleans,
LA, pp. 154–159.

LUTZ, C., D. WALTHER, and F. WOLTER. 2007. Conservative extensions in expressive description logics. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad,
India, pp. 453–458.

LUTZ, C., and F. WOLTER. 2011. Foundations for uniform interpolation and forgetting in expressive description
logics. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11),
Barcelona, Spain, pp. 989–995.

PERONI, S., E. MOTTA, and M. d’AQUIN. 2008. Identifying key concepts in an ontology, through the integration
of cognitive principles with statistical and topological measures. In Proceedings of the 3rd Asian Semantic
Web Conference (ASWC-08), Pathumthani, Thailand, pp. 242–256.

RECTOR, A. L., S. BRANDT, and J. KOLA. 2008. Why do it the hard way? The case for an expressive description
logic for SNOMED. Journal of the American Medical Informatics Association, 15(6): 744–751.

tEN CATE, B., W. CONRADIE, M. MARX, and Y. VENEMA. 2006. Definitorially complete description logics. In
Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning
(KR-06), Lake District, UK, pp. 79–89.

VISSER, A. 1996. Uniform interpolation and layered bisimulation. In Proceedings of Gödel’96: Logical Foun-
dations of Mathematics, Computer Science, and Physics—Kurt Gödel’s Legacy. Edited by P. Hájek. Brno,
Czech Republic, Vol. 6 of Lecture Notes Logic, pp. 139–164.

WANG, K., Z. WANG, R. TOPOR, J. Z. PAN, and G. ANTONIOU. 2009a. Eliminating concepts and roles from
ontologies in description logic. In Proceedings of the 8th International Semantic Web Conference (ISWC-
09), Washington, DC, pp. 666–681.

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 225

WANG, Z., K. WANG, R. TOPOR, and J. Z. PAN. 2008. Forgetting concepts in DL-Lite. In Proceedings of the 5th
European Semantic Web Conference (ESWC-08), Canary Islands, Spain, pp. 245–257.

WANG, Z., K. WANG, R. TOPOR, and J. Z. PAN. 2010. Forgetting for knowledge bases in dl-lite. Annals of
Mathematics and Artificial Intelligence, 58(1–2):117–151.

WANG, Z., K. WANG, R. TOPOR, J. Z. PAN, and G. ANTONIOU. 2009b. Uniform interpolation for ALC revisited.
In Proceedings of the 22nd Australasian Conference on Artificial Intelligence, Melbourne, Australia, pp.
528–537.

APPENDIX

The tableau-based approach for DL reasoning is well established, and is the basis for
most DL reasoners (Baader et al. 2002). Some proofs in this section are heavily based on the
tableau algorithm for ALC, and thus, we first briefly introduce it.

Before we explain how the tableau algorithm works, we first introduce some basic
definitions. Let C be an ALC-concept description in negation normal form (NNF), i.e., the
negation occurs only directly in front of concept names. Each concept description can be
equivalently transformed into NNF using De Morgan’s laws.

Given an ALC concept C , the tableau algorithm (checking satisfiability of) C tries to
construct a finite interpretation I that satisfies concept C , which contains an element x such
that x I ∈ C I . The algorithm starts with the ABox A = {C(x)}, where C is in NNF, and
applies tableau expansion rules (or simply, T-rules, Table A1; Baader et al. 2002) to the
ABox until a contradiction is found or no more rules are applicable. If a finite interpretation
can be successfully constructed in this way (without a contradiction), then A is consistent
and C is satisfiable. Otherwise, A is inconsistent and C is unsatisfiable.

Note that �-rule splits an ABox A into two, A and A′. Thus, the tableau algorithm starts
with a single ABox A, and by applying T-rules, expands A into a set of ABoxes A1, . . . ,An ,
each of which represents a possible finite interpretation.

An ABox A is complete if none of the T-rules applies to it.
ABox A contains a clash if {A(x),¬A(x)} ⊆ A for some individual x and concept name

A. An ABox is called closed if it contains a clash, and open otherwise.
If a complete and open ABox can be generated, then the algorithm terminates and returns

“C is satisfiable.” Otherwise, if all the ABoxes generated from expanding A is closed, the
algorithm returns “C is unsatisfiable.”

TABLE A1. Tableau Expansion Rules for ALC (T-Rules).

�-rule: if (C1 � C2)(x) ∈ A, and {C1(x),C2(x)} �⊆ A
then set A= A ∪ {C1(x),C2(x)}.

�-rule: if (C1 � C2)(x) ∈ A, and {C1(x),C2(x)} ∩ A = θ

then create a copy A′ of the ABox
and set A’ = A ∪ {C1(x)} and A = A ∪ {C2(x)}.

∃-rule: if ∃R.C(x) ∈ A, and
x has no R -successor y with C(y) ∈ A

then set A= A ∪ {R(x, y),C(y)}
where y is a new individual.

∀-rule: if ∀R.C(x) ∈ A, and
there is an R-successor y of x with C(y) �∈ A

then set A= A ∪ {C(y)}.

226 COMPUTATIONAL INTELLIGENCE

To check subsumption |= C � D by the tableau algorithm, the algorithm starts with
ABox A = {C(x),¬D(x)}. Then, |= C � D holds if all the ABoxes generated from ex-
panding A is closed.

Proposition 14. Let C be an ALC concept description such that �|= C ≡ ⊥, R be a role
name and V be a set of variables. Then,

• cforget(∀R.C,V) = 	 for R ∈ V , and cforget(∀R.C,V) = ∀R.cforget(C,V) for
R �∈ V;

• cforget(∃R.C,V) = 	 for R ∈ V , and cforget(∃R.C,V) = ∃R.cforget(C,V) for
R �∈ V .

To prove Proposition 11, we first show some properties of the subsumption relation
between concept descriptions.

The following lemma presents two useful concept transformation rules.

Lemma 2. Let C and Ci ’s be concepts and R a role name. Then,{
|= �

i
∀R.Ci � ∃R.C ≡ �

i
∀R.(C � Ci) � ∃R.C

|= ∀R.C � �
i

∃R.Ci ≡ ∀R.C � �
i

∃R.(C � Ci)

}

The above two statements follow immediately from the definitions and thus their proofs are
omitted here.

Lemma 3. Let C be a concept s.t. �|= C ≡ ⊥ and R a role name. Then, for any concept
D,

• |= ∀R.C � D implies |= D ≡ 	 if R �∈ sig(D), and otherwise, there always exists a
concept C ′ such that sig(C ′) ⊆ sig(D), |= C � C ′, and |= ∀R.C � ∀R.C ′;

• |= ∃R.C � D implies |= D ≡ 	 if R �∈ sig(D), and otherwise, there always exists a
collection of concepts C ′

k such that sig(C ′
k) ⊆ sig(D) and |= C � C ′

k for each k, and
|= ∃R.C � �k∃R.C ′

k .

Note that this result is not obvious because in general sig(C) is not a subset of sig(D).

Proof . (1): The concept D can be transformed into an equivalent conjunctive form D =
�k Dk , using distributive laws for � over � and ∃R, where each Dk is of the form

⊔
1≤i≤n

∀R.Uk,i � ∃R.Ek � Fk,

with Ek and each Uk,i being a concept, and Fk being a disjunction of literals and non-R-
quantifications. Note that n = 0 if Dk does not have any universal R-quantification as a
disjunct. And Ek = ⊥ if Dk does not have any existential R-quantification as a disjunct.

(1) Because |= ∀R.C � D, we have |= ∀R.C � Dk for each k. By the completeness of
the tableau algorithm, each ABox generated by expanding A = { ∀R.C(x), ¬Dk(x) }
must be closed. Consider two possible cases

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 227

Case 1. If Dk = Fk , then A = { ∀R.C(x), ¬Fk(x) }. Note that ¬Fk does not contain any
R-quantification. Then, no R-successor of x can be generated, and ∀R.C(x) cannot
be further expanded. In this case, for each ABox generated from expanding A, a
clash must be introduced by ¬Fk , and thus we have |= Dk ≡ 	. In this case, Dk can
be removed from the conjunction of D.

In particular, if R �∈ sig(D) (that is, D does not contain any occurrence of R), then
|= Dk ≡ 	 for each k and thus, |= D ≡ 	.

Case 2. If R appears in Dk , then A = { ∀R.C(x), ¬Dk(x) } can be expanded by T-rules into

{∀R.C(x), ∃R.¬Uk,1(x), . . . , ∃R.¬Uk,n(x), ∀R.¬Ek(x), ¬Fk(x)}.
In the rest of this section we will not list all the concepts in a label when no
ambiguity is caused. In particular, for simplicity, only those concepts that can be
further expanded and will possibly introduce clashes are explicitly listed.

By further expansion with ∃- and ∀-rules, we generate n R-successors yi of x with
¬Uk,i (yi), C(yi), and ¬Ek(yi) added into A. In fact, each concept ∃R.¬Uk,i produces a new
individual yi .

Because ¬Fk does not contain any R-quantification, no new role assertion for R can
be added into an ABox that has been derived so far. And there is no way to generate any
additional new assertions about yi from ¬Fk .

If a clash is introduced by ¬Fk , then again, we have |= Dk ≡ 	, and Dk can be removed
from the conjunction of D. Otherwise, for each ABox generated from expanding A, a clash
must occur among the assertions about yi for some yi . As each yi is expanded independently
from the other y j (j �= i), a clash must occur at the same yi for each ABox generated.
That is, by tableau algorithm, |= C � Uk,ik � Ek for some ik with 1 ≤ ik ≤ n. By Lemma 2,
|= Dk ≡ ⊔

1≤i≤n[∀R.(Uk,i � Ek)] � ∃R.Ek � Fk . Thus, we have |= ∀R.C � ∀R.(Uk,ik � Ek)
and |= ∀R.C � Dk .

Therefore,

|= ∀R.C � �
k

[∀R.(Uk,ik � Ek)].

As |= �k[∀R.(Uk,ik � Ek)] ≡ ∀R.[�k(Uk,ik � Ek)], we take C ′ = �k(Uk,ik � Ek). We have
proved ph(1).

ph(2) Because |= ∃R.C � D, we have |= ∃R.C � Dk for each k.
Then all the ABoxes generated from expanding A = { ∃R.C(x), ¬Dk(x) } must be

closed. Consider two cases:

Case 1. If Dk = ¬Fk , then A = { ∃R.C(x), ¬Fk(x) }. Then the ∃-rule generates an R-
successor y of x with assertion C(y) added into A, but no assertion about y can be
generated from from ¬Fk . A clash cannot occur among assertions about y, because
otherwise we would have |= C � ⊥. Thus, a clash must be introduced by ¬Fk . We
have shown |= D � 	 in the case R �∈ sig(D).

Case 2. If Dk contains R, then A is expanded by T-rules into

{∃R.C(x), ∃R.¬Uk,1(x), . . . , ∃R.¬Uk,n(x), ∀R.¬Ek(x), ¬Fk(x)}.
By further expansion with ∃- and ∀-rules, we generate an R-successor y of x with

assertions C(y) and ¬Ek(y), and n other R-successors zi of x with assertions ¬Uk,i (zi) and
¬Ek(zi) for each zi .

228 COMPUTATIONAL INTELLIGENCE

Again, there is no way to add any new assertions about y or zi (1 ≤ i ≤ n) from ¬Fk .
Neither can any new R-successor be generated.

For each ABox generated from expanding A, if there is a clash occurring among the
assertions about zi for some zi , or be introduced by ¬Fk , then we have |= Dk ≡ 	, and
Dk can be removed from the conjunction of D. Otherwise, a clash must occur among the
assertions about y, for each ABox generated. That is, by tableau algorithm, |= C � Ek . Then
|= ∃R.C � ∃R.Ek and |= ∃R.C � Dk .

Therefore, |= ∃R.C � �k(∃R.Ek) and |= ∃R.C � �k Dk . Let C ′
k = Ek for each k. We

have proved ph(2). Now we are ready to show Proposition 11.

Proof of Proposition 11. To prove ph(CF1) for ph(1) and ph(2), we note that |= C �
cforget(C,V) implies |= ∀R.C � ∀R.cforget(C,V) and |= ∃R.C � ∃R.cforget(C,V).
For ph(CF2), let D be an arbitrary concept such that |= ∀R.C � D and sig(D) ∩ V =
ptyset . If R ∈ V and R �∈ sig(D), by Lemma 3, we have |= 	 � D. Otherwise, if
R �∈ V , we want to show that |= ∀R.cforget(C,V) � D for the statement ph(1), and
|= ∃R.cforget(C,V) � D for the statement ph(2). �

(1) By Lemma 3, if |= ∀R.C � D, then there exists a concept description C ′
such that sig(C ′) ⊆ sig(D), |= C � C ′ and |= ∀R.C � ∀R.C ′. Because sig(D) ∩
V = ptyset , it is obvious that sig(C ′) ∩ V = ptyset . By the definition of c-
forgetting, |= cforget(C,V) |= C ′. Thus |= ∀R.cforget(C,V) � ∀R.C ′ and |=
∀R.cforget(C,V) � D.

(2) By Lemma 3, if |= ∃R.C � D, then |= C � C ′
k and |= ∃R.C � �k(∃R.C ′

k) for a
collection of concepts C ′

k such that sig(C ′
k) ⊆ sig(D). Hence, |= ∃R.C � D. Observe

that sig(C ′
k) ∩ V = ptyset . By the definition of c-forgetting, |= cforget(C,V) |= C ′

k
for each k and thus, |= ∃R.cforget(C,V) � �k(∃R.C ′

k) and ∃R.cforget(C,V) |=� D.

Before we can show Theorem 1, we need the following three results (Lemma 4, Proposi-
tions 14 and 15). These results themselves are interesting because they reveal some insightful
relationships between concept subsumption and c-forgetting.

Lemma 4. Let R be a role name,

C = ∀R.U � �
1≤i≤m

∃R.Ei � F

such that �|= C ≡ ⊥, and

D =
⊔

1≤ j≤n

(∀R.U ′
j) � ∃R.E ′ � F ′,

where U , Ei ’s, U ′
j ’s and E ′ are concepts, F is a conjunction, and F ′ is a disjunction of literals

and non-R-quantifications.
If |= C � D, then at least one of the following four conditions holds:

(1) |= D ≡ 	.
(2) |= F � F ′, and |= C � F ′.
(3) if �|= E ′ ≡ ⊥, then |= Ei � U � E ′ for some i , and |= C � ∃R.E ′.
(4) if n > 0, then |= U � E ′ � U ′

j , and |= C � ∀R.(E ′ � U ′
j) for some j .

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 229

Proof . By the completeness of tableau algorithm, each ABox generated from expanding
A = { C(x) � ¬D(x) } must be closed. By T-rules, A can be expanded into

{∀R.U (x), ∃R.E1(x), . . . , ∃R.Em(x), F(x)
∃R.¬U ′

1(x), . . . , ∃R.¬U ′
n(x),∀R.¬E ′(x),¬F ′(x)}.

Again, we do not list all the concepts in the label, for the sake of convenience. In particular,
only those concepts that can be further expanded and will possibly introduce clashes are
listed.
By further expansion with ∃- and ∀-rules, we generate m R-successors yi of x with
assertions Ei (yi), U (yi) and ¬E ′(yi) added to A for each yi . Also, n other R-successors
z j of x are generated with assertions ¬U ′

j (z j), U (z j) and ¬E ′(z j) added to A for each z j .
Note that F and ¬F ′ do not contain any R-quantification, and no other R-successor of
x can be generated. Also, there is no way to add any additional new assertions about yi
(1 ≤ i ≤ m) or z j (1 ≤ j ≤ n) from F or ¬F ′.
As �|= C ≡ ⊥, a clash cannot be introduced only by F . Thus, there are four pos-
sible cases, of which at least one must hold for all the ABoxes generated from
expanding A.

(1) A clash is introduced by ¬F ′ only: in this case we have |= 	 � F ′ and thus |= D ≡ 	.
(2) A clash is jointly caused by F and ¬F ′: By the tableau algorithm, we have |= F � F ′.
(3) A clash occurs among the assertions about yi for some 1 ≤ i ≤ m. Note that such an i is

fixed for all the ABoxes generated. That is, by tableau algorithm, |= Ei � U � E ′. By
Lemma 2, |= C ≡ ∀R.U � �1≤i≤m[∃R.(Ei � U)] � F . Thus, we have |= C � ∃R.E ′.

(4) A clash occurs among the assertions about z j for some 1 ≤ j ≤ n. Again, such a j
is fixed for all the ABoxes generated. That is, by tableau algorithm, |= U � E ′ � U ′

j .
By Lemma 2, |= D ≡ ⊔

1≤ j≤n[∀R.(U ′
j � E ′)] � ∃R.E ′ � F ′. Thus, we have |= C �

∀R.(U ′
j � E ′). �

Now we can show a more general property of forgetting with respect to quantifiers than
Proposition 11.

Proposition 15. Let V be a set of variables and C = ∀R.U � �1≤i≤m∃R.Ei � F with
�|= C ≡ ⊥, where R is a role name, U, Ei ’s are concepts, and F is a conjunction of literals
and non-R-quantifications. Then

cforget(C,V) = cforget(F,V) if R ∈ V , and otherwise,

cforget(C,V) = ∀R.cforget(U,V) � �
1≤i≤m

[∃R.cforget(Ei � U,V)] � cforget(F,V).

Proof . Consider two cases

Case1. R ∈ V: We want to show that cforget(C,V) = cforget(F,V).

(CF1): By the assumption, we have |= C � F and thus, by F � cforget(F,V), |= C �
cforget(F,V) holds.

(CF2): Suppose that D is a concept such that sig(D) ∩ V = ptyset and |= C � D. We
need to prove that |= cforget(F,V) � D if R ∈ V .

230 COMPUTATIONAL INTELLIGENCE

First, the concept D can be equivalently transformed into a conjunctive normal form
D = �1≤k≤n Fk , where each Fk is a disjunction of literals and non-R-quantifications. Without
loss of generality, we assume that �|= Fk ≡ 	 for all k. Note that |= C � D iff |= C � Fk
for each k.

By Lemma 4, we have |= F � Fk for each k, which implies |= F � �1≤k≤n Fk . Thus,
|= F � D, and |= cforget(F,V) � D.

Case 2. R �∈ V: Suppose that D is a concept such that sig(D) ∩ V = ptyset and |= C � D.
Denote

C ′ = ∀R.cforget(U,V) � �
1≤i≤m

[∃R.cforget(Ei � U,V)] � cforget(F,V).

We want to show that cforget(C,V) = C ′.

(CF1): We want to show that |= C � C ′. In fact, by Lemma 2, |= C ≡ ∀R.U �
�1≤i≤m[∃R.(Ei � U)] � F . We note that |= U � cforget(U,V), |= (Ei � U) �
cforget(Ei � U,V), and |= F � cforget(F,V). Therefore, we have |= C � C ′.

(CF2): Suppose that D is a concept such that sig(D) ∩ V = ptyset and |= C � D, we want
to show that |= C ′ � D holds if R �∈ V .

Still, we assume that the concept D is of the conjunctive normal form D = �1≤k≤n Dk ,
where each Dk is of the form ⊔

1≤i≤nk

∀R.Uk,i � ∃R.Gk � Fk,

where Gk and Uk,i (1 ≤ i ≤ nk) are concepts, Fk is a disjunction of literals and non-R-
quantifications. Note that nk = 0 if Dk does not have any universal R-quantification be-
cause a disjunct. Also, Gk = ⊥ if Dk does not have any existential R-quantification as a
disjunct.

Again, we assume that �|= Dk ≡ 	 for each 1 ≤ k ≤ n.
From |= C � D, it follows that |= C � Dk for each k (1 ≤ k ≤ n). By Lemma 4,

|= C � Dk implies at least one of the following three cases:

(1) |= F � Fk and |= C � Fk ; or

(2) �|= Gk ≡ ⊥, |= Ei � U � Gk for some i (1 ≤ i ≤ m), and |= C � ∃R.Gk ; or

(3) nk > 0, |= U � Uk with Uk = Gk � Uk, j for some 1 ≤ j ≤ nk , and |= C � ∀R.Uk .
We can divide the collection of Dk’s (1 ≤ k ≤ n) into three disjoint classes with
{1, 2, . . . , n} = K1 ∪ K2 ∪ K3 such that k ∈ K j iff Dk satisfies the above condition
(j) for j = 1, 2, 3. If Dk satisfies more than one of the conditions, we put it in only one
class.

Construct

D′ = �
k∈K1

Fk � �
k∈K2

(∃R.Gk) � �
k∈K3

(∀R.Uk).

Obviously, D′ does not contain any variable from V , and |= C � D′ and |= D′ � D.

ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES 231

Also, for each k ∈ K1, |= F � Fk holds, which implies |= cforget(F,V) � Fk . For each
k ∈ K2, there exists Ei (1 ≤ i ≤ m) in C such that |= Ei � U � Gk for each k and thus,
|= cforget(Ei � U,V) � Gk . That is, for each k ∈ K2, there always exists some 1 ≤ i ≤ m
such that |= ∃R.cforget(Ei � U,V) � ∃R.Gk . This implies

|= �
1≤i≤m

∃R.cforget
(

Ei � U,V) � �
k∈K2

(∃R.Gk

)
.

Similarly, for each k ∈ K3, we have |= U � Uk , which implies |= cforget(U,V) � Uk . Thus

|= ∀R.cforget(U,V) � ∀R.(�
k∈K3

Uk).

As |= �k∈K3 (∀R.Uk) ≡ ∀R.(�k∈K3Uk), we have

|= ∀R.cforget(U,V) � �k∈K3 (∀R.Uk).

Combining the above arguments, we can conclude that |= C ′ � D′. Therefore, |= C ′ �
D. �

To prove Theorem 1, it is enough to consider the correctness of Algorithm 1 in each
disjunct, as c-forgetting distributes over disjunction by Proposition 10.

Proposition 16. Let V be a set of variables and let C be a concept of the form

C = �
1≤i≤m

Li��
R∈R

CR,

where each Li is a literal, R is the set of role names in C , and concept CR is a conjunction
of R-quantifications.

Then

cforget(C,V) = �
1≤i≤m,L+

i �∈V
Li � �

R∈R
cforget(CR,V).

Here L+
i is the concept of the literal Li .

Proof . Note that for each R ∈ R, CR can be equivalently transformed into a form
of ∀R.U � �k∃R.Ek . By Proposition 15, given a conjunction F of literals and non-R-
quantifications, cforget(CR � F,V) = cforget(CR,V) � cforget(F,V). Based on this ob-
servation, by a simple induction on the number of roles in R, we can show that

cforget(C,V) = cforget
(

�
1≤i≤m

Li ,V
)

� �
R∈R

cforget(CR,V).

Thus, we need only to show that

cforget
(

�
1≤i≤m

Li ,V
)

= �
1≤i≤m,L+

i �∈V
Li .

It is obvious that |= �1≤i≤m Li � �1≤i≤m,L+
i �∈V Li . Suppose |= �1≤i≤m Li � D and

sig(D) ∩ V = ptyset . Let D = �Dk and each Dk is of the form
⊔

R∈R′ C ′
R � ⊔

1≤ j≤n L ′
j ,

where each C ′
R is a disjunction of quantifications about R and each L ′

j a literal. Because
|= �1≤i≤m Li � Dk for each k, we can show through the tableau that for each k there must
exist some i (1 ≤ i ≤ m) and some j (1 ≤ j ≤ n) such that Li = L ′

j . This implies that there

232 COMPUTATIONAL INTELLIGENCE

exists M ⊆ {1, . . . ,m} such that |= �k∈M Lk � D and for each k ∈ M , L+
k �∈ V . Obviously,

|= �1≤i≤m,L+
i �∈V Li � �k∈M Lk . Thus |= �1≤i≤m,L+

i �∈V Li � D.
We have shown that cforget(�1≤i≤m Li ,V) = �1≤i≤m,L+

i �∈V Li . �

Proof of Theorem 1. The correctness of Algorithm 1 is clearly seen from Proposition
10, Proposition 16, and Proposition 11. �

