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Abstract—Recent years have seen a dramatic growth of
semantic web on the data level, but unfortunately not on the
schema level, which contains mostly concept hierarchies. The
shortage of schemas makes the semantic web data difficult to be
used in many semantic web applications, so schemas learning
from semantic web data becomes an increasingly pressing issue.
In this paper we propose a novel schemas learning approach -
BelNet, which combines description logics (DLs) with Bayesian
networks. In this way BelNet is capable to understand and
capture the semantics of the data on the one hand, and to
handle incompleteness during the learning procedure on the
other hand. The main contributions of this work are: (i)
we introduce the architecture of BelNet, and correspondingly
propose the ontology learning techniques in it; (ii) we compare
the experimental results of our approach with the state-of-the-
art ontology learning approaches, and provide discussions from
different aspects.

I. INTRODUCTION

Ontologies play an important role [14] in applications of

the Semantic Web (SW). Ontology annotated data is growing

rapidly; e.g., from May 2009 to March 2010, the number of

RDF triples has grown from 4.7 billion to 16 billion [1].

However, the knowledge acquisition bottleneck has resulted

in inexpressive schemas on SW [2], which gives rise to the

research of ontology learning [20] and query learning [13]

from SW data.

Although data mining and machine learning techniques,

such as association rule mining [18] and inductive logic pro-

gramming (ILP) [11], can be applied to SW data, the prob-

lem of learning schemas from instance-level data remains

challenging. The widely adopted assumption in machine

learning domain is the closed-world assumption (CWA) -

assuming true of the specified and derivable statements,

and false otherwise. However, the SW uses open-world

assumption (OWA); i.e., the truth values of unspecified

and underived statements are assumed as unknown [16],

rather than false. In other words, SW data is assumed to

be incomplete. The presence of incompleteness can lead to

the over-fitting problem if CWA is made. For example, one

might learn the axiom that Grandson is a Male who is not

a Person from a data set missing statements of individual

grandsons are persons.

The approach proposed in this paper adopts a probabilistic

point of view to deal with the aggressive ‘false’ under

‘risky’ CWA. More precisely, we propose the Bayesian

description logic Network, or simply BelNet, a description

logic based Bayesian Network [15] for learning schema

axioms (TBox) from data axioms (ABox). In addition to

the CWA issue, BelNet can deal with two further issues

for ontology learning, i.e. (i) only being able to learn one

axiom at a time, and (ii) only being able to learn crisp

axioms. Moreover, learning one single axiom may reject the

‘probable’ correct answers or accept the ’likely’ incorrect

answers. To address this issue, a global target function is

used in BelNet for leading the ontology learner out of the

local optimum.

We have intensively studied the properties of BelNet,

theoretically and practically (cf. Sec 3), after introducing the

basic notions of description logics and Bayesian networks

(cf. Sec 2). In BelNet, the links normally signify the sub-

sumption relationship. Given the ABox data in the ontology,

BelNet firstly learns the structure that best encodes the sub-

sumption dependencies supported by ABox data. From the

structure, subsumption axioms, such as Grandson �Male,

which means a person who is a Grandson is also a Male,

are extracted directly. In addition, we propose an approach to

generate candidate weighted axioms, which are consequently

transformed into linear time inferencing in BelNet (cf. Sec

4). We compare the performance of the ontology learning

approach using BelNet with the state-of-the art systems

DLLearner and GoldMiner (cf. Sec 5). Our experiments

show that our proposed approach is able to learn TBox

axioms even when the ABox data in the ontology is quite

rare (incomplete).

II. PRELIMINARY

A. Bayesian Networks

Bayesian networks (BNs), belonged to the family of

probabilistic graphical models. The graphical structures are

used to represent knowledge about an uncertain domain.

Each node in the graph represents a random variable,

while the edges between the nodes represent probabilistic

dependencies. BNs enable an effective representation and

computation of the joint probability distribution (JPD) over

a set of random variables [15].

More formally, a BN is defined by a pair B = 〈G,Θ〉,
where G is a DAG whose nodes V1, V2, ..., Vn represent

random variables, and whose edges represent the direct

dependencies between these variables. Θ denotes the set of

parameters of the network.

2013 IEEE 25th International Conference on Tools with Artificial Intelligence

1082-3409/13 $31.00 © 2013 IEEE

DOI 10.1109/ICTAI.2013.117

761



Belief propagation, also known as sum-product message
passing is a widely used message passing algorithm for

performing inference on graphical models, and will be
used in BelNet as well for inference. There are two main

approaches to deal with parameter estimation: one is based

on maximum likelihood estimation, and the other uses

Bayesian approaches. In BelNet, the Bayesian approach will

be adopted for the parameter estimation which is better to

avoid overfitting.

B. Ontology & Description Logic ALC

An ontology comprises TBox (terminology, i.e., the vo-

cabulary of an application domain) and ABox (assertions).

TBox consists of concepts denoting sets of individuals (we

denote the set of concept names by NC), and roles denoting

binary relationships between individuals (we denote the set

of role names by NR). ABox contains assertions about

named individuals (we denote the set of individual names

by NI ) in terms of the TBox. We further categorise the

ABox into two sets. One is the set of concept assertions

such as Grandson(Mathiew) , and the other is the set of

role assertions between individuals such as hasChild(Paul,
Mathiew). The assertions in the ABox are also called facts.

Description logics (DLs) provide the logical formalism

for ontologies and the Semantic Web. Here we briefly

introduce DL ALC ontology, which is used in BelNet. In

DLs, interpretations are used to assign a meaning to syntactic

constructs. An interpretation I consists of a non-empty set

ΔI . An interpretation function ·I assigns to every object

a ∈ NI an element of ΔI , to every atomic concept A ∈ NC

a set AI ⊆ ΔI , and to every atomic role r ∈ NR a binary

relation rI ⊆ ΔI × ΔI . If I satisfies an axiom (resp. a

set of axioms), then we say that it is a model of this axiom

(resp. set of axioms). The syntax and semantics of ALC are

given in Table I, in which C and D are ALC concepts. A

concept C is subsumed by a concept D if CI ⊆ DI for

every model I of this vocabulary T , written as C �T D
or T |= C � D (subsumption). Two concepts C and D are

disjoint if CI ∩ DI = ∅ for every model I (disjointness).

Over an ABox A, A |= α if every model of A also satisfies

α.Please refer to [7] for further details of DLs.

III. BAYESIAN DESCRIPTION LOGIC NETWORK

In connection with a DL ontology, the corresponding

Bayesian description logic Network (BelNet) is a graph-

based knowledge representation showing relationships be-

tween concepts. A BelNet contains two components:

The structure of a BelNet is a directed acyclic graph

(DAG), where

• vertexes represent DL concepts (expressions).

• links signify the existence of direct influences between

the linked vertexes. To be specific, two nodes are

linked, if they represent exactly the two concepts in two

sides of an inclusion axiom; links can be conditional,

Table I
SYNTAX AND SEMANTICS OF DL ALC .

construct syntax semantics

atomic concept A AI ⊆ ΔI
atomic role r rI ⊆ ΔI ×ΔI
top concept � ΔI
bottom concept ⊥ ∅
conjunction C �D (C �D)I = CI ∩DI
universal restriction ∀r.C (∀r.C)I = {a|∀b.(a, b) ∈ rI

implies b ∈ CI}
U disjunction C 
D (C 
D)I = CI ∪DI
C negation ¬C (¬C)I = ΔI \ CI
E existential restriction ∃r.C (∃r.C)I = {a|∃b.(a, b) ∈ rI

and b ∈ CI}

Father

Father 	Mother

Mother

Female

Daughter

Child

Son

∃hasParent.�Parent

Figure 1. The graphical representation of a BelNet. The links from Father
and Mother to Father 
Mother are conditional.

which means the vertex on one side of the link is

completely determined by the other. (c.f. Figure 1).

The numerical information relies on statistics approach

against the facts in the ABox, and shows how and in which

way the ABox is supporting the relations (links) between

two concept vertexes.

For a complete example of BelNet please refer to Figure

2. In the following, we will firstly introduce how the graph

structure of BelNet is built from an ontology, and then we

will illustrate how the information in the ABox is used to

calculate the Joint Probability Distribution (JPD) for the

BelNet.

Person

Female Male
P (MaT )

0.5

P (FeT )

0.5

Fe Ma P (PeT |Fe,Ma)

T F 1

F T 1

Figure 2. Motivated BelNet Example. Ma, Fe are short for Male and
Female. Because Female and Male both equals T or F corresponds
to an impossible situation in reality, thus there are only 2 rows in the CPT
of node Person.
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A. Building DAG for BelNet of an Ontology

Given an ontology O, let N+
C be all concept expres-

sions appearing in O. For any C ∈ N+
C , We define

its parents as Pa(C) = {C ′ ∈ N+
C | O |= C ′ �

C, and there is no C ′′ such that O |= C ′ � C ′′, and O |=
C ′′ � C}.

For an ontology O = < T,A >, its ABox materialisation
is MA(O) = {A(a) |A ∈ N+

C , a ∈ NI ,O |= A(a)}. If

MA(O) ⊆ A, then we say O is ABox materialised.

For convenience in this paper we use the same symbol

for both the concept in DL ontology and the corresponding

vertex in the graph.

Given a consistent ontology O =< T,A >, its corre-

sponding BelNet structure, denoted as G = Bel(O), is

generated with the following steps:

1) For each C ∈ N+
C , there is a C vertex in Bel(O);

2) If C ′ ∈ Pa(C), then link from vertex C ′ to C;

3) If C ′ ≡ C and C ∈ V , then label C with an alias C ′;

Example 1: Figure 1 shows the graphical representation

of the Bel(O), in which the TBox of ontology O contains:

Father � Father 	Mother Mother � Female

Mother � Father 	Mother Daughter � Female

Father 	Mother � Parent Daughter � Child

Child � ∃hasParent.� Son � Child

It is not hard to prove Proposition 1, which guarantees

the above generated BelNet structure is a DAG, so that we

could adapt Bayesian Network approach in it.

Proposition 1: (DAG) Given an ontology O, Bel(O) is

a Directed Acyclic Graph (DAG).

B. Generating Joint Probability Distribution for BelNet

Along with ontology TBox constructing the links in

Bel(O), ontology ABox contributes to the parameters on the

vertexes, which reflects the supportiveness from the ABox to

the BelNet structure. Here we will introduce how to generate

the conditional probability table (CPT) for the vertexes in

Bel(O), then for the whole BelNet structure.

It is natural to use a finite ontology domain ΔI to

restrict all elements in the possible world in the BelNet. For

convenience, we assume ΔI contains all individual names in

the ontology, and an individual name o is always interpreted

to itself, i.e., oI = o.

We call all interpretations related to o a possible obser-
vation o. For example, CI = {a, b}, then there are two

possible observations, where Co1 = {a}, Co2 = {b}.
A possible observation is an interpretation which assigns

at most one element to one concept. We assume that all

possible observations are independent.

Firstly for a marginal node C, which has no parents

in Bel(O), the marginal probability is a table of P (C�),

where � ∈ {TRUE,FALSE}. Furthermore, P (CTRUE) is

the probability that a possible observation supports C, i.e.,
o ∈ CI . Similarly P (CFALSE) is the probability that a

possible observation does not support C, i.e., o 
∈ CI .

Actually the values are calculated with the number of

individuals satisfiying concept C in the original ontology.

For convenience in the following TRUE and FALSE are

shortened to T and F.

Secondly for nodes with parents, the conditional proba-

bility should be calculated.

Definition 1: (Bayesian subsumption axiom)
A Bayesian subsumption axiom is in the form of

D|C1, . . . , Cn, where Ci � D, i ∈ {1, . . . , n}.
The vertexes in Bel(O) are treated as random variables,

so the Conditional Probability Tables (CPT) of a Bayesian

subsumption axiom is calculated as follows:

P (D|C1, . . . , Cn) =
P (D,C1, . . . , Cn)

P (C1, . . . , Cn)
(1)

where P (C1, . . . , Cn) is a (discrete) joint probabil-

ity distribution of variables C1, . . . , Cn, similar for

P (D,C1, . . . , Cn).

Actually, under a possible observation Ci has two values:

T and F. For a specific observation o, o supports CT
i if

o ∈ CI
i , and o supports CF

i if o 
∈ CI
i . These cases can be

abbreviated as Co
i .

Example 2: Given an ontology O =< T,A >, where T
includes {Male � Person, Female � Person}. We also

have ABox as:

Person(a), P erson(b),Male(a), F emale(b)

Figure 2 shows the CPTs for Female, Male, and Person.

Actually the CPT reflects how much degree the ABox

supports the subsumption axioms. Obviously we have the

following proposition.

Proposition 2: In the BelNet of an ABox materialised

ontology O, we have P (DT |CT ) = 1, if C ∈ Pa(D).

Proof: Follows directly from the steps of transforming

ontology into BelNet, nodes C in Pa(D) satisfy C � D.

Since O is ABox materialised, CI ⊆ DI means that for

any possible observation o, if o ∈ CI , then we must have

o ∈ DI . So we have: P (DT , CT ) = P (CT ). From equation

(1), P (DT |CT ) = P (DT ,CT )
P (CT )

= 1.

Lemma 1: Given a consistent and ABox materialised

ideal ontology O, and the corresponding Bel(O), we have

P (DT |Pa(D)) = 1, if for all Ci ∈ Pa(D) are satisfiable

in O, i.e., there exists oi, s.t. oi ∈ CI
i .

An ideal ontology here means that the ABox contains no

noise. Calculations on ideal ontologies are approximations

for practical cases. Now we can measure the global sup-

portiveness from evidences in ontology ABox to a BelNet

structure Bel(O).
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Definition 2: (BelNet Joint Probability Distribu-
tion(JPD)) Given an ontology O and its BelNet structure

G, the joint probability distribution is defined as:

P (G) = P (V1, . . . , Vn) =
n∏

i=1

P (Vi|Pa(Vi)) (2)

where V1, . . . , Vn are all vertexes in Bel(O).
Proposition 3: Given a consistent ideal ontology O, its

BelNet structure G, and an observation o, we have P (Go) =∏
Pa(Vi)=∅ P (V io), if O is ABox materialised.

Proposition 3 follows from Lemma 1 and Equation (2). As

a direct conclusion from the JPD function, we have that

Theorem 1: For an interpretation I satisfies a consistent

ideal ontology O and its BelNet structure G, we have

P (GI) =
∏

Pa(Vi)=∅ P (V v
i )

k if O is ABox materialised,

in where k is the total number of observation o in I such

that o ∈ V I
i for v = T and o 
∈ V I

i for v = F.

Proof:

P (GI) =
∏

o

P (Go)

=
∏

o

∏

Pa(Vi)=∅
P (V o

i )

=
∏

Pa(Vi)=∅
P (V v

i )
k

Continuing to Example 2 in Figure 2, we have P (GI) =
0.5× 0.5× 0.5× 0.5

By now we have introduced the BelNet model for an

ontology, and intensively studied the features of BelNet for

an ABox materialised ontology which having rich ABox

assertions. In the next section we will introduce how to learn

the BelNet structure from the evidences in ontology ABox.

IV. LEARNING WITH BELNET

The learning approach includes 3 main steps:

1) Pre-processing. In pre-processing, given an ontology

O, for each A ∈ NC and r ∈ NR, pre-processing

creates nodes corresponding to A and ∃r.� in Bel(O).
In addition, because all individuals are belonged to

concept ∀r.A, we generate ∃r.A � ∀r.A instead as the

approximation for ∀r.A. Furthermore, ABox material-

ization will carry out on each newly created concepts.

The result of this step is denoted as ABox and TBox
enriched ontology.

2) Structure learning. The algorithm adopted here is a

modified version of the structure learning algorithm in

Bayesian networks. Generally speaking, the Bayesian

network structure learning algorithm can only recover

the structure that is equivalent in terms of representing

the independencies among the nodes to the real un-

derlying structure [9]. In this paper, the preference is

a single structure that is concise and can directly be

used to extract ALC axioms. To achieve this goal, we

incorporate this preference as shown in Algorithm 1.

3) Post-processing. After structure learning, a Bayesian

network G is learned, and the parameters of G are esti-

mated through the Bayesian estimator using (0.5, 0.5) β
priors. Using G, in addition to axioms extracted directly

from G, more TBox axioms can be extracted through

answering probabilisty queries by inferencing in G.

We have discussed the first step in previous sections. In the

following, we will further discuss the last two steps.

A. TBox Structure Learning in BelNet

Given an ABox and TBox enriched ontology O =<
T,A >, the task of TBox structure learning in BelNet is to

find a BelNet graph G =< V,E >, such that
∏

I∈A P (GI)
is maximized, under the constraint that each link in G
corresponds to a subsumption dependency relation.

Roughly speaking, the structure learning algorithm starts

from an initial structure (with all the vertexes from pre-

processing, and the conditional links between vertexes and

the nearest parents), and iteratively tries to find the best

operation (in terms of adding / deleting) that can be carried

out from the current structure. This process iterates until

no better structures can be found, or the step reaches the

maximum threshold (c.f. Algorithm 1). Two parameters

are involved in this procedure. One parameter controls the

maximum number of parent nodes a node can have, the other

parameter controls the maximum number of iterations for

this procedure to exit.

Score function. In the Bayesian network structure learn-

ing algorithms, the vital part is evaluating an operation, a.k.a.

adding or deleting a link. This is done by score functions.

The score functions used in Bayesian network structure

learning include maximum likelihood measure, Bayesian

score, and extensions of Bayesian score. Likelihood measure

suffers from over-fitting problems, and prefers complexer

network to a simpler one, which is not always the real

preference in practice. Due to the better performance in

handling over-fitting problems of Bayesian score [9], we will

adopt Bayesian score as our score function.

In an ontological knowledge base, C � D and D � E
induces C � E, in another word, C � E is a redundant

axiom if it occurs together with the other two axioms. In

the context of ontology learning, a learner is also expected

to generate less redundancies. When using Bayesian score

to add links, it prefers to link two nodes that are much closer

to each other [9]. Generally speaking, in our approach, the

links in the network structure correspond to subsumption

relationships. Thus, with Bayesian score it is less likely to

generate this kind of redundancies.
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Algorithm 1: structure learning in BelNet

input : BelNet graph G =< V,Econditional >,

M =< C, InstC >, max iter
output: G′

begin1

Initialize best score with the score of G;2

for each pair of nodes do3

cache the score for adding/deleting the link4

between them;
while max iter not reached do5

while best operation not found and cache not6

fully visited do
o← the best operation from the cache;7

if o satisfies the selection criteria then8

best operation found;9

if best operation found and10

new score ≥ best score then do operation o,

and label the network as G′;
best score← score of G′;11

else return G′;12

end13

Algorithm 2: Post-processing in BelNet

input : BelNet graph G =< V,E >, JPD,

thresholddisjoint, O
output: O′

begin1

Initialize an empty axiomlist and an ontology O′;2

for each node who has more than one parent do3

for any combination of two parent nodes Vi, Vj4

do
if P (V T

i , V T
j ) < thresholddisjoint then5

add (< Vi, disjointWith Vj >6

, P (V T
i , V T

j ))→ axiomlist;
sort axiomlist ASC according to the probability;7

for each element in axiomlist do8

if adding axiom to O′ not causing9

inconsistency then
add axiom→ O′;10

return O′;11

end12

Selection criteria. After an operation is selected by the

score function, in order to meet the demand of BelNet,

to be specific, the preference over structures whose links

signifying the special dependency called ‘subsumption’, the

operations not satisfying the demands are filtered out by the

selection criteria.

We denote the candidate operation as O, where Ohead

is the node to which the link points to, and Otail rep-

resents the node from which the link starts. Further, we

denote the count of instances that belongs to both con-

cepts corresponding to Otail and Ohead as M [Ohead, Otail],

Table II
PROBABILITIES IN BELNET AND THE CORRESPONDING DL AXIOMS.

probabilities of DL axioms

conjunction P (�n
i=1Ci) = P (CT

1 , . . . , CT
n )

disjunction P (
n
i=1Ci) = 1− P (CF

1 , . . . , CF
n )

disjointness P (�n
i=1Ci 
 ⊥) = 1− P (CT

1 , . . . , CT
n )

subsumption P (C 
 D) = P (DT |CT )

the count of instances belonging to concept Ohead as

M [Ohead], similar for M [Otail]. Then, operation O will be

selected iff M [Ohead, Otail] = M [Otail] and M [Otail] >
thresholdparent. In this paper, the thresholdparent is se-

lected to be 0.

B. Post-processing

After the structure of BelNet is learnt, we can extract

various kinds of axioms from BelNet by inferencing in

it. (refer to Table II for the details of this translation).

The result probabilities of CPD query are the weights

of the corresponding DL axioms. In practice, in order to

select the axioms from the axioms with probabilities, we

choose different threshold for this selection. For example,

to select the disjointness axioms, we choose the axioms

with probability greater than 1 − thresholddisjoint. After

the BelNet has been learned, post-processing extracts

subsumptions and disjointness from the BelNet by the

following procedure:

(1) For each non-conditional link C → D in the BelNet,

generate an axiom C � D. If there are more than one

nodes D1 . . . Dn, such that C → Di, i ∈ {1, . . . , n},
generate an axiom C � �i∈{1,...,n}Di.

(2) If there are more than one nodes C1 . . . Cn, such

that Ci → D, i ∈ {1, . . . , n}, generate an axiom

	i∈{1,...,n}Ci � D.

(3) Generate disjointness axioms by Algorithm 2.

V. EXPERIMENTS

We designed and carried out some experiments to evaluate

our proposed ontology learning approach in the following

aspects: 1) We evaluate the proposed approach by checking

the correctness of the axioms learnt by BelNet, and whether

the axioms in the input ontology can be learned. 2) We

analyse the performance of BelNet under the existence of

incomplete semantic web data.

A. Experiment Setup

1) Evaluation Metrics: Given O the original ontology (as

the input of a target ontology learner), O′ the output of the

ontology learner with input O, and OS the gold-standard

ontology, precision and recall can be calculated as follows:

Precision(OS ,O′) =
|{α|α ∈ O′ and OS |= α}|

|{α|α ∈ O′}|
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Table III
STATISTICS OF THE DATA SETS FOR EVALUATION. THE DATASET NAME

END WITH ’ IS THE GOLD-STANDARD DATASET.

ontology # c # op # 
 / ≡ / ⊥ # ind DL expressivity
Family 19 4 27 / 0 / 0 202 AL
Family’ 19 4 27 / 17 / 14 202 ALC

Semantic Bible 49 29 51 / 0 / 5 724 SHOIN (D)
Semantic Bible’ 49 29 52 / 6 / 34 724 SHOIN (D)

LUBM 43 25 36 / 6 / 0 1555 ALEHI(D)
LUBM’ 43 25 36 / 6 / 52 1555 SHI(D)

Financial 60 16 55 / 0 / 113 17941 ALCOIF

Recall(OS ,O′) =
|{α|α ∈ OS and O′ |= α}|

|{α|α ∈ OS}|
where α is a subsumption or disjointness axiom. F1-measure
is the harmonic mean of precision and recall.

2) Datasets: The test ontologies include: family1, seman-

tic bible2, LUBM3, and financial4. The evaluation metrics

are calculated with the manually constructed gold-standard

ontologies5 and the original financial ontology, which is

already complete enough for the evaluations. The related

statistics of the datasets are shown in Table III where we

calculate the number of concepts (c for short), object prop-

erties (op for short), number of subclassOf, equivalentClass,

disjointWith axioms, number of individuals and the DL

expressivity. The DL expressivity of the ontologies chosen

are not restricted to ALC. In the proposed approach, all

concept expressions in the original ontology are treated as

concepts, and if they exceed the expressivity of ALC, they

will be treated the same way as a named concept.

The experiments were performed on a computer with

4 core 2.27GHz CPU, and 4G RAM. We evaluated the

performance of our approach under the existence of in-

completeness by randomly partitioning the dataset into 10
parts. Each time of the experiment, we randomly selected

one part from the partitions, and to which we add another

randomly selected partition at the second time. At last, we

get the whole dataset, which is the complete one. This

procedure was carried out 10 times in order to demonstrate

the objectiveness of the evaluation.

B. Results

In the structure learning algorithm, we selected the max-

imum number of parents to be 5, and the maximum num-

ber of iterations is 100. We ran experiments varying the

thresholddisjoint parameter in the range of [0.01 − 0.20]
and by checking the evaluation metrics we fix this parameter

thresholddisjoint. Due to limited space, we only show the

F1 results versus parameter and the size of the partition on

dataset family (c.f. Figure 3, page 7).

1https://github.com/fresheye/belnet/blob/master/ontology/
family-benchmark rich background.owl

2http://www.semanticbible.com
3http://swat.cse.lehigh.edu/projects/lubm/
4http://www.cs.put.poznan.pl/alawrynowicz/financial.owl
5https://github.com/fresheye/belnet/blob/master/ontology/

We can observe from Figure 3 that the overall perfor-

mance goes higher when the dataset gets larger. Interestingly,

we can still see a minor drop after we get 30 percent of

the whole dataset. Figure 4 (page 7) explains the reason:

as the dataset is getting larger, the learner starts to extract

disjointness axioms more carefully; thus, the recall gets

lower. We will select the thresholddisjoint by the following

criterion: 1) we expect a large area of better performance in

terms of F1, and 2) we expect a stable performance in the

whole range of evaluations. Thus, in the experiments, we set

the thresholddisjoint to be 0.16.

Figure 4 (page 7) presents the performance of the pro-

posed approach in terms of precision, recall, and F1-measure

compared with GoldMiner and DLLearner. GoldMiner con-

sists of 4 tunable parameters, namely supportness and confi-

dence in learning subsumptions and disjointness seperately.

We tried parameters in the scope of [0− 1] for GoldMiner,

and finally we chose the support threshold to be 0, and

confidence threshold to be 0.9 in learning subsumptions, and

0.1 (supportness), 0.8 (confidence) in learning disjointness,

which is also the setting recommended in [4], in order to

get a higher F1. From the figure, we conclude that 1) for

most of the dataset, our method is better than DLLearner

and GoldMiner in terms of precision and F1-measure. 2)

the recall is not high compared with precision.

Table IV (page 7) shows a comparison of a snippet of

the results of BelNet and DLLearner when the size of

the dataset changes. It shows the over-fitting problem of

DLLearner when the dataset is not complete enough. Most

of the presented axioms (except the 6th and 10th) learnt

by DLLearner are incorrect; e.g., when DLLearner runs on

10 percent of the whole dataset, the concept description of

Grandson is a Male who has a Parent that is not a Person.

The axioms that BelNet learns are all correct.

VI. RELATED WORK

Learning schemas from instance-level data has attracted

attentions since the fast development of the semantic web.

Interested readers can refer to [3] for a thorough survey

[3]. In this section, we only notice a subset of works that

focus on learning a broader sense of axioms from ABox data

here. Due to the relationship between BelNet and statistical

relational learning, important and closely related works on

SRL models are also briefly reviewed in this section.

In [11], the authors developed DLLearner to learn ALC
cocnept descriptions from ontologies based on ILP tech-

niques, where the candidate concept descriptions are gen-

erated by a downward refinement operator.In addition, in

[6], the particular focused is handling larger datasets, such

as DBpedia. DLLearner generates concept descriptions quite

well when the data quality is relatively high. However, under

the existence of incompleteness, which is the main focus

of this paper, DLLearner would drop into local optimum

descriptions for concepts due to the incorrect ‘false’ values
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Figure 3. The F1 versus thresholddisjoint and partition size on dataset Family. (a) demonstrates F1 in terms of thresholddisjoint and the size of the
dataset. (b) represents the contour of subgraph (a).

Figure 4. The Precision, Recall, and F1-Measure of DLLearner, GoldMiner, and BelNet, in terms of the size of the data.

Table IV
AXIOMS LEARNED FOR CONCEPT Grandson ON FAMILY DATASET. THE FIRST COLUMN IS THE SIZE OF THE PARTITION IN THE EVALUATION.

% BelNet (Grandson 
) DLLearner (Grandson ≡)
10 Male �Grandchild� Male � ∃hasParent.¬Person

∃hasParent.� � Child � ¬GrandDaughter
20 Male �Grandchild � ¬GrandDaughter (Male � ¬Parent) 
 ¬Person
30 Male �Grandchild � ¬GrandDaughter (¬Female � ¬Parent) � ∀hasChild.Mother
40 Male �Grandchild � ¬GrandDaughter ¬Female � ¬Grandparent � ∀hasSibling.Child
50 Male �Grandchild � ¬GrandDaughter ¬Female � ∀hasChild.(Child � ¬Parent)
60 Male �Grandchild � ¬GrandDaughter ¬Female � ∀married.∀married.Son
70 Male �Grandchild � ¬GrandDaughter Person � ¬Female � ∀married.∀hasParent.Sister
80 Grandchild � ¬GrandDaughter ¬Female � ∀married.∀hasParent.Brother
90 Male �Grandchild � ¬GrandDaughter ¬Female � ∃hasParent. ≤ 1hasChild.GrandParent

100 Male �Grandchild � Son � ¬GrandDaughter Son � ∃hasParent.Child
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generated by making CWA. Gold-Miner [18] tries to learn

EL axioms from ontologies based on association rule mining

method, and in [4], this approach is further extended to learn

disjointness axioms. However, Gold-Miner tends to learn a

large number of irrelevant results, which put an extra burden

to end-users of ontology learning applications. In addition,

Galárraga et al. [5] proposed a rule mining model supporting

OWA scenario by introducing a new confidence measure in

association rule mining.

We briefly review the SRL methods closely related to

BelNet. Koller et al. extended DL CLASSIC with nodes in a

BN represent probabilistic information of the individuals in

a specific class [10], which is closely related to the represen-

tation in BelNet. However, in BelNet, the edges correspond

to the specific type of dependency (subsumption). BLP [8]

unifies definite logic programs with Bayesian networks. In

BLP, ground atoms are mapped to random variables. BelNet

differs from BLP in that 1) the representation languages are

different; 2) BelNet models concepts with random variables;

3) BelNet is suitable for schema level ontology learning.

OntoBayes [19] extends OWL with annotating RDF triples

with probabilities and dependencies. In [12], EL++-LL was

proposed to extend crisp ontological axioms with weights.

Using EL++-LL, a subset of coherent axioms can be learned

from a set of weighted EL++ axioms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed Bayesian description logic

Network (BelNet) to deal with the problem of schema

learning from incomplete semantic web data. In BelNet, DL

concept expressions correspond to probabilistic nodes, and

subsumption relationships between DL concept descriptions

are represented as links. The problem of learning schema is

transformed into structure learning and query answering in

BelNet, which, from our experiment, has been shown to be

effective for learning from incomplete semantic data.

In the future, we will explore 1) learning equivalence

axioms with BelNet; 2) learning axioms in other DL species,

and 3) scalable solutions of BelNet on larger datasets.

We also plan to investigate the combination of learning

algorithms with reasoning engines such as TrOWL [17].
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