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In this work we deal with the problem of TBox learning from incomplete semantic web data. TBox, or con-
ceptual schema, is the backbone of a Description Logic (DL) ontology, but is always difficult to obtain.
Existing approaches either fail in getting correct results under incompleteness or learn results that are
not enough to resolve the incompleteness. We propose to transform TBox learning in DL into inference
in the extension of Bayesian Description Logic Network (abbreviated as BelNet+), whereby the structure
in the data is leveraged when evaluating the relationships between two concepts. BelNet+, integrating the
probabilistic inference capability of Bayesian Networks with the logical formalism of DL ontologies –
Description Logics, supports promising inference. In this paper, we firstly explain the details of BelNet+

and introduce a TBox learning approach based on BelNet+. In order to overcome the drawbacks of current
evaluation metrics, we then propose a novel evaluation framework conforming to the Open World
Assumption (OWA) generally made in the semantic web. Finally the results from empirical studies on
comparisons with the state-of-the-art TBox learners verify the effectiveness of our approach.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Ontologies are basic building blocks of the semantic web
[12,25]. The number of semantic web datasets has approximately
doubled since 2011, and it has grown by 270% if the category social
networking is taken into account [27]. However, the knowledge
acquisition bottleneck has resulted in inexpressive schemata (also
known as TBoxes, while the data part of ontologies are called
ABoxes) on the semantic web [2,13].

One way of enriching TBoxes is to (semi-) automatically learn
TBoxes, which has been seen in learning from unstructured docu-
ments [2] and semi-structured documents [22]. Given the fast
development of semantic data, one way of exploiting them [30,7]
is to learning TBoxes from semantic data (ABoxes) [32]. However,
in an environment like the semantic web, data generally suffer
from incompleteness issue [33], which consequently hinders the
learners from getting correct results. In this paper, we focus on
learning TBox from incomplete ABox data.

This problem has attracted attention from both machine learn-
ing and data mining domains. For example, a number of studies
have applied Inductive Logic Programming (ILP) to learning
Description Logic (DL) knowledge bases. Lehmann et al. [17]
extensively studied the properties of ALC (a basic DL) and EL (a
light-weight language) refinement operators, which were used in
the ILP algorithm. Since the refinement operators are designed to
traverse the possible candidates, the approach is effective over
complete data. However, the candidate scores are based on
both positive and negative examples by making closed world
assumption (CWA) – assuming true of the specified and derivable
statements, and false otherwise – which, under the incomplete
semantic web data, leads to lots of noisy negative examples.
Consequently, a candidate concept that best describes the other
one but is over specialized will be selected at last. For example,
one might learn an axiom Grandson vMale u: Person (Grandson
is a Male who is not a Person) from a dataset without statements
like ‘‘individual grandsons are person’’. In the data mining domain,
Völker and Niepert [28] used association rule mining to learn
TBox from semantic web knowledge base such as DBpedia. The
measures used to select candidate TBox axioms are support and
confidence, where negative examples are out of consideration
but are undoubtedly useful in specializing the axioms and decreas-
ing the redundancies in the results. Furthermore, TBox axioms are
learned for respective and independent targets, which leads to
either over or under specialized result sets. Lastly, the metrics
precision, recall, and F1-measure commonly used by current
approaches are sensitive to minor changes in the gold standard
ontologies. For example, consider a set containing ‘‘Father vMale’’.
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Table 1
Syntax and semantics of DL ALC.

Construct Syntax Semantics

Atomic concept A AI # DI

Atomic role r rI # DI � DI

Top concept > DI

Bottom concept ? ;
Conjunction C u D ðC u DÞI ¼ CI \ DI

Universal restriction 8r � C ð8r � CÞI ¼ faj8b � ða; bÞ 2 rI implies b 2 CIg
Disjunction C t D ðC t DÞI ¼ CI [ DI

Negation :C ð:CÞI ¼ DI n CI

Existential restriction 9r � C ð9r � CÞI ¼ faj9b � ða; bÞ 2 rI and b 2 CIg
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Replacing ‘‘Father vMale’’ and ‘‘Father v 9hasChild.>’’ with
‘‘Father v Male u 9hasChild:>’’ will decrease recall from 1/2 to
0. To summarize, the problem of learning TBox from incomplete
semantic web data remains challenging because:

� Little attention is paid to approaches dealing with the incom-
pleteness in the data.
� An evaluation framework to compare existing approaches is

lacking.

In order to address those challenges we make the following four
contributions in this paper.

� We generate the negative examples according to CWA in a man-
ner similar to [17]. However, to solve the noisy issue brought by
CWA and incompleteness, we adopt an approach that instead of
considering the instances of concept pairs only, uses inference
in a Bayesian network that leverages the structure in the data.
� In order to foster promising inference on subsumption and dis-

jointness axioms, we extend BelNet [33] to BelNet+. BelNet
combines Bayesian networks with DLs by representing DL con-
cepts as nodes and subsumptions with links. In BelNet+, we
extend the semantics of links in BelNet by using additional links
for disjointness. Compared to BelNet, BelNet+ is more effective
in detecting disjoint concepts and answering queries.
� We consider the TBox learning as instance classification. In

order to conform to the Open World Assumption (OWA) gener-
ally made in the semantic web, we extend the traditional confu-
sion matrix by considering unknown results (neither true nor
false), and propose the metrics using the new confusion matrix
correspondingly. Our extension of traditional evaluation met-
rics reflects more objectively on the performance of the
learners.
� In order to evaluate the state of the art TBox learners, we set up

gold standard ontologies correspondingly. Meanwhile, in our
evaluation framework, the quality of the gold standard ontolo-
gies is more easily guaranteed.

The rest of the paper is organized as follows. In Section 2,
notions in DLs are introduced. In Section 3, we introduce the pro-
posed model, BelNet+, in detail. Then we describe the TBox learning
approach in Section 4. In Section 5, we describe the proposed eval-
uation framework for TBox learners. The empirical performance
evaluations are shown in Section 6. We briefly review the related
work in Section 7. Section 8 presents conclusions drawn from the
work and identifies areas for future research.
2. Ontology & description logic

An ontology comprises TBox (terminology, i.e., the vocabulary of
an specific domain) and ABox (assertions). TBox consists of con-
cepts denoting sets of individuals, and roles denoting binary rela-
tionships between individuals. We denote the set of concept
names by NC , the set of all concept expressions by NþC , and the
set of role names by NR. ABox contains assertions about named
individuals (we denote the set of individual names by NI) in terms
of the TBox. ABox contains two sets of assertions. One is the set of
concept assertions such as Grandson(Mathiew), and the other is the
set of role assertions between individuals such as hasChild(Paul,
Mathiew). The assertions in the ABox are also called facts.

Description Logics (DLs) provide the logical formalism for ontol-
ogies in the semantic web. Table 1 shows the syntax and semantics
of a specific DL language ALC. In DLs, interpretations are used to
assign meanings to syntactic constructs. An interpretation I consists
of a non-empty set DI. An interpretation function �I assigns to each
object a 2 NI an element of DI, to each atomic concept A 2 NC a
set AI # DI, and to each atomic role r 2 NR a binary relation
rI # DI � DI. An interpretation I satisfies a subsumption axiom
C v D if CI # DI, if it satisfies an equality C � D if CI ¼ DI, and it
satisfies a disjointness axiom C u D v ? if CI \ DI ¼ ;. If T is a
set of axioms, then I satisfies T iff I satisfies each element of T . If
I satisfies an axiom (resp. a set of axioms), then we say that it is a
model of this axiom (resp. the set of axioms). An ABox A is consistent
with respect to a TBox T , if there is an interpretation that is a model
of both A and T [1]. A concept C is satisfiable with respect to T if
there exists a model I of T such that CI is nonempty. An ontology
O is incoherent iff there exists an unsatisfiable named concept in O

[6]. Please refer to [12] for further details of DLs.
For an ontology O, its ABox materialization is MðOÞ ¼ fCðaÞ

jC 2 NþC ; a 2 NI;O � CðaÞg, where O � CðaÞ if every interpretation
that satisfies O also satisfies CðaÞ. If the ABox materialization of an
ontology O contains the same set of ABox assertions as in O then
we say that O is ABox materialized. Moreover, the parent set (par-
ents) of C 2 NþC is defined as PaðCÞ ¼ fC0 2 NþC j O � C0 v C, and
there is no C00 such that O � C0 v C00, and O � C00 v Cg, where
O � C0 v C00, if every model of O also satisfies C0 v C00.

3. BelNet+

BelNet+ integrates DLs with Bayesian networks. The syntax of
BelNet+ is defined by the subsumption and disjointness axioms in
DLs. The semantics is defined by a probability distribution over a
Bayesian network.

3.1. Syntax

Definition 1. A Bayesian subsumption axiom is in the form of
DjC1; . . . ;Cn, where Ci v D; Ci X ?; D X ?; i 2 f1; . . . ;ng and
9= j; k 2 f1; . . . ;ng such that Cj v Ck. If D0 � D, then label D with
an alias D0.
Definition 2. A Bayesian disjoint axiom is in the form of DjC, where
C u D v ? and C X ?; D X ?.
Definition 3. A BelNet+ contains a set of Bayesian subsumption
axioms (DjC1; . . . ;Cn) and a set of Bayesian disjoint axioms (DjC),
together with an ontology ABox. A BelNet+ defines a Bayesian net-
work B as follows:

� B contains one binary node associated with a conditional prob-
ability table (CPT) calculated from the ABox for each Ci and D
appearing in either the Bayesian subsumption axioms or the
Bayesian disjoint axioms.
� B links from node Ci to node D for each Bayesian subsumption

axiom DjC1; . . . ; Cn; i 2 f1; . . . ;ng.



Fig. 2. A motivated BelNet+ example. Ma; Fe, and Pe are short for Male; Female, and
Person. T and F are short for value TRUE and FALSE.
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� There is a link between node C and node D in each Bayesian dis-
joint axiom, and the direction is found by Algorithm 1.

Links in a BelNet+ can be conditional, which means that the
assignments of one node fully determine that of the other one.
Fig. 1 shows an example of conditional links. With the assignments
for variables Female and Male, we know for sure the assignment of
Female t Male by the semantics of DLs.

For convenience, in this paper we use the same symbol for both
the concept in DL ontology and the corresponding node in the
Bayesian network.

Example 1. (Given an ontology containing TBox)fMale v Person;
Female v Person; Male u Female v ?g, the corresponding Bel-
Net+ contains the following Bayesian subsumption axioms and
Bayesian disjoint axioms:

PersonjMale; Female

MalejFemale

this BelNet+ specifies a Bayesian network structure as shown in
Fig. 2, where the CPTs are learned by parameter learning
(Section 3.3).

In the following, we will prove that a BelNet+ is guaranteed to
define a Bayesian network as a directed acyclic graph (DAG).

We define the subgraph of B with links for subsumption axioms
as B!.

Proposition 1. B! is a DAG.
Proof. Suppose there is a directed cycle in B!, say C1 !
� � � ! Cn ! C1, which suggests that C1 v C2 . . . Cn�1 v Cn;Cn v C1,
then C1 � � � � � Cn. This conflicts with the rule of Bayesian
subsumption axioms that equivalent concepts are represented as
alias. h

If we denote the node, say C, in B! whose indegree (d�BðCÞ) or
outdegree (dþBðCÞ) equals to 0 as terminal node, we have the
following propositions:

Proposition 2. B! contains at least one terminal node.
Proof. Suppose each node in B! has at least a pair of incoming and
outcoming edges. Let P :¼ C1 ! � � � ! Cn be the longest path in
B!. Suppose the outcoming edge of Cn links to C. If C is not on P,
the path C1 ! . . . Cn ! C is longer than P, which is a contradiction.
Therefore, C ¼ Ci, for some i; i 2 f1; . . . ;ng, and Ci ! � � � ! Cn ! Ci

forms a cycle in B!, which conflicts with Proposition 1. h

If we denote the subgraph of B! by deleting a node C in B!

whose indegree or outdegree is 0, and also the links connected
with C as B! n C, the following proposition holds:

Proposition 3. B! n C contains at least one terminal node.
Fig. 1. A BelNet+ example. The links from Male and Female to Female t Male are
conditional.
Proposition 3 is easy to be followed after we prove Propositions
1 and 2. Because every subgraph of B! is also a DAG, then for every
subgraph of B!, Proposition 3 also holds.

Theorem 1. At least one link direction assignments for Bayesian
disjoint axioms exist, such that B is a DAG.
Proof. We denote the subgraph of B with all nodes and the undi-
rected edges for Bayesian disjoint axioms as B . Algorithm 1 finds
at least one edge assignments. Algorithm 1 will terminate, because
each time in the first while loop, the total number of nodes will be
decreased by 1 in B! and B , and in the second, B will have 1
less node. Line 4, 6 and 10 guarantee C to be a terminal node, and it
is impossible that a loop in B goes through C. At last B0 will be
guaranteed to be a DAG. Fig. 3 depicts an example of this proce-
dure. At first, in (1), the inputs are B and B!, and B is initialized
with all nodes, and the links in B!. After removing terminal nodes
in B! and adding links to B, we get the three graphs in (4) which
corresponds to the end of the first while loop in Algorithm 1 on line
7. In the second while loop, all terminal nodes in B are removed,
and the final B is shown in (6) (Fig. 3). h
3.2. Semantics

The semantics of a BelNet+ is based on joint probability distribu-
tions over the Bayesian network generated:

PðBÞ ¼ PðC1; . . . ;CnÞ ¼
Yn

i¼1

PðCijPaðCiÞÞ ð1Þ

where Cis are nodes in B, and PaðCiÞ is the parent set of Ci.

Example 2. By calculating from the BelNet+ shown in Fig. 2, the
joint probability of the existence of an instance who is a Female, a
Male, and a Person is 0:5� 0:25� 0:50 ¼ 0:0625. The probability of
an instance who is a Female and also a Person is
0:5� 0:25� 0:75þ 0:5� 0:75� 0:75 ¼ 0:375. In this example

(PðPersonF jFemaleT
;MaleFÞ ¼ 0:25), the probabilities calculated still

suggest that the first instance is less probable.

A BelNet+ can be viewed as a template for generating ABoxes.
Given different sets of conditional probability tables (or CPTs), or
different set of Bayesian axioms, it can generate different ABoxes.

3.3. Parameter estimation

The parameters in a BelNet+ refer to the CPT in the Bayesian net-
work defined by it. In this part, we will discuss how the parameters
can be learned from semantic web data.



Fig. 3. An example of finding edge assignment to ensure the DAG property of the Bayesian network generated.
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It is natural to use a finite ontology domain DI to restrict all
individuals in the ABox of a BelNet+. We assume that DI contains
all individual names in the BelNet+, and an individual name o is
always interpreted to itself, i.e., oI ¼ o.

We call all interpretations related to individual o a possible

observation o. For example, CI ¼ fa; bg, then there are two possible
observations, where Co1 ¼ fag, Co2 ¼ fbg. A possible observation is
an interpretation which assigns at most one element to one con-
cept. Actually, under a possible observation, Ci has two values: T
and F. For a specific observation o; o supports CT

i if o 2 CI

i , and o
supports CF

i if o R CI

i . These cases can be abbreviated as Co
i . Bo is

short for Co
1; . . . ;Co

n

� �
, where Ci; i 2 f1; . . . ;ng is a node in B.

Algorithm 1. Finding link directions for B

For a marginal node C, which has no parents in B, the marginal

probability is a table of PðC]Þ, where ] 2 fTRUE;FALSEg. Further-
more, PðCTRUEÞ is the probability that a possible observation sup-
ports C, i.e., Pðo 2 CIÞ. Similarly PðCFALSEÞ is the probability that a
possible observation does not support C, i.e., Pðo R CIÞ. Actually
the parameters depends on the number of individuals satisfying
concept C in the ontology, as we will see below. For convenience,
in the following TRUE(/FALSE) is shortened to be T(/F).

The CPTs will be learned from the ontology ABox. We assume
that all possible observations are independent. By Eq. (1). the like-
lihood of all possible observations fog is

Lðh : fogÞ ¼
Y

o

Yn

i¼1

hCo
i jPaðCiÞo ¼

Yn

i¼1

h
N Co

i jPaðCiÞo½ �
Co

i jPaðCiÞo
ð2Þ
where h denotes the set of CPT values, and N Co
i jPaðCiÞo

� �
is the num-

ber of possible observations satisfying Co
i jPaðCiÞo. Maximizing this

likelihood by setting the derivative of the log-likelihood of Eq. (2)
with respect to its CPTs to 0 results in

hCo
i jPaðCiÞo ¼

N Co
i jPaðCiÞo

� �
N½PaðCiÞo�

ð3Þ

In order to avoid the cases where N½PaðCiÞo� ¼ 0, we add one ‘‘imag-
inary’’ possible observation to it.

Example 3. Given the BelNet+ in Example 1. In addition, we also
have an ABox:

PersonðaÞ; PersonðbÞ;MaleðaÞ; FemaleðbÞ

Then the estimation of hPersonT jFemaleT ;MaleF is 1þ0:5
1þ1 ¼ 0:75.

The learned CPTs are shown in Fig. 2.
3.4. Inference

BelNet+ can answer arbitrary probability query: ‘‘Given a BelNet+,
what is the probability of a Bayesian subsumption/disjoint axiom?’’
More formally, the conditional probability query is given by

PðDjC1; . . . ;CnÞ ¼
P tn

i¼1CT
i ;D

T
� �

P tn
i¼1CT

i

� � ð4Þ

and

PðDjCÞ ¼ 1� PðDT ;CTÞ ð5Þ

Eqs. (4) and (5) can be calculated by joint probabilities over the
Bayesian networks. Joint probability queries can be answered in
Bayesian networks. In our work, we pay less attention to networks
with a large tree-width. The complexity of exact inference algo-
rithm – junction tree algorithm – is exponential to the tree-width
of the networks, which is acceptable. In our implementation, we
use junction tree algorithm [9] to do the task.

3.5. Structure learning

Structure learning is a specific type of knowledge discovery that
learns a dependency structure, being able to give promising
answers to queries ‘‘what is the probability of a Bayesian subsump-
tion/disjoint axiom?’’. So the task of structure learning in BelNet+ is
to find a BelNet+

B that makes the data the most probable. This is
similar to the task of structure learning in Bayesian networks
except that the structure we learn needs to be a BelNet+. In other
words, the links in the structure need to be corresponded to sub-
sumption or disjoint relationships. If we denote the candidate
structures in a domain as Bþ, and that of the same domain in
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Bayesian networks as B, we have Bþ #B. Thus, we can share the
structure scores from that in Bayesian networks structure learning.

Structure Score. Choices for score functions used in Bayesian
network structure learning include maximum likelihood, Bayesian
score that is based on a Bayesian perspective encoding uncertain-
ties both over structure and over parameters, and extensions of
Bayesian score. Likelihood measurement suffers from overfitting,
and prefers more complex networks to simpler ones, which is
not always the preference in practice. For handling over-fitting
problems and more efficient numerical computation of the Bayes-
ian score [15], we will adopt the decomposable Bayesian score
with Dirichlet priors as our score function.

Algorithm 2. Structure learning in BelNet+
Structure Search. We knew from literature that ‘‘Given a
dataset D and a decomposable score function, finding
G	 ¼ arg maxG2Gd

scoreðG : DÞ is NP-hard.’’ [15]. The BelNet+ struc-
ture would additionally have the property that the links corre-
spond to subsumption or disjoint relationships. Thus, instead of
aiming for an algorithm that will always find the highest-scoring
network, we resort to heuristic algorithms that attempt to find
the best network but are not guaranteed to do so. The algorithm
adopted here is a modified version of the structure learning algo-
rithm in Bayesian networks [23]. The Bayesian network structure
learning algorithm can only recover the structure that is equivalent
in terms of representing the independencies among the nodes to
the real underlying structure [15]. In this paper, the preference is
a single structure that is concise and can directly be used to extract
axioms. To achieve this goal, we incorporate this preference in
Algorithm 2.

Roughly speaking, the structure learning algorithm starts from
an initial structure (with nodes, and the conditional links between
nodes), and iteratively tries to find the best operation (in terms of
adding/deleting/reversing) that can be carried out from the current
structure, unlike in [33]. This process iterates until no better struc-
ture can be found, or the step reaches the maximum threshold (c.f.
Algorithm 2). Two thresholds are involved in this procedure. One
controls the maximum number of parent nodes a node can have,
the other controls the maximum number of iterations for this
procedure to exit.
Selection criteria. After an operation is selected by the score
function, in order to meet the demand of BelNet+, to be specific,
preference is given to structures whose links signify the special
dependencies ‘‘subsumption’’ and ‘‘disjointness’’, different from
[33]. The operations not satisfying the requirements are filtered
out by the selection criteria.

We denote the candidate operation as op, where ophead is the
node to which the link points, and optail represents the node from
which the link starts. Further, we denote the count of
instances belonging to concepts optail and ophead as M½ophead; optail�,
the count of instances belonging to concept ophead as M½ophead�,
similar for M½optail�. Then, operation op will be selected iff
either M½ophead; optail� ¼ M½optail� and M½optail� > thresholdparent or
M½ophead; optail� ¼ 0 and M½ophead�– 0 and M½optail�– 0. In this paper,
the thresholdparent is 0.

It happens that some concepts in the ontology contain a large
number of missing values. Those corresponding nodes are out of
consideration in the post-processing step. The rest of nodes are
called informative nodes.

Algorithm 3 shows how the post-processing step works. In
Algorithm 3, besides Bayesian disjoint axioms, which are consid-
ered in [33] in a smaller scale, the candidate Bayesian subsumption
axioms are also generated by inference over B, and the results of
the inference can be considered as weights of the candidates. In
practice, in order to select the axioms from the weighted results,
we use thresholds. Since the Bayesian network constructed can
behave differently for Bayesian subsumption axioms and Bayesian
disjoint axioms, we use thresholdsubsumption and thresholddisjoint

respectively for the selection.
Although the results from Algorithm 3 look quite simple, such

as relations between pair of concepts generated from pre-process-
ing, these are however the basis for more complex axioms, as
shown below.

� If there is more than one Bayesian subsumption axiom
fD1jC;D2jC; . . . ;DnjCg, generate C v ui2f1;...;ngDi.
� If there is more than one Bayesian subsumption axiom
fDjC1;DjC2; . . . ;DjCng, generate ti2f1;...;ngCi v D.
� Bayesian disjoint axioms correspond to disjoint axioms in

ontologies.
4. TBox learning as inference

After describing the details of BelNet+, we will introduce how
the TBox can be learned with BelNet+. The learning approach
includes three main steps:

(1) Pre-processing. In pre-processing, given an ontology O, for
each C 2 NþC and r 2 NR, pre-processing creates nodes corre-
sponding to C and 9r:>. Conditional links are added among
the nodes. Furthermore, ABox materialization will be carried
out on each node generated in this step. We denote the
ABox materialized ontology as O

þ. The result of this step is
denoted by B0.

(2) Learning Bayesian network. Structure learning (c.f. Sec-
tion 3.5) will be carried out on B0 over Oþ. After that, param-
eter learning will fill the CPTs attached with the structure
learned. We denote the result of this step as B.

(3) Post-processing. Having a Bayesian network learned,
TBox axioms are extracted through inference over B. See
below for details.



Table 2
The extended confusion matrix. T and F are short for True and False. P; N and U are
short for Positive, Negative and Unknown respectively. FPðNÞ is short for False Positives
from Negatives (set of positive results which should be labeled as negatives).

PC NC UC

P TP FP(N) FP(U)
N FN(P) TN FN(U)
U FU(P) FU(N) TU
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Algorithm 3. Post-processing in BelNet+

5. A novel evaluation framework

The set of axioms learned by TBox learning systems can be
viewed as an application of information retrieval on a knowledge
base. From this perspective, the performance of a TBox learning
system can either be judged by human experts or be evaluated
by traditional IR measures. Using traditional IR measures, an axiom
learned is correct if it can be entailed by the gold standard ontol-
ogy. However, both methodologies suffer from disadvantages:
human experts are subjective to some extent, and there are various
representations for a domain, consequently, the evaluations by IR
measures are sensitive to gold standard ontologies.

From another perspective, the TBox in an ontology assists clas-
sifying instances with DL reasoners. Although it is impossible to
explicitly make all true statements of the interested domain, it is
still workable to get as many facts as possible through reasoning.
In this way, the TBox can be viewed as a set of classification ‘‘rules’’
to classify the instances. Based on this observation, we extend met-
rics used in classification.

Below we firstly introduce the notations we will use in the
evaluation framework.

Notations. We denote the original ontology (the input of ontol-
ogy learners) as O, and the output as O

0. Furthermore, the gold
standard ontology is denoted by O

S.

Definition 4 (Gold standard ontology). An ontology OS is called a
gold standard ontology for O, if OS satisfies:

� O
S is both consistent and coherent.

� O
S entails all correct (with respect to the knowledge of domain

experts) ABox statements with the vocabulary of its ontology
counterpart O.
Table 3
An example of gold standard ontology and test ontologies. All ontologies have the
same set of concept names: Female, Male, Mother, Daughter, and Child.

O
S O1 O2

TBox Female uMale v? Mother v Female Mother v Female
Daughter v Female Daughter v Female
Female uMale v? Female uMale v?

Child v Daughter

ABox Female(a),
Female(b)

Mother(a),
Daughter(b)

Mother(a),
Daughter(b)

Male(c), Child(d) Male(c), Child(d) Male(c), Child(d)
Property 1. The gold standard ontology O
S of an ontology O can be

non-unique.

Property 1 is straight forward. A gold standard ontology for O

can be the one with ABox knowledge not explicitly stated but
inferred. In the extreme case, another gold standard ontology for
O may explicitly state all ABox statements.

If we view the TBox as a set of classification rules, the result of
classifying an instance a towards a concept A with respect to an
ontology O is

f ða;A;OÞ ¼
positive O � AðaÞ
negative O � :AðaÞ
unknown otherwise

8><
>:
In order to incorporate the unknown values in the classification
results, we extend the traditional confusion matrix used in the
evaluation of binary classification [10] by considering ‘‘unknown’’
as a specific classification result (c.f. Table 2).

With this extension in hand, several classical metrics used by
classification problems are (extended) as follows:

AccuracyðUÞ ¼ TP þ TN þw � TU
PC þ NC þw � UC

ErrorRateðUÞ ¼ 1� AccuracyðUÞ

PrecisionðUÞ ¼ TP
TP þ FPðNÞ þw � FPðUÞ

RecallðUÞ ¼ TP
TP þ FNðPÞ þw � FUðPÞ

F �MeasureðUÞ ¼ ð1þ bÞ2 � RecallðUÞ � PrecisionðUÞ
b2 � RecallðUÞ þ PrecisionðUÞ

TP rate ¼ TP
PC

FPðNÞ rateðUÞ ¼ FPðNÞ
NC

FP rateðUÞ ¼ FPðUÞ þ FPðNÞ
NC

Traditional Accuracy, ErrorRate, Precision, Recall and F-Measure
are calculated from the extended metrics when w is 0. Traditional
ROC graph is formed by plotting TP rate over FPðNÞ rateðUÞ.

We demonstrate the necessity of this confusion matrix exten-
sion by Example 4:

Example 4. Table 3 shows 3 ontologies. The first one is the gold
standard ontology, O1 and O2 are two ontologies to be evaluated. If
we calculate the accuracy for classifying concept Female, then
using the traditional confusion matrix,

AccuracyðO1; Female;OSÞ ¼ AccuracyðO2; Female;OSÞ ¼ 2þ 1
4

but apparently O2 contains one incorrect subsumption axiom. In the
new framework, if w ¼ 1, then
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Fig. 4. ROC (Receiver Operating Characteristics) curves for each dataset, varying the size of the dataset (10–100%). AUC is short for ‘‘Area Under ROC Curve’’.

1 https: / /g i thu b.c om/fresheye/belnet /blob/master/onto logy/ family-
enchmark_rich_background.owl.
2 http://www.semanticbible.com.
3 http://swat.cse.lehigh.edu/projects/lubm/.
4 http://kaon2.semanticweb.org.
5 https://github.com/fresheye/belnet/blob/master/ontology/.
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AccuracyðO1; Female;OSÞ ¼ 2þ 1þ 1
4

AccuracyðO2; Female;OSÞ ¼ 2þ 1
4

The above measures are used in binary classification evalua-
tions. When evaluating multi-class problem, we simply use an
average (weighted) of the above measures. Suppose the impor-
tance of the concepts are ranked with weights w1; . . . ;wn, then
the average (weighted) value of a specific measure is

Pn
i¼1wi �MeasureðAiÞPn

i¼1wi

where Measure can be replaced by any of the (extended) metrics
listed above. Ai denotes the i-th concept.

Property 2. The (extended) metrics listed above are the same in all
gold standard ontologies OS.

Property 2 holds because the (extended) metrics are calculated
by the extended confusion matrix (Table 2), and according to the
definition of gold standard ontologies, the confusion matrix is the
same in all gold standard ontologies.

Property 2 indicates the stability of a gold standard ontology. In
other words, the variations in gold standard ontologies have no
influence on the evaluation results.

6. Experiments

We have implemented a prototype of BelNet+ with the
TBox learning algorithm in Java and Scala. We designed and carried
out the experiments to highlight the effect of incompleteness on
learning methods. In this section, we evaluate the performance of
the proposed learning method focusing on answering the following
three questions: (1) How promising is the inference in BelNet+? (2)
How are the performance of the four approaches, namely DLLear-
ner, Goldminer, BelNet, and BelNet+, under the existence of incom-
pleteness? (3) Will the amount of incompleteness be decreased
with TBox learning?
6.1. Experimental setup

6.1.1. Dataset
The datasets used in the experiments include: Family,1 Seman-

tic Bible (NTN),2 LUBM,3 and Wine.4 We manually constructed gold
standard ontologies for the datasets.5

In order to quantify the degree of incompleteness of an ontology
O, we denote incompleteness by the percentage of unknown
answers to all possible queries in the form ‘‘Is individual a an
instance of concept A?’’.

To be specific, the incompleteness of an ontology O is quantified
by

ff ða;A;OÞjf ða;A;OÞ is unknowng
jff ða;A;OÞgj

where a 2 NI and A 2 NC .
The relevant statistics of the datasets and the corresponding

gold standard ontologies are shown in Table 5, in which we calcu-
late the number of named concepts, object properties, number of
subClassOf, equivalentClass, disjointWith axioms, number of indi-
viduals, the DL expressibility, and the incompleteness of the corre-
sponding ontologies. As is shown in the table, semantic bible,
LUBM and Wine contain more incompleteness than that in Family.

It is worth noticing that the DL expressibility of the ontologies
chosen is not restricted to certain DL languages. In our approach,
all concept expressions in the original ontology are treated as
concepts.

To demonstrate the capability of TBox learners in handling
incompleteness, we create subontologies of the original ontologies
with different levels of incompleteness. We partition the ABox into
10 parts. Then we randomly select one of them, and add it to the
TBox as the first subontology. By randomly selecting and adding
b

https://github.com/fresheye/belnet/blob/master/ontology/family-benchmark_rich_background.owl
https://github.com/fresheye/belnet/blob/master/ontology/family-benchmark_rich_background.owl
http://www.semanticbible.com
http://swat.cse.lehigh.edu/projects/lubm/
http://kaon2.semanticweb.org
http://https://github.com/fresheye/belnet/blob/master/ontology/
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one part to the existing largest subontology each time, we finally
get 10 subontologies. This procedure will be carried out 10 times,
each of which with a different initial start subontology. In order
to clearly demonstrate the performance, the result ontologies only
contain axioms learned.

6.1.2. Default values and thresholds
Goldminer consists of 4 tunable parameters, namely support

and confidence in learning subsumptions and disjointness sepa-
rately. We tried parameters in the scope of ½0� 1� for Goldminer,
and finally we chose the support threshold to be 0, and confidence
threshold to be 0.9 for learning subsumptions, and 0.1 (support),
0.8 (confidence) for learning disjointness, which is also the setting
recommended in [5], in order to get a higher F-measure.

In BelNet+, we tried different combinations of maximum num-
ber of parents and maximum number of iterations. We set 5 as
the maximum number of parents and 100 as the maximum num-
ber of iterations, because the results are almost stable with these
settings. In addition, we only learn axioms among the concepts
containing at least 10% of individuals. The corresponding concepts
for informative nodes contain at least one individual.

To set parameters thresholddisjoint and thresholdsubsumption, we
draw the ROC (Receiver Operating Characteristic) curves for each
dataset (c.f. Fig. 4). An axiom is true if it can be entailed by the gold
standard ontology, and false if not. We selected the thresholds by
setting FPR (False Positive Rate) <0.1 and TPR (True Positive Rate)
>0.7. The thresholds selected are shown in Table 4.

6.2. Experimental results

6.2.1. Performance of inference
The first experiment is to demonstrate the effectiveness of the

inference in BelNet+. For each of the four datasets, we performed
the experiments by conducting two kinds of inference, namely
inference for probabilities of Bayesian subsumption axioms and
Bayesian disjoint axioms, in the B learned.
Table 4
The thresholds & AUC of each partition per dataset (td: thresholddisjoint, AUCd: AUCdisjoint, ts:
and TPR > 0:7 are not available, we relax the constraint of FPR by 0.1.

% Family NTN

td AUCd ts AUCs td AUCd ts AUCs

10 0.9900 0.8044 0.4082 0.9126 0.9982 0.9128 0.8670 0.9931
20 0.9900 0.9348 0.3729 0.9902 0.9976 0.8790 0.6053 0.9886
30 0.9935 0.9756 0.8869 0.9995 0.9982 0.8834 0.3630 0.9872
40 0.9945 0.9899 0.9263 0.9995 0.9980 0.9020 0.6444 1.0000
50 0.9963 0.9981 0.9486 1.0000 0.9982 0.9249 0.7477 0.9999
60 0.9966 0.9992 0.9581 1.0000 0.9991 0.9589 0.8311 0.9996
70 0.9961 0.9997 0.9595 1.0000 0.9997 0.9538 0.8154 0.9987
80 0.9961 0.9998 0.9589 1.0000 0.9994 0.9381 0.3417 0.9945
90 0.9956 1.0000 0.9549 1.0000 0.9987 0.9650 0.6390 0.9998

100 0.9913 1.0000 0.9569 1.0000 0.9972 0.9748 0.9550 1.0000

Table 5
Statistics of the datasets for evaluation. The dataset name end with 0s is the gold standard

Ontology # concepts # object properties # v/�/?

Family 19 4 27/0/0
Family0 19 4 27/17/1

Semantic Bible 49 29 51/0/5
Semantic Bible0 49 29 52/6/34

LUBM 43 25 36/6/0
LUBM0 43 25 36/6/52

Wine 142 13 126/61/
Wine0 142 13 186/61/
Quality of Inference. We consider the inference results as the
output of a binary classifier. By consulting the gold standard ontol-
ogies O

S, the correctness of the corresponding axioms can be
calculated.

Suppose the ontology learned is O, precision and recall are calcu-
lated as follows:

PrecisionðOS;O0Þ ¼ jfaja 2 O
0 and O

S � agj
jfaja 2 O

0gj

RecallðOS;O0Þ ¼ jfaja 2 O
S and O

0 � agj
jfaja 2 O

Sgj

where a is a subsumption or disjointness axiom. F-measure is the
harmonic mean of precision and recall. In Fig. 4, we report the qual-
ity of the inference by drawing the ROC curves on each partition of
the four datasets. We find that:

� The inference of Bayesian subsumption axioms obtain better
results than that of Bayesian disjoint axioms. As we can find
from Section 3.7, the probability of a Bayesian subsumption
axiom is a normalized measure. However, the probabilities of
Bayesian disjoint axioms depend on probability queries like
PðCT ;DTÞ. On semantic web, the number of individuals belong-
ing to a pair of concepts is not large enough, which deviates
the results.
� The AUCs, a.k.a. the probability that inference as a classifier

ranks higher for correct axioms than incorrect axioms, in the
figure are quite high. Thus, the effectiveness of inference is
confirmed.
� For both subsumption axioms and disjointness axioms, the per-

formance of inference gets better with the size of datasets
growing.
� After the thresholds are selected, we compare the precision,

recall, and F-measure of the axioms learned by the four
approaches. As shown in Table 6, BelNet+ outperforms the other
three approaches in terms of F-measure. Worth noticing is that
thresholdsubsumption, AUCs: AUCsubsumption). If the thresholds under constraint FPR < 0:1

LUBM Wine

td AUCd ts AUCs td AUCd ts AUCs

0.9833 0.9210 0.8657 1.0000 0.9811 0.9210 0.9349 1.0000
0.9861 0.9374 0.9176 1.0000 0.9902 0.9374 0.9562 1.0000
0.9903 0.9282 0.9198 1.0000 0.9919 0.9282 0.9643 1.0000
0.9805 0.9555 0.9353 1.0000 0.9936 0.9555 0.9848 1.0000
0.9866 0.9542 0.9277 1.0000 0.9902 0.9542 0.9873 1.0000
0.9728 0.9509 0.9435 1.0000 0.9880 0.9509 0.9796 1.0000
0.9672 0.9561 0.9582 1.0000 0.9879 0.9561 0.9814 1.0000
0.9821 0.9650 0.9671 1.0000 0.9904 0.9650 0.9875 1.0000
0.9551 0.9591 0.9738 1.0000 0.9935 0.9591 0.9876 1.0000
0.9985 0.9459 0.9987 1.0000 0.8945 0.9459 0.8765 1.0000

dataset.

# individuals DL expressibility Incompleteness

202 AL 0.609
4 202 ALC 0.267

724 SHOINðDÞ 0.887
724 SHOINðDÞ 0.048

1555 ALEHIðDÞ 0.946
1555 SHIðDÞ 0.097

1 162 SHOIN 0.957
21 162 SHOIN 0.197



Table 6
Quality of inference for 50% and 100% of the datasets (P: Precision, R: Recall, F: F-measure, DLer: DLLearner, Gold: Goldminer, Bel: BelNet, Bel+: BelNet+). Bold values indicate the
best results in the comparisons.

% DLLearner Goldminer BelNet BelNet+ DLLearner Goldminer BelNet BelNet+

Family NTN
50 Precision 0.0778 0.5455 1.0000 1.0000 0.1875 0.5193 0.6244 0.9683

Recall 0.0074 0.9630 0.5935 0.7561 0.1512 0.7679 0.7791 0.5577
F-measure 0.0044 0.6964 0.7448 0.8611 0.1674 0.6196 0.6932 0.7077

100 Precision 0.0556 0.5175 0.8148 0.9306 0.2500 0.6179 0.6127 1.0000
Recall 0.2222 0.9259 0.4634 0.8293 0.1977 0.8571 0.7791 0.7791
F-measure 0.0889 0.6640 0.5908 0.8770 0.2208 0.7181 0.6860 0.8758

LUBM Wine
50 Precision 0.3023 0.3293 0.5347 0.8755 0.3333 0.3953 0.6700 0.4340

Recall 0.2045 0.3611 0.4412 0.3529 0.0821 0.1498 0.1164 0.2816
F-measure 0.2440 0.3445 0.4835 0.5031 0.1317 0.2172 0.1979 0.3382

100 Precision 0.2558 0.3474 0.5802 0.7147 0.0993 0.4765 0.6100 0.4998
Recall 0.3409 0.3889 0.4118 0.5294 0.2657 0.3478 0.1594 0.3382
F-measure 0.2923 0.3670 0.4817 0.6083 0.1446 0.4021 0.2528 0.4034
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the precision of BelNet+ is always the highest in all datasets,
which also confirms our expectation that BelNet+ gives promis-
ing results of queries.
� From the whole dataset (c.f. the rows in Table 6 for data parti-

tion 100%), which is the real world ontology, BelNet+ also out-
performs other learners.

6.2.2. Performance of instance classification
We now compare the performance of BelNet+ with DLLearner,

Goldminer and BelNet in our proposed evaluation framework.
Quality of Classification. In order to show the effect of

incompleteness over learners, we partition the datasets with
respect to ABox assertions. Fig. 5 illustrates the average accuracy
of classifying the instances in each dataset. Because there is no
preference as to the concepts to be classified, we set equal weights
to each concepts. We demonstrate the average accuracies on both
training sets and the whole datasets. The upper row figures show
the average accuracy on the training sets, and figures in the row
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Fig. 5. Average accuracy of instance classification for each dataset, varying the size of the
and figures in the row below show that on the whole datasets.
below are the average accuracy on the whole dataset. From these
figures, it is not hard to find:

� Although the average accuracies on training sets of BelNet+ are
not guaranteed to be the highest, they are the highest on the
whole datasets in all of the tests. It proves that BelNet+ is effec-
tive in instance classification under the existence of
incompleteness.
� The average accuracy of BelNet+ on the whole datasets goes clo-

ser to that on the training datasets. This shows that the perfor-
mance of BelNet+ gets better with the size of datasets growing,
which is the same conclusion with that in the previous sections.
� Among the four learners, BelNet behaves similarly with BelNet+

in terms of trend. This is not surprising, because BelNet+ is an
extension of BelNet.
� The average accuracies of DLLearner and Goldminer are rela-

tively low on Family dataset, which shows that the performance
of the two learners is affected more by the incompleteness in
the datasets.
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Fig. 6. Incompleteness in the ontologies learned by learners for each data partition. The straight lines in the figures indicate the incompleteness in the original datasets.
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Effectiveness of Incompleteness Reduction. Having verified
the performance of the learning approaches, in the sequel we will
evaluate the effectiveness of the learners in reducing incomplete-
ness. Fig. 6 represents the incompleteness of the ontologies learned
by the learners, where the incompleteness in the original ontolo-
gies is shown by dashed line. We find that:

� Among the four learners, the performance of DLLearner is better
when the dataset is larger.
� In all datasets, BelNet and BelNet+ successfully improve the

completeness in the original datasets.
� Compared with all other three learners, BelNet+ decreases the

most incompleteness except on dataset LUBM and Wine when
the partition size is relatively large. LUBM is a large dataset,
making CWA still causes DLLearner to get a large set of consis-
tent expressive TBox axioms, which decreases the incomplete-
ness in the dataset. On the expressive dataset Wine,
DLLearner is able to generate specific concepts when learning
concept definitions. As a result, the learned axioms are effective
in decreasing incompleteness.

7. Related work

Since we are facing an era in which semantic web data grows
very rapidly, learning TBox from ABox data has attracted lots of
attention in the past 5 years. In this section, we notice a subset of
works of ontology learning and statistical relational learning (SRL)
that (1) focus on learning TBox axioms from ABox data, or (2) SRL
models that handle DLs, or have applications in TBox learning.

Inductive Logic Programming. Inductive logic programming
(ILP) marries machine learning and data mining, whose survey
can be found in [4,3]. In particular, Jens Lehmann et al. developed
DLLearner [18,19] to learn ALC concept descriptions from ontolo-
gies based on ILP techniques, where the candidate concept descrip-
tions were generated by a downward refinement operator. After
that, in [11], they particularly focused on handling larger datasets,
such as DBpedia. TBox learning using ILP takes advantages of well
defined refinement operators, which generatively or specifically
search towards the target concept. These methods perform quite
well when the data quality is relatively high. However, when the
dataset suffers from incompleteness (or noise), these methods
would drop into local optimum descriptions for concepts due to
the incorrect ‘‘false’’ values generated by making CWA.

Association Rule Mining. As a classical data mining method for
mining relationships, association rule mining (ARM) is applied in
TBox learning problems. Johanna Völker et. al. learned EL axioms
from ontologies based on association rule mining method [28],
and in [5], this approach was further extended to learn disjointness
axioms. The prototype Goldminer was also implemented. Realizing
that learning from semantic web data suffered from a lack of neg-
ative examples when using OWA, Galárraga et al. [8] proposed a
rule mining model supporting OWA scenario by introducing a
new confidence measure in association rule mining. However,
these methods mainly use support and confidence thresholds to
export the final rules, which work unexpectedly when there is
noise or data imbalance. Besides, these methods tend to learn a
large number of irrelevant results, which put an extra burden on
end-users of ontology learning applications. In addition, associa-
tion rule mining is also applied to mine rules from dynamic ontol-
ogies for providing predictive reasoning [20,21].

Statistical Relational Learning. Koller et al. extended DL CLAS-
SIC with nodes in a BN representing probabilistic information of
the individuals in a specific class [16], and the model was called
P-CLASSIC. It is closely related to the representation in BelNet+.
However, in BelNet+, the edges correspond to the specific type of
dependency – subsumption. BLP [14] unifies definite logic pro-
grams with Bayesian networks. In BLP, ground atoms are mapped
to random variables. BelNet+ differs from BLP in that (1) the repre-
sentation languages are different; (2) concepts are modeled with
random variables; (3) schema level ontology learning is enabled.
OntoBayes [31] extends OWL with annotating RDF triples with
probabilities and dependencies. All these models have not been
applied to TBox learning. In [24], ELþþ-LL was proposed to extend
crisp ontological axioms with weights. Using ELþþ-LL, a subset of
coherent axioms can be learned from a set of weighted ELþþ axi-
oms. Besides these works, there are attempts that learn
ABox using graphical models. For example, Rajput and Haider pre-
sented a semantic annotation framework that extracts ABox data
using Bayesian networks [26]. In [29], Wang et al. proposed a data
level information integration method with the aid of ontologies.

8. Conclusion and future work

In this paper, we deal with the following issues in the context of
the semantic web: (1) in semantic web, making CWA results in
noisy data; (2) learning one axiom a time leads to incorrect results
in the existence of incompleteness.

To be specific, we propose an extension of Bayesian Description
Logic Network, called BelNet+ and correspondingly introduce a
procedure to learn TBox axioms. In order to learn schemata from
incomplete ABox, DL concept expressions correspond to probabi-
listic nodes, subsumption and disjointness relationships between
DL concept expressions are represented as links. Learning sche-
mata is transformed into structure learning and inference in Bel-
Net+, which, from the experiments, were shown to be effective
for learning from incomplete semantic data in the proposed evalu-
ation framework in terms of accuracy and the ability to reduce
incompleteness.

Additionally, in order to overcome the drawbacks of current
evaluation metrics used in TBox learning, a.k.a. subjectiveness of
domain experts and sensitiveness in the gold standard ontologies,
we propose a novel evaluation framework taking unknowns that
widely spread the semantic web into consideration. Evaluations
demonstrate the effectiveness of our approach.
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In the future, we will explore the following aspects: (1) we use
exact inference in BelNet+, which is not efficient enough for net-
works with large tree-width. We will study this issue and use
approximate methods in the future; (2) ABox materialization on
all instances costs too much for a large dataset, such as DBpedia,
we will find scalable solutions of BelNet+ on very large datasets.
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