Predicate Invention Based RDF Data Compression

Man Zhu!, Weixin Wu?, Jeff Z. Pan?, Jingyu Han', Pengfei Huang?, and Qian Liu!

1 School of Computer Science, Nanjing University of Posts and Telecommunications, China
mzhu@njupt.edu.cn
2 Department of Computing Science, University of Aberdeen, Aberdeen, UK
3 College of Electronic and Information Engineering, Nanjing University of Aeronautics and
Astronautics, China

Abstract. RDF is a data representation format for schema-free structured infor-
mation that is gaining speed in the context of semantic web, life science, and
vice versa. With the continuing proliferation of structured data, demand for RDF
compression is becoming increasingly important. In this study, we introduce a
novel lossless compression technique for RDF datasets (triples), called PIC (Pred-
icate Invention based Compression). By generating informative predicates and
constructing effective mapping to original predicates, PIC only needs to store
dramatically reduced number of triples with the newly created predicates, and
restoring the original triples efficiently using the mapping. These predicates are
automatically generated by a decomposable forward-backward procedure, which
consequently supports very fast parallel bit computation. As a semantic compres-
sion method for structured data, besides the reduction of syntactic verbosity and
data redundancy, we also invoke semantics in the RDF datasets. Experiments on
various datasets show competitive results in terms of compression ratio.

1 Introduction

The Resource Description Framework (RDF) is gaining widespread momentum and ac-
ceptance among various fields, including science, bioinformatics, business intelligence
and social networks, to mention a few [4]. For instance, Semantic-Web-style ontologies
and knowledge bases with millions of facts from DBpedia [2], Probase [10], Wikidata
[9] and Science Commons [11] are now publicly available. Studies like IDCs Digital
Universel estimate that the size of the digital universe turned 1Zb (1 trillion Gb) for
the first time in 2010, reached 1.8Zb just one year later in 2011 and will go beyond
35Z7b in 2020. Combined with the growing size of the overall Linked Open Data cloud,
with more than 30 billion triples, and of its individual datasets, with some of its hubs
e.g. DBPedia exceeding 1,2 billion triples, the need of effective RDF data compression
techniques is clear [8].

Current approaches to achieve lossless RDF document compression can be cate-
gorized into three categories, a.k.a., universal file compression techniques, RDF seri-
alization approaches, and rule based compression methods. First of all, universal file
compression techniques, such as bzip * and LZMA 3, can be applied on RDF docu-
ment. Such approaches alter the file structure of RDF documents and can significantly

*http://www.bzip.org
Shttp://www.7-zip.org/

2 Man Zhu, Weixin Wu, Jeff Z. Pan, Jingyu Han, Pengfei Huang, and Qian Liu

reduce file size [8] without reducing file content. In RDF-3X [7], all triples are sorted
lexicographically in a clustered B -tree, and all literals are replaced by ids using a map-
ping dictionary. Alternative RDF serializations, such as HDT serialization, lean graphs
[5] and K2-triples [1] can be used to reduce file size. Such techniques preserve the
structured nature of RDF documents, but they fail to utilize the semantics when com-
pressing documents. Other approaches are based on logical compression [6][8], which
can be used to reduce the number of triples in an RDF document. Our approach lies in
the third category who offers a more significant reduction.

Person | Professor | Female
Joan 1 0 1
Mike 1 1 0
Teddy 1 1 1

Fig. 1. An example of a toy RDF dataset.

In this paper, we present PIC, a predicate invention based compression method for
RDF data. PIC compresses RDF triples by inventing new informative predicates instead
of isolated predicates. As a result, the amount of necessary triples (constructed with the
newly created predicates) to losslessly decompress the original dataset is dramatically
reduced. The newly invented predicates are generated by a forward-backward procedure
where very fast parallel bit computation is supported. We also define a map function to
locate original predicates and restore the original dataset. To speed-up compression, we
propose to use divide and conquer strategy to divide large datasets into smaller ones.
Example. To intuitively illustrate the idea, let us consider Fig. 1 for an example. Fig. 1
depicts a toy RDF dataset containing 3 predicates, a.k.a. Person, Professor, and Female,
and 3 instances (Joan, Mike, and Teddy). The element in the table is 1 iff the instance
on its corresponding row is of the type (predicate) on the column, such as Person(Joan).
There are 7 triples in this dataset, which corresponds to the number of 1s in the table. In
this example, instance Joan belongs to both Person and Female, Mike belongs to both
Person and Professor, and Teddy belongs to all predicates. By PIC, 3 integer labels are
automatically generated after compression, whose corresponding DL (description logic,
the logic foundation of semantic web) expressions are PersonMFemale (a concept of the
intersection of Person and Female), PersonlProfessor, PersonFemalel Professor. In
order to restore the original dataset, only PersonrFemalelProfessor(Teddy), Personr1
Female(Mike), and PersonlProfessor(Joan) are needed. PIC only saves the 3 integers
and the indexes of the literal predicates and instances. In decompression, a mapping
algorithm finds the original indexes according to these integer labels.

2 Preliminary

Resource Description Framework (RDF) is the most widely used data interchange for-
mat on the Semantic Web. Given a set of URI references R, a set of literals £ and a set

Predicate Invention Based RDF Data Compression 3

of blank nodes 3, an RDF statement is a triple < s, p,0 > on (RUB) xR x (RULUB).
, where s, p, o are the subject, predicate and object of the triple, respectively. An RDF
document is a set of triples. An RDF document can be transformed into a 0-1 matrix
M by corresponding rows to subjects, columns to predicate and object combinations,
and set M;; to 1 iff < s,p,0 > belongs to the RDF document, where s is the subject
that corresponds to the i-th row, and p — o combination (can roughly be understood as a
predicate Ip.{o}) corresponds to the j-th column. In this paper, we consider the matrix
representation of RDF documents.

3 Approach

PIC generates predicates so that at most one triple is necessary for each subject, and
by an effective mapping function the original dataset can be losslessly restored. In this
section, we firstly introduce the compression and decompression algorithm, and then
we discuss some speed-up techniques of PIC.

3.1 Compression

The compression algorithm is consist of a forward and a backward procedure as shown
in Algorithm 1. The input of Algorithm 1 is the data matrix representation (c.f. Section
2) of the RDF document to be compressed. The output contains all necessary triples to
be stored. In the forward procedure, we iteratively conjunct columns in bits, and cache
the matrices D? calculated in each outer iteration. The j-th column is conjunctions of
columns ¢1, ¢a, . . . , ¢; (c.f. line 3 of Algorithm 1). In D?, an element D;k is 1 when all
elements are 1 on some set of columns of the j-th row in the original RDF data matrix,
whose indexes are mapped from £ by intoComp function:

intoComp. Given k the column index in D?, and 4 the number of columns in the column
conjunction, we iterate to find the index of columns {1, ca, ...} in D%

Cl <k-M<C_,
M=M+(Cit

Ci—1

where c;_; is the index found in the previous iteration. j initially is set to ¢, and is
decreased by 1 in each iteration. M is set to 0 in the first iteration. When k — M = 0,
the indexes of the rest columns are set from 0, and added by 1 each time, until all
columns have been found. For example, intoComp(0, 2) = {0,1}.

The backward procedure iteratively updates previously generated matrices D?. The
1 elements D;Ik in D' mean that there are triples relate to subject s; whose predicate
and object combinations correspond to the set mapped from % by intoComp. Since
intoComp deals with the mapping issues, we only need to store the following data in
the compressed dataset:

— 4: the matrix superscript, which indicates the number of columns involved in the
conjunction;

4 Man Zhu, Weixin Wu, Jeff Z. Pan, Jingyu Han, Pengfei Huang, and Qian Liu

— j: the row index which corresponds to the index in subjects list;
— k: the column index, together with i, encodes a set of predicate and object combi-
nations.

Fig. 2 depicts an example of Algorithm 1. During forward, the second and third ma-
trix contains values for conjunctions of 2 columns and 3 columns. Because there are 3
columns in the original matrix, there is no need to find D*. In the right figure, we can
find a 1 in the first matrix, namely D3, which means that there are 3 triples relate to
the third subject, so a triple < 3,2,0 > is needed. Meanwhile, since the 1s on the 3rd
row have been saved, there is no need to consider them in the former matrices. So D?
is updated because intoComp(0, 3) returns {0, 1,2}. In the same way, < 2,0,1 > and
< 2,1,0 > are also stored. In the compressed dataset, only 3 triples are needed.

Algorithm 1: PIC Compression Algorithm
Input : data matrix D
Output: list {< ¢, 7,k >}
/+ forward procedure */
for i from 2 to N¢ do
for j from 010 Cy;_, — 1 do
‘ D,ij = D..; AD.cy A... A D.c;, where intoComp(j,7) = {c1,c2...,¢:};
if D* all zero then
‘ break;
initialize empty list L;
/* backward procedure %/
7 foreach D’ do
s | D" =D}
9 for each D;ng # 0, set D;Ik = 0 where k € intoComp(n, i);
10 add < 4, j,k > toL, where Dﬁ/k #0;
11 return L;

A N B W N =

3.2 Decompression

We briefly introduce the decompression procedure here, c.f. Algorithm 2. We take a list
< 1, J,k > as input. Each triple decompresses to a set of triples by locating their indexes
through intoComp function. R is the set of predicate-object combinations, and Z; is the
i-th subject. Suppose R; is the combination of p; and oy, then RDF triple < Z;, a, ?; >
is transformed to < Z;, p¢, o >.

3.3 Speeding-up Strategy

In order to evidently reduce the column conjunctions, we adopt a partition and merge
procedure. The objective of this procedure is to divide the RDF data matrix into a set of
independent partitions, where the number of columns in each partition is decreased.

Predicate Invention Based RDF Data Compression 5

; (n)—Aa)
o) (@@

>

®
85>
&)
©

101 010 0 0 010 000
110 100 0 100 000
111 111 1 1 000 000

Fig. 2. An example of compression. Left and right correspond to forward and backward procedure
respectively. Values of node in matrix are shown in the same color as the node.

Algorithm 2: PIC Decompression Algorithm
Input :list {< 4,5,k >}
Output: D’

1 foreach < 4,5,k >€ {< i,5,k >} do

2 R = {R;}, where j € intoComp(k, j);

3 store RDF triple < Z;, a, R; > , where R; € R;

As depicted in figure 3, given an RDF data matrix, affixed with a first row indicating
the original index of the property column, this procedure reorder its columns and recur-
sively divide the matrix horizontally in the middle, until the size of the resulted matrices
are small enough. The column reordering scheme is that first part are the columns con-
taining both 1s and Os in upper and blow, the second part containing 1s only in upper,
and the third part containing 1s only in below. In the end, the repeated columns are
merged, the repeat column indexes are recorded. The smaller matrix, the repeat column
indexes, and a path string indicating its location is called a partition. For example, the
path string of the left partition is “0” because the smaller matrix is the upper part of the
previous one, and the right partition is “1” because it is the lower part.

When compressing the data partitions, the decompression slightly differs. Assume
the matrix in the partition is M, M — 1 is the matrix whose path string equals to M’s
eliminating the last character, last(M) is short for the last character of M’s path string,
and rows is the number of rows in the original matrix. Then the first row index of M is:

loc(M —1) if last(M) is 0

loc(M) = {loc(M — 1) + [offset(M — 1)] if last(M/) is 1

where
[Loffset(M — 1)] if last(M) is O

offset(M) = { | Loffset(M — 1) if last(M) is 1

6 Man Zhu, Weixin Wu, Jeff Z. Pan, Jingyu Han, Pengfei Huang, and Qian Liu

0231 021
0123 111? — 11(1]
1011 00 0

L1100 =
Lo 012 01
1000 111 | — | 11

100 10

Fig. 3. An example of data partition.

and offset(*“””) = #rows, loc(“”’) = 0. Besides, here are some other speed-up strategies
for compression:

— In some D¢, if the number of columns containing 1 is less than ¢ + 1, the forward
procedure can pre-terminate.

— In some D¢, if the numbers in a column are all 0, this column can be dropped out
of consideration in the following-up conjunction calculations.

— We use different stop criterion in finding matrix partitions, since the calculations of
bit conjunction are pretty cheap, there is no need to have trivial matrices.

4 Preliminary Evaluation

This section shows preliminary evaluations of the compression performed by our sys-
tem. Our experiment is conducted on several linked open datasets of varying sizes (cf
Tab. 1). The smallest dataset consists of 130K triples while the largest dataset consists
of one million triples.

Table 1. Dataset statistics (the first 3 columns) and compression ratio v (the last 2 columns).
LOG stands for the logical linked data compression approach [6].

Dataset #triples(K) #predicate-object size(M) #triples (PIC) #triples (LOG) ~(PIC) v(LOG)

Dog Food 130 77,064 20.7 12.7K 106.6K 12.3% 82.0%
CN 2012 137 41,770 17.9 14.6K 58.9K 10.7% 43.0%
ArchiveHub 431 204,360 71.7 514K 306.0K 12.0% 71.0%
Jamendo 1047 485,443 143.0 335.9K 858.5K 32.1% 82.0%

The comparisons are mainly based on two metrics: compression ratio and running
time. The compression ratio, «y is defined as the ratio of the number of triples in com-
pressed dataset to that in uncompressed dataset [6]. Besides the compression ratio, we
also measure time it takes to perform full compression and full decompression.

Now we firstly discuss the stop criterion of the data partition algorithm. Then, we
report the experimental results in terms of compression ratio and running time compared

Predicate Invention Based RDF Data Compression 7

Table 2. Compressed size for various RDF datasets. LOG stands for the logical linked data com-
pression approach [6].

Dataset size (PIC-head) size (PIC-triples) size (PIC+bzip2) size (LOG+bzip2)

Dog Food 4.4M 649K 1330.0K 1492K
CN 2012 1.IM 492K 226.6K 296K
ArchiveHub 11.7MB 1.81MB 2.3MB 1.9MB

Jamendo 26.7M 4.86M 5.6MB 5.6MB

to the logical linked data compression approach [6]. We compress the resulting datasets
(in N-Triples format) by bzip2, which is one of the best universal compressors [3].

To find data partitions, we use 2 thresholds. One threshold controls the maximum
number of rows each partition has, and the other dominates the number of columns of
each partition. Specifically, on these 4 datasets, we first iterate to find partitions of no
more than 400 rows. Then for each dataset, different threshold of columns are adopted
according to the running time. The thresholds are 25, 30, 27, and 25 on DogFood, CN
2012, ArchiveHub, and Jamendo respectively.

From Tab. 2 we can find that: 1) the data reduction of PIC is significant, which is due
to the discovery of expressive predicates; 2) PIC gets better results on DogFood and CN
2012, but not on ArchiveHub. In ArchiveHub, there are lots of isolated triples, which
are not connected with others. However, the benefit of PIC is shrinking multiple triples
related to the same subject into at most one triple, which cannot be done on ArchiveHub
and Jamendo; 3) it is interesting that on DogFood and CN 2012, the numbers of triples
after compression by LOG and PIC show reverse tendency. LOG needs significantly
less triples for CN 2012 compared to DogFood, but PIC is the opposite. As mentioned
above, PIC is not good at handle single isolated triples, which can be handled by LOG
using subsumption axioms. 4) the size of head in PIC is large because we only draw
namespaces in RDF data instead of striving to compress texts by lexical methods, since
this is not our concern at the moment.

5000

4000

3000

Seconds

2000

1000

DogFood CN ArchiveHub Jamendo

Compression Decompression

Fig. 4. Running time of compression and decompression by PIC.

8 Man Zhu, Weixin Wu, Jeff Z. Pan, Jingyu Han, Pengfei Huang, and Qian Liu

Fig. 4 shows the comparison between total time required for compression and the
full decompression. In general, the compression time increases with the increase in
triple size. However, the compression time is influenced by number of predicate-object
triples, which is shown by the compression time of Dog Food and CN 2012. Decom-
pression is faster by several order of magnitudes compared to the compression.

5 Discussion

This paper has presented PIC, a predicate invention based RDF compression method.
As our experiments have shown, PIC outperforms other methods on dense datasets in
terms of compression ratio and compressed size. These datasets contain multiple triples
with a same subject, which are transformed into one triple at most by PIC. As a result,
we can find that the data reduction is significant from experimental results. For other
datasets having sparse data, PIC is not effective enough. In terms of running time, PIC
is efficient during decompression, but is still not efficient enough for compression.

Our future work includes two parts: 1) PIC needs further improvements on the run-
ning time of compression; 2) We will find more intelligent way to partition the RDF
data matrix, and use PIC to compress dense partitions.

Acknowledgement.This work is partially funded by the National Science Founda-
tion of China under grant 61602260 and 61702279.

References

1. S. Alvarez Garcia, N. R. Brisaboa, J. D. Ferndndez, and M. A. Martinez-Prieto. Compressed
k2-triples for full-in-memory RDF engines. In AMCIS, 2011.

2. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A nucleus
for a web of open data. In Proc. ISWC’07/ASWC’07, pages 722—735, 2007.

3. J. D. Fernidndez, C. Gutiérrez, and M. A. Martinez-Prieto. RDF compression: basic ap-
proaches. In Proc. WWW’10, pages 1091-1092, 2010.

4. M. Hammoud, D. A. Rabbou, R. Nouri, S. Beheshti, and S. Sakr. DREAM.: distributed RDF
engine with adaptive query planner and minimal communication. In Proc. VLDB’15, pages
654-665, 2015.

5. L. Iannone, I. Palmisano, and D. Redavid. Optimizing RDF storage removing redundancies:
An algorithm. In Innovations in Applied Artificial Intelligence, volume 3533, pages 732-742.
2005.

6. A. K. Joshi, P. Hitzler, and G. Dong. Logical linked data compression. In Proc. ESWC’13,
pages 170-184, 2013.

7. T.Neumann and G. Weikum. RDF-3X: A RISC-style engine for RDF. Proc. VLDB Endow.,
1(1):647-659, 2008.

8. J. Z. Pan, J. M. Gémez-Pérez, Y. Ren, H. Wu, H. Wang, and M. Zhu. Graph pattern based
RDF data compression. In Proc. JIST’ 14, pages 239-256, 2014.

9. D. Vrandeci¢. Wikidata: A new platform for collaborative data collection. In Proc. WWW’12,
pages 1063-1064, 2012.

10. W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A probabilistic taxonomy for text under-
standing. In Proc. SIGMOD’12, pages 481-492, 2012.

11. P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu. TripleBit: a fast and compact system
for large scale RDF data. PVLDB, 6(7):517-528, 2013.

