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ABSTRACT
Zero-shot Learning (ZSL), which aims to predict for those classes
that have never appeared in the training data, has arisen hot re-
search interests. The key of implementing ZSL is to leverage the
prior knowledge of classes which builds the semantic relationship
between classes and enables the transfer of the learned models (e.g.,
features) from training classes (i.e., seen classes) to unseen classes.
However, the priors adopted by the existing methods are relatively
limited with incomplete semantics. In this paper, we explore richer
and more competitive prior knowledge to model the inter-class
relationship for ZSL via ontology-based knowledge representation
and semantic embedding. Meanwhile, to address the data imbalance
between seen classes and unseen classes, we developed a generative
ZSL framework with Generative Adversarial Networks (GANs).

Our main findings include: (i) an ontology-enhanced ZSL frame-
work that can be applied to different domains, such as image clas-
sification (IMGC) and knowledge graph completion (KGC); (ii) a
comprehensive evaluation with multiple zero-shot datasets from
different domains, where our method often achieves better per-
formance than the state-of-the-art models. In particular, on four
representative ZSL baselines of IMGC, the ontology-based class se-
mantics outperform the previous priors e.g., the word embeddings
of classes by an average of 12.4 accuracy points in the standard ZSL
across two example datasets (see Figure 4).
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1 INTRODUCTION
Machine learning often operates on a closed world assumption:
it trains the model with a number of labeled samples and makes
predictions with classes that have appeared in the training stage
(i.e., seen classes). For those newly emerging classes, hundreds
of samples are needed to be collected and labeled. However, it
is impractical to always annotate enough samples and retrain the
model for all the emerging classes. Targeting such a limitation, Zero-
shot Learning (ZSL) was proposed to handle these novel classes
without seeing their training samples (i.e., unseen classes). Over
the past few years, ZSL has been introduced in a wide range of
machine learning tasks, such as image classification [11, 24, 25, 46],
relation extraction [26] and knowledge graph completion [34, 48].

Inspired by the humans’ abilities of recognizing new concepts
only from their semantic descriptions and previous recognition
experience, ZSL aims to develop models trained on data of seen
classes and class semantic descriptions to make predictions on un-
seen classes. These descriptions, also known as prior knowledge,
provide a prior about the semantic relationships between seen and
unseen classes so that the model parameters (e.g., features) learned
from seen classes can be transferred to unseen classes. The major-
ity of ZSL methods [11, 31, 34, 53] consider textual descriptions as
the priors. For example, [11, 31] project images into the semantic
embedding space pre-trained on textual corpora to classify unseen
images. [34] generates relation embeddings for unseen relations
from their text descriptions for embedding-based knowledge graph
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Feature Transfer

Horses are ungulate mammals. A horse's 
hearing is good, it has large ear and can rotate  
Zebras are white animals with black stripes, 
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Attributes of Horse
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(b) Zero-shot Knowledge Graph Completion with Newly-added Relations

Figure 1: Comparison of previously used prior knowledge [Left] and our proposed ontological schemas [Right] in zero-shot
image classification and zero-shot knowledge graph completion tasks.

completion tasks. Attribute descriptions [24, 25, 27] and label tax-
onomy [22, 44] are also widely adopted to model the semantic
relationships between classes for zero-shot image classification.

However, all of these priors are limited with incomplete
semantics. As shown in the left of Figure 1, in general, textual de-
scriptions may not provide distinguishing characteristics necessary
for ZSL due to the noisy words in text [33]; attribute descriptions
focus on the “local” characteristics of objects and easily suffer from
the domain shift problem [12]; while label taxonomy merely consid-
ers the hierarchical relationships between classes. A more detailed
discussion of these shortcomings is provided in Section 3.1.

We expect more expressive and competitive prior knowledge to
boost the performance of ZSL. In this study, we propose to utilize
ontological schema which is convenient for defining the expressive
semantics for a given domain [20]. An ontological schema models
the general concepts (i.e., types of things) that exist in a domain
and the properties that describe the semantic relationships between
concepts. It can also represent a variety of valuable information
such as concept hierarchy and meta data (e.g., textual definitions,
comments and descriptions of concepts), which facilitate modeling
richer prior knowledge for ZSL. The right of Figure 1 shows some
snapshots of such an ontological schema.

In this paper, we propose a novel ZSL framework called
OntoZSL which not only enhances the class semantics with
an ontological schema, but also employs an ontology-based

generative model to synthesize training samples for unseen
classes. Specifically, an ontology embedding technique is first pro-
posed to learn meaningful vector representations of ZSL classes (i.e.,
class embeddings) from the ontological schema. A generative model
e.g., generative adversarial network (GAN) [14] is then adopted
to generate features and synthesize training samples for unseen
classes conditioned on the class embeddings, empirically turning
the ZSL problem into a standard supervised learning problem.

Many ontology embedding methods [6, 16, 18] have been in-
vented and extended from knowledge graph embedding (KGE)
techniques [43]. However, adapting existing KGE methods to en-
code ontologies for ZSL is problematic due to the inherent graph
structure and lexical information that both exist in the ontological
schema. That is to say, each concept in the ontological schema may
have two types of semantics, one is structure-based and captures
the multi-relational structures, while the other is text-based and
describes the concepts using some natural language tokens, e.g.,
the concept kgc:company in Figure 1. We thus propose a text-aware
ontology embedding technique, which can learn the structural and
textual representations for each concept simultaneously.

Developing generative models such as GANs for ZSL has been
a popular strategy recently, and proven to be more effective and
easier to generalize compared with traditional mapping-based ZSL
methods (more comparisons are introduced in Section 3.2). How-
ever, most of existing generative ZSL methods are merely built
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upon one type of priors such as textual or attribute descriptions.
While in our paper, we propose an ontology-based GAN to incor-
porate richer priors within ontological schemas to generate more
discriminative sample features for ZSL.

We demonstrate the effectiveness of our framework on ZSL tasks
from two different domains including a task of image classification
(IMGC) from vision and a knowledge graph completion (KGC) task.
In IMGC, we build an ontological schema for image classes. While
in KGC, we generalize the unseen concepts to unseen relations
and build an ontological schema for KG relations. The examples of
ontological schemas in two domains are shown in Figure 1.

Our main contributions are summarized as below:
• To the best of our knowledge, this is among the first ones to
explore expressive class semantics from ontological schemas
in Zero-shot Learning.

• We propose OntoZSL, a novel ontology-guided ZSL frame-
work that not only adopts a text-aware ontology embedding
method to incorporate prior knowledge from ontological
schemas, but also employs an ontology-based generative
model to synthesize training samples for unseen classes.

• In comparison with the state-of-the-art baselines, our frame-
work achieves promising scores on image classification task
for standard AwA [46] and constructed ImNet-A and ImNet-
O datasets, as well as on knowledge graph completion task
for datasets from NELL and Wikidata1.

2 PRELIMINARIES
We first begin by formally introducing the zero-shot learning in two
tasks: image classification (IMGC) and knowledge graph completion
(KGC), and their corresponding ontological schemas used.

2.1 Zero-shot Image Classification
Zero-shot learning in image classification is to recognize the new
classes whose images are not seen during training. Let D𝑡𝑟 =

{(𝑥,𝑦) |𝑥 ∈ X𝑠 , 𝑦 ∈ Y𝑠 } be the training set, where 𝑥 is the CNN
features of a training image, 𝑦 denotes its class label in Y𝑠 con-
sisting of seen classes. While the testing set is denoted as D𝑡𝑒 =

{(𝑥,𝑦) |𝑥 ∈ X𝑢 , 𝑦 ∈ Y𝑢 }, where Y𝑢 , the set of unseen classes, has
no overlap with Y𝑠 . Suppose that we have class representations
𝑂 ∈ R𝑛×( |Y𝑠 |+ |Y𝑢 |) learned from semantic descriptions for |Y𝑠 |
seen classes and |Y𝑢 | unseen classes, the task of zero-shot IMGC is
to learn a classifier for each unseen class given {D𝑡𝑟 ,𝑂} for train-
ing. These representations can be provided as binary/numerical
attribute vectors, word embeddings/RNN features or class embed-
dings learned from our ontological schema. We study two settings
at the testing stage: one is standard ZSL which classifies the testing
samples in X𝑢 with candidates from Y𝑢 , while the other is gener-
alized ZSL (GZSL) which extends the testing set to X𝑠 ∪ X𝑢 , with
candidates from both seen and unseen classes i.e., Y𝑠 ∪ Y𝑢 .

2.2 Zero-shot Knowledge Graph Completion
Different from the clustered instances in IMGC, a KGG = {E,R,T }
is composed of a set of entities E, a set of relations R and a set of
triple facts T = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E; 𝑟 ∈ R}. The task of knowledge

1Our code and datasets are available at https://github.com/genggengcss/OntoZSL.

graph completion (KGC) is proposed to improve Knowledge Graphs
by completing the triple facts in KGs when one of ℎ, 𝑟, 𝑡 is missing.
Typical KGC methods utilize KG embedding models such as TransE
[3] to embed entities and relations in continuous vector spaces (e.g.,
the embeddings of ℎ, 𝑟, 𝑡 are represented as 𝑥ℎ, 𝑥𝑟 , 𝑥𝑡 respectively)
and conduct vector computations to complete the missing triples,
which are trained by existing triples and assume all testing entities
and relations are available at training time. Therefore, the zero-shot
KGC task is defined as predicting for the newly-added entities or
relations which have no associated triples in the training data.

In this study, we focus on those newly-added KG relations (i.e.,
unseen relations). Specifically, we separate two disjoint relation sets:
the seen relation set R𝑠 and the unseen relation set R𝑢 . The triple
set T𝑠 = {(ℎ, 𝑟𝑠 , 𝑡) |ℎ, 𝑡 ∈ E; 𝑟𝑠 ∈ R𝑠 } is then collected for training,
and T𝑢 = {(ℎ, 𝑟𝑢 , 𝑡) |ℎ, 𝑡 ∈ E; 𝑟𝑢 ∈ R𝑢 } is collected to evaluate the
prediction of the triples of unseen relations. It is noted that we
consider a closed set of entities, i.e., each entity that appears in
the testing set already exists in the training set, because making
both entity set and relation set open makes the problem much more
challenging, and the current work now only considers one of them
(see references introduced in Section 3.3). Similar to IMGC, there
are also semantic representations of relations in 𝑅𝑠 ∪ 𝑅𝑢 , which are
learned from textual descriptions or ontological schemas.

With the zero-shot setting, the KGC problem in our study is
formulated as predicting the tail entity 𝑡 given the head entity ℎ and
the relation 𝑟 in a triple. More specifically, for each query tuple (ℎ, 𝑟 ),
we assume there is one ground-truth tail entity 𝑡 such that the triple
(ℎ, 𝑟, 𝑡) is true2. The target of KGC model is to assign the highest
ranking score to 𝑡 against the rest of all the candidate entities which
are denoted as 𝐶 (ℎ,𝑟 ) . Therefore, during zero-shot testing, we will
predict the triple facts of 𝑟𝑢 by ranking 𝑡 with the candidate tail
entities 𝑡 ′ ∈ 𝐶 (ℎ,𝑟𝑢 ) . Accordingly, we do not set generalized ZSL
(GZSL) testing in this case, considering that the candidate space
only involves entities and the prediction with unseen relations is
independent of the prediction with seen relations, while the latter
is a traditional KGC task which is out of the scope of this paper.

2.3 Ontological Schema
Ontological schemas are used as the semantic prior knowledge
for the above ZSL tasks in our paper. The ontology, denoted as
O = {C𝑂 ,P𝑂 ,T𝑂 }, is a multi-relational graph formed with C𝑂 ,
a set of concept nodes, P𝑂 , a set of property edges, and T𝑂 =

{(𝑐𝑖 , 𝑝, 𝑐 𝑗 ) |𝑐𝑖 , 𝑐 𝑗 ∈ C𝑂 , 𝑝 ∈ P𝑂 }, a set of RDF triples. The con-
cept nodes here refer to the domain-specific concepts. For example,
in IMGC, they are image classes, image attributes, etc. While in
KGC, they are KG relations, and their domain (i.e., head entity
types) and range (i.e., tail entity types) constraints, etc. As for prop-
erty edge, it refers to a link between two concepts. The proper-
ties in our ontology are a combination of domain-specific proper-
ties (e.g., imgc:hasDecoration) and RDF/RDFS3 built-in properties
(e.g., rdfs:subClassOf, rdfs:subPropertyOf ). For example, the triple
(imgc:Zebra, imgc:hasDecoration, imgc:Stripe) in Figure 1 denotes
that animal class “Zebra” is decorated with “Stripe”, while the triple
2Generally in KGs, there may be more than one correct tail entity for a query tuple.
Here, we follow previous KGC work [45] to apply a filter setting during testing where
other correct tail entities are filtered before ranking and only the current test one left.
3https://www.w3.org/TR/rdf-schema/

https://github.com/genggengcss/OntoZSL
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(kgc:radiostation_in_city, rdfs:subPropertyOf, kgc:has_office_in_city)
denotes that KG relation “radiostation in city” is a subrelation of
“has office in city”. In addition to RDF triples with structural rela-
tionships between concepts, each concept in the ontological schema
also contains a paragraph of textual descriptions. These descrip-
tions are lexically meaningful information of concepts, which can
also be represented by triples using properties e.g., rdfs:comment.

In our study, we use a semantic embedding technique to encode
all the concept nodes in the ontological schema as vectors, through
which the class labels in IMGC and the relation labels in KGC are
embedded. They are then used as the additional input of GAN
models to generate more discriminative samples for unseen image
classes or unseen KG relations.

3 RELATEDWORK
3.1 Prior Knowledge for ZSL
The first we discuss is the prior knowledge previously used in the
ZSL literature. Some works employ attribute descriptions as the
priors [1, 10, 24, 25, 27]. In these works, each class is annotated
with a series of attributes which describe its characteristics, and
the semantic relationships between classes are thus represented
by those shared attributes. However, attributes focus on describ-
ing “local” characteristics and the semantically identical attributes
may perform inconsistently across different classes. For example,
in image classification, the animal classes “Horse” and “Pig” share
the same attribute “hasTail", but the visual appearance of their tails
differs greatly. The model trained with “Horse” may not generalize
well on the prediction of “Pig” (i.e., domain shift problem men-
tioned earlier). Some works prefer to utilize textual descriptions or
distributed word embeddings of classes pre-trained on textual data
to model the class semantics [11, 31, 34, 51]. Textual data can be
easily obtained from linguistic sources such as Wikipedia articles,
however, they are noisy and often lead to poor performance.

There are also some works utilizing label ontologies for inter-
class relationships, such as label taxonomy [22, 44], Hierarchy and
Exclusion (HEX) label graph [8], and label ontology in OWL (Web
Ontology Language) [5]. However, these ontologies also have their
limitations. The label taxonomy lacks discriminative semantics for
those sibling classes which may look quite different (e.g., “Horse”
and “Zebra” in Figure 1), while the HEX label graph still focuses on
modeling the relationships between any two labels via attributes –
one class is regarded as a subclass of the attributes annotated for
it, and as exclusive with those that are irrelevant with it. Different
from these works, our proposed ontological schema contains more
complete semantics, in which the existing priors are well fused and
benefit each other. For example, the class-level priors such as label
taxonomy provide global constraint for attribute descriptions while
class-specific attributes provide more detailed and discriminative
priors for classes especially for sibling classes.

Comparisonwith OWL-based label ontology [5].Although
it expresses the same complete class semantics as we do, the OWL-
based semantic representation is difficult to apply due to its com-
plicated definition. While our ontological schema is mainly in the
form of multi-relational graphs composed of RDF triples, which is
easier to model and embed using many successful triple embedding
algorithms. On the other hand, the construction of the ontologies

used in [5] heavily relies on the manual work, while our ontological
schemas are built upon existing resources or are directly available.

3.2 Zero-shot Learning Strategy
Given the prior knowledge, existing approaches differ significantly
in how the features are transferred from seen classes to unseen
classes. One branch is based on mapping. Some methods [11, 23, 24,
31] learn an instance-class mapping with seen samples in training.
In testing, the features of an input are projected into the vector
space of the labels, and the nearest neighbor (a class label) in that
space is computed as the output label. Some other methods [4, 22,
44, 51] learn a reverse mapping – labels are mapped to the space of
input instances. However, all of these mappings are trained by seen
samples, and thus have a strong bias towards seen classes during
prediction, especially in generalized ZSL where the output space
includes both seen and unseen classes.

Recently, by taking advantages of generative models such as
GANs, several methods [13, 21, 25, 34, 47, 53, 54] have been pro-
posed to directly synthesize samples (or features) for unseen classes
from their prior knowledge, which convert the ZSL problem to a
standard supervised learning problemwith the aforementioned bias
issue avoided. Although these generative models are trained using
the samples of seen classes, the generators can generalize well on
unseen classes according to the semantic relationships between
them. In this study, we also introduce and evaluate GANs in our
framework. As far as we know, our work is among the first to in-
corporate the ontological schema with GAN for feature generation.

3.3 Zero-shot Knowledge Graph Completion
Reviewing the literature of ZSL, we find that most of works espe-
cially those mentioned above are developed in the computer vision
community for image classification. There are also several ZSL
studies for knowledge graph completion. Some of them devote to
deal with the unseen entities by exploiting the auxiliary connec-
tions with seen entities [17, 37, 42, 52], introducing their textual de-
scriptions [36], or learning entity-independent relational semantics
which summarize the substructure underlying KG so that naturally
generalizing to unseen entities [39]. While few works such as [34]
focus on the unseen relations. In our work, we also concentrate on
these newly-added relations. Different from [34] which generates
unseen relation embeddings solely from their textual descriptions,
our OntoZSL generates from the ontological schema which de-
scribes richer correlations between KG relations, such as domain
and range constraints. Besides, OntoZSL is well-suited for zero-shot
KGC considering that many KGs inherently have ontologies which
highly summarize the entities and relations in KGs.

4 METHODOLOGY
In this section, we will introduce our proposed general ZSL frame-
work OntoZSL, which builds upon an ontology embedding tech-
nique and a generative adversarial network (GAN) and can be
applied to two different zero-shot learning tasks: image classifi-
cation (IMGC) and knowledge graph completion (KGC). Figure 2
presents its overall architecture, including four core parts:

Ontology Encoder. We learn semantically meaningful class
representations or relation representations from the ontological
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Figure 2: An overview of OntoZSL in the standard ZSL set-
ting. 𝑜𝑠 and 𝑜𝑢 represent the semantic embeddings of seen
and unseen concepts (i.e., image classes in IMGC task and
KG relations in KGC task) learned from the ontological
schema, respectively. During training, the GAN model gen-
erates fake samples 𝑥𝑠 for seen concepts and distinguishes
themwith the real samples 𝑥𝑠 learned from a feature extrac-
tor. With a trained generator, the samples of unseen classes
(𝑥𝑢 ) can be generated to learn classifiers for prediction.

schema using an ontology embedding technique, which consid-
ers the structural relationships between concepts as well as their
correlations implied in textual descriptions.

Feature Extractor. We utilize a feature extractor to extract the
real data (instance) representations, which will be taken as the
guidance of adversarial training. Regarding the different data forms
in two tasks, we adopt different strategies to obtain real data distri-
butions for different tasks.

Generation Model. A typical scheme of GAN is adopted for
data generation. It consists of (i) a generator to synthesize instance
features from random noises, (ii) a discriminator to distinguish the
generated features from real ones, and (iii) some additional losses to
ensure the inter-class discrimination of generated features. Notably,
we generate instance features instead of raw instances for both
higher accuracy and computation efficiency [47].

Zero-shot Classifier.With the well-trained generator, the sam-
ples of unseen classes (relations) can be synthesized with their
semantic representations, from which the unseen classifiers can be
learned to predict the testing samples of unseen classes (relations).

Among these parts, the ontology encoder and the generation
model are general across different tasks, while the feature extrac-
tor and the zero-shot classifier is task-specific. Next, we will first
introduce these parts w.r.t. the IMGC task, and then introduce the
difference of the task-specific parts in addressing the KGC task.

4.1 Ontology Encoder
In this subsection, we provide a text-aware semantic embedding
technique for encoding the graph structure as well as textual infor-
mation in the ontological schema.

Default Embedding. Considering the structural RDF triples in
ontological schema, there are many triple embedding techniques
that can be applied [43]. Given a triple (𝑐𝑖 , 𝑝, 𝑐 𝑗 ), the aim of triple
embedding is to design a scoring function 𝑓 (𝑐𝑖 , 𝑝, 𝑐 𝑗 ) as the opti-
mization objective. A higher score indicates a more plausible triple.
In this paper, we adopt a mature and widely-used triple embedding

method TransE [3] which assumes the property in each triple as a
translation between two concepts. Its score function is defined as
follows:

𝑓𝑇𝑟𝑎𝑛𝑠𝐸 (𝑐𝑖 , 𝑝, 𝑐 𝑗 ) = −||𝒄𝑖 + 𝒑 − 𝒄 𝑗 | | (1)
where 𝒄𝑖 ,𝒑, 𝒄 𝑗 denote the embeddings of 𝑐𝑖 , 𝑝, 𝑐 𝑗 , respectively.

To learn the embeddings of all concepts in the ontological schema
O, a hinge loss is minimized for all triples in ontology:

JO =
1

|T𝑂 |

∑
(𝑐𝑖 ,𝑝,𝑐 𝑗 )∈T𝑂

∧(𝑐′
𝑖
,𝑝,𝑐′

𝑗
)∉T𝑂

[𝛾𝑜 + 𝑓 (𝑐 ′𝑖 , 𝑝, 𝑐
′
𝑗 ) − 𝑓 (𝑐𝑖 , 𝑝, 𝑐 𝑗 )]+ (2)

where 𝛾𝑜 is a margin parameter which controls the score difference
between positive and negative triples, the negative triples are gen-
erated by replacing either head or tail concepts in positive triples
with other concepts and not exist in the ontology. Notably, there are
other triple embedding techniques can potentially be used for en-
coding our ontological schema. Since exploring different techniques
is not the focus of this paper, we leave them as future work.

Text-Aware Embedding. However, the textual descriptions of
concepts in ontological schema describe the knowledge of concepts
from another modal. Such semantics require special modeling than
regular structural triples. Therefore, we propose the text-aware
semantic embedding model by projecting the structural represen-
tations and the textual representations into a common space and
learning them simultaneously using the same objective score func-
tion, as shown in Figure 3.

Specifically, given a triple (𝑐𝑖 , 𝑝, 𝑐 𝑗 ), we first project its structural
embeddings 𝒄𝑖 ,𝒑, 𝒄 𝑗 learned above and the textual representation
of concepts 𝒅𝑖 , 𝒅 𝑗 into a common space using fully connected (FC)
layers, e.g., 𝒄𝑖 into 𝒄𝑠

𝑖
and 𝒅𝑖 into 𝒄𝑡

𝑖
(cf. Figure 3). In this space, the

structure-based score is still defined as proposed by TransE:

𝑓 𝑠 = −||𝒄𝑠𝑖 + 𝒑𝑠 − 𝒄𝑠𝑗 | | (3)

while the text-based score is defined as:

𝑓 𝑡 = −||𝒄𝑡𝑖 + 𝒑𝑠 − 𝒄𝑡𝑗 | | (4)

which also constrains the textual representations under the transla-
tional assumption.

To make these two types of representations compatible and
complementary with each other, we follow the proposals of [30, 48,
49] to define the crossed and additive score function:

𝑓 𝑠𝑡 = −||𝒄𝑠𝑖 + 𝒑𝑠 − 𝒄𝑡𝑗 | |
𝑓 𝑡𝑠 = −||𝒄𝑡𝑖 + 𝒑𝑠 − 𝒄𝑠𝑗 | |

𝑓 𝑎𝑑𝑑 = −||(𝒄𝑠𝑖 + 𝒄𝑡𝑖 ) + 𝒑𝑠 − (𝒄𝑠𝑗 + 𝒄𝑡𝑗 ) | |
(5)

All of these score functions ensure that the two kinds of concept
representations are learned in the same vector space. The overall
score function are defined as:

𝑓 𝑇 (𝑐𝑖 , 𝑝, 𝑐 𝑗 ) = 𝑓 𝑠 + 𝑓 𝑡 + 𝑓 𝑠𝑡 + 𝑓 𝑡𝑠 + 𝑓 𝑎𝑑𝑑 (6)

Therefore, the final training loss changes to:

J𝑇𝑒𝑥𝑡
O =

1
|T ∗ |

∑
(𝑐𝑖 ,𝑝,𝑐 𝑗 )∈T∗

∧(𝑐′
𝑖
,𝑝,𝑐′

𝑗
)∉T∗

[𝛾𝑜 + 𝑓 𝑇 (𝑐 ′𝑖 , 𝑝, 𝑐
′
𝑗 ) − 𝑓 𝑇 (𝑐𝑖 , 𝑝, 𝑐 𝑗 )]+ (7)

where T ∗ refers to the triple set with regular structural properties.
The triples with rdfs:comment property that connects a concept
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Figure 3: Overview of the network architecture for text-
aware semantic embedding.

with its textual description are removed here considering that these
text nodes are encoded from another view.

After training, for each concept 𝑖 in ontological schema, we can
learn two types of concept embeddings, i.e., structure based 𝒄𝑠

𝑖
and

text based 𝒄𝑡
𝑖
. To fuse the semantic features from these two types,

we concatenate them to form the final concept embedding:

𝑜𝑖 = [𝒄𝑠𝑖 ; 𝒄
𝑡
𝑖 ] (8)

As for the initial textual representations, we use word embed-
dings pre-trained on textual corpora to represent the words in the
text. Also, to suppress the text noises, we employ TF-IDF features
[35] to evaluate the importance of each word. Besides, the FC layers
used for projection also have a promotion for noise suppression.

4.2 Feature Extractor
Following most of the previous works [46], we employ ResNet101
[19] to extract the real features of images in zero-shot image classi-
fication. ResNet is a well-performed CNN architecture pre-trained
on ImageNet [9] with 1K classes, in which no unseen classes of our
evaluation datasets are involved.

4.3 Feature Generation with GAN
With class embeddings learned from ontology encoder, we train a
generator 𝐺 , which takes a class embedding 𝑜𝑖 and a random noise
vector 𝑧 sampled from Normal distribution N(0, 1) as input, and
generates the CNN features 𝑥 of class 𝑖 . The loss of 𝐺 is defined as:

L𝐺 = −E[𝐷 (𝑥)] + 𝜆1L𝑐𝑙𝑠 (𝑥) + 𝜆2L𝑃 (9)

where 𝑥 = 𝐺 (𝑧, 𝑜𝑖 ). The first term of loss function is theWasserstein
loss [2] which can effectively eliminate the mode collapse problem
during generation. While the second term is a supervised classifi-
cation loss for classifying the synthesized features, and the third
item is a pivot regularization proposed by [53], which regularizes
the mean of generated features of each class to be the mean of real
feature distribution. Both of the latter two loss terms encourage
the generated features to have more inter-class discrimination. 𝜆1
and 𝜆2 are the corresponding weight coefficients.

The discriminator 𝐷 then takes the synthesized features 𝑥 and
the real features 𝑥 extracted from a training image of class 𝑖 as

input, the loss can be formulated as:
L𝐷 = E[𝐷 (𝑥, 𝑜𝑖 )] − E[𝐷 (𝑥)]

−𝛽E[( | | ▽𝑥̃ 𝐷 (𝑥) | |𝑝 − 1)2]
(10)

where the first two terms approximate the Wasserstein distance of
the distribution of real features and synthesized features, and the
last term is the gradient penalty to enforce the gradient of𝐷 to have
unit norm (i.e., Lipschitz constraint proposed by [15]), in which
𝑥 = 𝜀𝑥 + (1 − 𝜀)𝑥 with 𝜀 ∼ 𝑈 (0, 1), and 𝛽 is the weight coefficient.

The GAN is optimized by a minimax game, which minimizes
the loss of 𝐺 but maximizes the loss of 𝐷 . We also note that the
generator and discriminator are both incorporated with the class
embeddings during training. This is a typical method of condi-
tional GANs [29] that introduces external information to guide the
training of GANs, which is consistent with the generative ZSL –
synthesizing instance features based on the prior knowledge of
classes.

4.4 Zero-shot Classifiers
Once the GAN is trained to be able to generate sample features
for seen classes, it can also synthesize features for unseen classes
with random noises and their corresponding class embeddings.
Consequently, with synthesized unseen data X̂𝑢 , we can learn a
typical softmax classifier for each unseen class and classify its
testing samples. The classifier is optimized by:

min
𝜃

− 1
|X|

∑
(𝑥,𝑦) ∈(X,Y)

𝑙𝑜𝑔𝑃 (𝑦 |𝑥 ;𝜃 ) (11)

where X represents the features for training, Y is the label set
to be predicted on, 𝜃 is the training parameter and 𝑃 (𝑦 |𝑥 ;𝜃 ) =

𝑒𝑥𝑝 (𝜃𝑇𝑦 𝑥)∑|Y|
𝑖

𝑒𝑥𝑝 (𝜃𝑇
𝑖
𝑥)
. Regarding the different prediction setting in IMGC,

X = X̂𝑢 when it is standard ZSL and X = X𝑠 ∪ X̂𝑢 when it is GZSL,
while the label set Y corresponds to Y𝑢 and Y𝑠 ∪ Y𝑢 respectively.

4.5 Adapting to Knowledge Graph Completion
Similar to zero-shot image classification, we can also generate fea-
tures for unseen relations in knowledge graph with their semantic
representations learned from ontological schema using the above
generationmodel. However, considering the different data instances
in KGs, we adopt different strategies to extract sample features and
design different zero-shot classifiers.

Feature Extractor. Unlike traditional KG embedding methods
which learn entity and relation embeddings based on some assump-
tions (or constraints), we hope to learn cluster-structure feature
distribution for seen and unseen relation facts so that preserving
the higher intra-class similarity and relatively lower inter-class
similarity as most ZSL works did. Therefore, we follow [34] to learn
and train the real relation embeddings in bags. To be more specific,
suppose that there are bags {𝐵𝑟 |𝑟 ∈ R𝑠 } in the training set, a bag
𝐵𝑟 is named by a seen relation 𝑟 , in which all the triples involving
relation 𝑟 are contained. The real embeddings 𝑥𝑟 of relation 𝑟 are
thus represented by the embeddings of entity pairs in bag 𝐵𝑟 , whose
training are thus supervised by some reference triples in this bag.

Concretely, for an entity pair (ℎ, 𝑡 ) in bag 𝐵𝑟 , we first embed each
entity using a simple fully connected (FC) layer and generate the
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Table 1: Statistics of the zero-shot image classification datasets.

Datasets Granularity # Classes # Images Ontological Schemafor Training for Testing
Total Seen Unseen Total Seen Unseen Seen Unseen # RDF Triples # Concepts # Properties

AwA coarse 50 40 10 37,322 23,527 0 5,882 7,913 1,256 180 12
ImNet-A fine 80 28 52 77,323 36,400 0 1,400 39,523 563 227 19
ImNet-O fine 35 10 25 39,361 12, 907 0 500 25,954 222 115 8

entity pair embedding 𝑢𝑒𝑝 as:

𝑢𝑒𝑝 = 𝜎 ( [𝑓1 (𝑥ℎ); 𝑓1 (𝑥𝑡 )])
𝑓1 (𝑥ℎ) =𝑊1 (𝑥ℎ) + 𝑏1
𝑓1 (𝑥𝑡 ) =𝑊1 (𝑥𝑡 ) + 𝑏1

(12)

where [·; ·] represents the vector concatenation operation, 𝜎 is the
tanh activation function. We also consider the one-hop structure
of each entity. For the tail entity 𝑡 , its structural embedding 𝑢𝑡 is
represented as:

𝑢𝑡 = 𝜎 ( 1
|N𝑡 |

∑
(𝑟𝑛,𝑡𝑛) ∈N𝑡

𝑓2 (𝑥𝑟𝑛 , 𝑥𝑡𝑛 )),

𝑓2 (𝑥𝑟𝑛 , 𝑥𝑡𝑛 ) =𝑊2 ( [𝑥𝑟𝑛 ;𝑥𝑡𝑛 ]) + 𝑏2
(13)

where N𝑡 = {(𝑟𝑛, 𝑡𝑛) | (𝑡, 𝑟𝑛, 𝑡𝑛) ∈ T𝑠 } denotes the one-hop neigh-
bors of entity 𝑡 , and 𝑓2 is a FC layer which encodes the neighborhood
information. In consideration of the scalability, the number of neigh-
bors (i.e., |N𝑡 |) is set with an upper limit e.g., 50. The structural
embedding of the head entity ℎ, denoted as 𝑢ℎ is calculated in the
same way as the tail entity. The final entity pair embedding (i.e.,
the relation embedding 𝑥𝑟 ) is then formulated as:

𝑥𝑟 = 𝑥 (ℎ,𝑡 ) = [𝑢𝑒𝑝 ;𝑢ℎ ;𝑢𝑡 ] (14)

We train the real relation embeddingswith some reference triples.
Specifically, for each relation 𝑟 , the triples in bag 𝐵𝑟 are randomly
split into two parts: one is taken as the reference set {ℎ∗, 𝑟 , 𝑡∗}, and
the other is taken as the positive set {ℎ+, 𝑟 , 𝑡+}. We also generate
a set of negative triples {ℎ+, 𝑟 , 𝑡−} by replacing the tail entity of
each triple in the positive set with other entities. With𝑚 reference
triples, we take the mean of reference relation embeddings, i.e.,
𝑥𝑐(ℎ∗,𝑡∗) =

1
𝑚

∑𝑚
𝑖=1 𝑥

𝑖
(ℎ∗,𝑡∗) , where 𝑥

𝑖
(ℎ∗,𝑡∗) is computed by equations

(12), (13) and (14), and calculate its cosine similarity with the relation
embedding of each positive triple (i.e., 𝑥 (ℎ+,𝑡+) ) as a positive score
denoted as 𝑠𝑐𝑜𝑟𝑒+, and calculate its cosine similarity with that of
each negative triple (i.e., 𝑥 (ℎ+,𝑡−) ) as a negative score denoted as
𝑠𝑐𝑜𝑟𝑒−. A hinge loss is then adopted to optimize the training:

J𝐹𝐸 =
1

|𝐵∗𝑟 |
∑

(ℎ+,𝑟 ,𝑡+)∈𝐵∗𝑟
∧(ℎ+,𝑟 ,𝑡−)∉𝐵∗𝑟

[𝛾𝑓 + 𝑠𝑐𝑜𝑟𝑒+ − 𝑠𝑐𝑜𝑟𝑒−]+ (15)

where 𝐵∗𝑟 means the training triples of relation 𝑟 except reference
triples, and 𝛾𝑓 denotes the margin parameter. Instead of random
initialization, we use pre-trained KG embedding to initialize the
entities and relations in bags and neighborhoods.

During feature generation, when generating the fake relation
embedding 𝑥𝑟 = 𝐺 (𝑧, 𝑜𝑟 ) for relation 𝑟 , we also take the above hinge
loss as the classification loss to preserve the inter-class discrimina-
tion. Specifically, a positive score is calculated between 𝑥𝑟 and the

cluster center of real relation embeddings, i.e., 𝑥𝑐𝑟 = 1
|𝑁𝑟 |

∑𝑁𝑟

𝑖=1 𝑥
𝑖
𝑟 ,

where 𝑁𝑟 denotes the number of training triples of relation 𝑟 . A
negative score is computed between 𝑥𝑐𝑟 and the negative relation
embedding calculated by negative triples with replaced tail entities.

Zero-shot Classifiers.With the well-trained generator, we can
generate plausible relation embedding 𝑥𝑟𝑢 = 𝐺 (𝑧, 𝑜𝑟𝑢 ) for unseen
relation 𝑟𝑢 with its semantic representations 𝑜𝑟𝑢 . For a query tuple
(ℎ, 𝑟𝑢 ), the similarity ranking value 𝑣 (ℎ,𝑟𝑢 ,𝑡 ′) of candidate tail 𝑡

′ is
calculated by the cosine similarity between 𝑥𝑟𝑢 and 𝑥 (ℎ,𝑡 ′) . The
candidate with the highest value is the predicted tail entity of
tuple (ℎ, 𝑟𝑢 ). For better generalization, we generate multiple relation
embeddings for each relation and average the ranking value:

𝑣 (ℎ,𝑟𝑢 ,𝑡 ′) =
1

|𝑁𝑔 |

𝑁𝑔∑
𝑖=1

𝑐𝑜𝑠𝑖𝑛𝑒 (𝑥𝑖𝑟𝑢 , 𝑥 (ℎ,𝑡 ′) ) (16)

where 𝑁𝑔 denotes the number of generated relation embeddings
for relation 𝑟𝑢 .

5 EXPERIMENTS
In the experiments, we evaluate OntoZSL by the two different tasks
of zero-shot image classification and zero-shot knowledge graph
completion. We also compare the ontological schema against other
prior knowledge for zero-shot learning, and finally analyze the
impact of different semantics of the ontological schema.

5.1 Image Classification
Datasets. We evaluate the zero-shot image classification task with
a standard benchmark named Animals with Attributes (AwA) and
two benchmarks ImNet-A and ImNet-O which are contributed by
ourselves. AwA [46] is a widely used coarse-grained benchmark for
animal classification which contains 50 animal classes with 37, 322
images, while ImNet-A and ImNet-O are two fine-grained datasets
we extract from ImageNet [9]. ImNet-A is for the classification of
animals, while ImNet-O is for the classification of more general
objects. Details of the construction of the latter two benchmarks
can be found in Appendix A. The classes of all the three benchmarks
are split into seen and unseen classes, following the seen-unseen
strategy proposed in [46].

Table 1 provides detailed statistics of these datasets. Compared
with AwA, ImNet-A and ImNet-O are more challenging as they
have fewer seen classes. Both of these datasets have inherent label
taxonomies which are helpful for building the ontological schemas.
Specifically, each class corresponds to a node in WordNet [28] –
a lexical database of semantic relations between words, and thus
these classes are underpinned by the same taxonomy as WordNet.

The Ontological Schema for IMGC mainly focuses on the
class hierarchy, class attributes and literal descriptions. To build
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Table 2: The 𝑎𝑐𝑐uracy (%) of image classification in the standard and generalized ZSL settings. The best results are marked in
bold. “–” means the case where the method cannot be applied.

Methods
Standard ZSL Generalized ZSL

AwA ImNet-A ImNet-O AwA ImNet-A ImNet-O
𝑎𝑐𝑐 𝑎𝑐𝑐 𝑎𝑐𝑐 𝑎𝑐𝑐𝑠 𝑎𝑐𝑐𝑢 𝐻 𝑎𝑐𝑐𝑠 𝑎𝑐𝑐𝑢 𝐻 𝑎𝑐𝑐𝑠 𝑎𝑐𝑐𝑢 𝐻

DeViSE 37.46 14.30 14.32 81.06 3.29 6.32 60.21 0.64 1.27 68.00 3.68 6.98
CONSE 22.99 20.28 12.41 51.64 3.28 6.17 86.40 0.00 0.00 62.00 0.00 0.00
SAE 42.28 18.98 14.84 71.03 9.79 17.21 84.43 0.17 0.34 92.60 0.16 0.32
SYNC 39.14 20.52 18.58 88.21 8.43 15.39 88.72 0.00 0.00 62.53 0.00 0.00
GCNZ – 32.47 30.05 – – – 47.79 15.15 23.01 44.60 14.48 21.87
DGP 58.99 34.88 31.23 86.19 16.59 27.82 50.14 17.87 26.35 47.40 19.00 27.13
GAZSL 56.29 21.20 19.40 87.64 15.40 26.19 86.56 1.28 2.52 86.80 6.16 11.50
LisGAN 58.89 21.90 20.20 60.03 44.30 50.98 35.50 15.55 21.62 35.00 13.87 19.87
LsrGAN 56.34 19.69 20.20 85.98 35.73 50.48 36.29 13.49 19.67 37.80 14.27 20.72
OntoZSL 63.31 39.00 34.24 64.90 49.35 56.06 37.86 27.94 32.15 43.40 21.50 28.76

such an ontological schema, we first adopt the taxonomy of Word-
Net to define the class hierarchy, where the class concepts are con-
nected via the property rdfs:subClassOf, as Figure 1 shows. Then, we
define the domain-specific properties such as imgc:hasDecoration,
imgc:coloredIn to associate the class concepts with attribute con-
cepts so that describing the visual characteristics of classes in ontol-
ogy. The attributes of classes are usually hand-labeled, in our paper,
we reuse existing attribute annotations for AwA [24] and manu-
ally annotate attributes for classes in ImNet-A and ImNet-O since
they have no open attributes. During annotating, we also transfer
some annotations from other datasets (e.g., AwA) to reduce the
annotation cost (more details are in Appendix A). As for the literal
descriptions of concepts, we adopt the words of class names, which
are widely-used text-based class semantics in the literature. The
statistics of constructed ontological schemas are shown in Table 1.

Baselines and Metrics. We compare our framework with clas-
sic ZSLmethods published in the past few years and the state-of-the-
art ones reported very recently. Specifically, DeViSE [11], CONSE
[31], SAE [23] and SYNC [4] are mapping-based which map the
image features into the label space represented by class embeddings
or vice versa; while GAZSL [53], LisGAN [25] and LsrGAN [40]
are generative methods which generate visual features conditioned
on the class embeddings. We evaluate these methods with their
available class embeddings. For AwA, the binary attribute vectors
are adopted, while for ImNet-A and ImNet-O, as the attributes of
ImageNet classes are not available, we use the word embeddings
of class names provided by [4]. We also make a comparison with
GCNZ [44] and DGP [22] which leverage the word embeddings of
class labels and label taxonomy to predict on AwA and ImageNet.

We evaluate these methods by accuracy. Considering the imbal-
anced samples across classes, we follow the current literature [46]
to report the class-averaged (macro) accuracy. Specifically, we first
calculate the per-class accuracy – the ratio of correct predictions
over all the testing samples of this class, and then average the accu-
racies of all targeted classes as the final metric. Regarding the two
testing settings in zero-shot image classification, the metrics are
computed on all unseen classes in the standard setting, while in the
GZSL setting, the class-averaged accuracy is calculated on seen and
unseen classes separately, denoted as 𝑎𝑐𝑐𝑠 and 𝑎𝑐𝑐𝑢 respectively,

and then a harmonic mean 𝐻 = (2 × 𝑎𝑐𝑐𝑠 × 𝑎𝑐𝑐𝑢 )/(𝑎𝑐𝑐𝑠 + 𝑎𝑐𝑐𝑢 ) is
computed as the overall metric.

Implementation.We employ ResNet101 [19] to extract 2, 048-
dimensional visual features of images. As for the word embeddings
used for initializing the textual representation of ontology con-
cepts, we use released 300-dimensional word vectors, which are
pre-trained on Wikipedia corpora using GloVe [32] model.

The results are reported based on the following settings. For
ontology encoder, we set 𝛾𝑜 = 12 as default, and learn the class
embedding of dimension 200 (i.e., 100-dimensional structure-based
representation and 100-dimensional text-based representation). We
set other parameters in ontology encoder as recommended by [38]
and [30]. Regarding GAN, the generator and discriminator both
consist of two fully connected layers. The generator has 4, 096
hidden units and outputs image features with 2, 048 dimensions,
while the discriminator also has 4, 096 hidden units and outputs a
2-dimensional vector to indicate whether the input feature is real
or not. The dimension of noise vector 𝑧 is set to 100. The learning
rate is set to 0.0001. The weight 𝜆1 for classification loss is set to
0.01, 𝜆2 for pivot regularization is set to 5, and the weight 𝛽 for
gradient penalty is set to 10.

Results. We report the prediction results under the standard
ZSL setting and the generalized ZSL setting in Table 2. Giving a
first look at the standard ZSL, we find that our method achieves
the best accuracy on all three datasets. In comparison with the
mapping-based baselines, e.g., DeVise, CONSE and the generative
baselines, e.g., GAZSL, LsrGAN, our method outperforms the tra-
ditional class attribute annotations used for AwA as well as class
word embeddings for ImNet-A and ImNet-O. Most importantly, it
also has a better performance than the previously proposed label
ontologies (i.e., GCNZ and DGP), which simply consider the hierar-
chical relationships of classes. These observations demonstrate the
superiority of our OntoZSL compared with the state of the art.

While in the GZSL setting, we have similar observations as the
standard one. Our method performs better than the baselines and
obtains significant outperformance on the metrics of 𝑎𝑐𝑐𝑢 and 𝐻 .
This shows our method has a better generalization. Furthermore,
we notice that among all the methods which utilize the same prior
knowledge (i.e., word embeddings of classes or class attribute vec-
tors), the performance of those mapping-based ones dramatically
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drops in comparison with the standard ZSL setting. CONSE and
SYNC even drop to 0.00 on ImNet-A and ImNet-O. This verifies our
points that these methods have a bias towards seen classes during
prediction, i.e., their models tend to predict the unseen testing sam-
ples on seen classes. In contrast, those generative methods which
generate training samples for unseen classes have no such bias
towards unseen classes. We also find that although our framework
does not achieve the best results on the prediction of seen testing
samples (𝑎𝑐𝑐𝑠 ), it still accomplishes competitive performance as the
state-of-the-arts. This motivates us to explore algorithms to predict
unseen testing samples correctly as well as maintain reasonable
accuracy on seen classes.

5.2 Knowledge Graph Completion
Datasets. We evaluate the zero-shot knowledge graph comple-
tion task on two benchmarks proposed by [34], i.e., NELL-ZS and
Wikidata-ZS extracted from NELL4 andWikidata5 respectively, two
knowledge graphs are also known for constructing few-shot KGC
datasets [7]. The dataset statistics are listed in Table 3.

Ontological Schema for KGC. Different from the personally
defined ontological schemas for IMGC task, many KGs inherently
have ontologies which abstractly summarize the entities and rela-
tions in knowledge graphs. Therefore, we access public ontologies
of KGs and make a reorganization to construct the ontological
schemas we need. Specifically, for NELL, we process the original
ontology file6 and filter out four kinds of properties to describe the
high-level knowledge about NELL relations, i.e., the kgc:domain
and kgc:range properties which constrain the types of the head
entity and the tail entity of a specific relation, respectively, the
kgc:generalizations property which describes the hierarchical struc-
ture of relations and entity types, and the kgc:description property
which introduces the literal descriptions of relations and entity
types. While for Wikidata, we utilize Wikidata toolkit packaged in
Python7 to access the knowledge of Wikidata relations, in which
the kgc:P2302 is used to describe the domain and range constraints
of relations, and rdfs:subPropertyOf and rdfs:subClassOf are used
to describe the hierarchical structure of relation and entity types.
Apart from the textual descriptions of relation and entity types,
we also leverage the properties kgc:P31, kgc:P1629 and kgc:P1855
as the additional knowledge. The statistics of the processed onto-
logical schemas are shown in Table3. It is noted that we can also
take the original ontologies of these two KGs, but some ontology
simplification techniques such as [41] may be needed to forget the
irrelevant concepts or properties for prediction tasks contained in
the ontologies. We will consider to develop them in the future.

Baselines and Metrics. We mainly compare our proposed On-
toZSL with the ZSGAN proposed in [34], which generates embed-
dings for unseen KG relations from their textual descriptions and
entity type descriptions. In ZSGAN and our OntoZSL, the feature
extractor can be flexibly incorporated with different pre-trained KG
embeddings. In view of generalization, we adopt two representative
KG embedding models TransE [3] and DistMult [50] in the feature
extractor in our experiments. We also compare the original TransE
4http://rtw.ml.cmu.edu/rtw/
5https://www.wikidata.org/
6http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz
7https://pypi.org/project/Wikidata/

Table 3: Statistics of the zero-shot knowledge graph com-
pletion datasets. # Ent. and # Triples denote the number
of entities and triples in KGs. # Rel. (Tr/V/Te) denotes
the number of KG relations for training/validation/testing.
# Onto. (Trip./Con./Pro.) denotes the number of the RDF
triples/concepts/properties in the ontological schemas.

Datasets # Ent. & Triples # Rel. # Onto.
Tr/V/Te Trip./Con./Pro.

NELL-ZS 65,567 / 188,392 139/10/32 3,055/1,186/4
Wikidata-ZS 605,812 / 724,967 469/20/48 10,399/3,491/8

and DistMult in the zero-shot learning setting, i.e., ZS-TransE and
ZS-DistMult, where the randomly initialized relation embeddings
are replaced by their textual embeddings which are trained together
with entity embeddings by the original score functions.

As mentioned in Section 2.2, the KGC is to complete (rank) the
tail entity given the head entity and relation in a triple. Therefore,
we adopt two metrics commonly used in the KGC literature [43]:
mean reciprocal ranking (𝑀𝑅𝑅) and 𝐻𝑖𝑡@𝑘 to evaluate the predic-
tion results of all testing triples. 𝑀𝑅𝑅 represents the average of
the reciprocal predicted ranks of all correct entities; while 𝐻𝑖𝑡@𝑘

denotes the percentage of testing samples whose correct entities
are ranked in the top-𝑘 positions. The 𝑘 is often set to 1, 5, 10.

Implementation. We pre-train the feature extractor to extract
200-dimensional relation embedding for NELL-ZS and extract 100-
dimensional relation embedding for Wikidata-ZS. In pre-training,
the margin parameter 𝛾𝑓 is set to 10, we also follow [34] to split 30
triples as references, and set the learning rate to 0.0005.

We adopt the same ontology encoder configurations and param-
eters as IMGC to learn 600-dimensional class embeddings for KGC
task. Especially, the TF-IDF features [35] are used to evaluate the
importance of words in textual descriptions. Also, we adopt the
same GAN architecture as IMGC. But the difference is, for NELL-ZS,
the generator has 400 hidden units and outputs 200-dimensional
relation embeddings, while the discriminator has 200 hidden units
and outputs a 2-dimensional vector to indicate whether the input
embedding is real or not. While for Wikidata-ZS, the hidden units
of the generator is 200 and that of the discriminator is 100. The
dimension of noise vector 𝑧 is set to 15 for both datasets, and the
number of generated relation embeddings 𝑁𝑔 is 20. The weight 𝜆1
for classification loss is set to 1, 𝜆2 for pivot regularization is set
to 3. Other parameters for training GAN are identical to those in
IMGC task.

Results. Considering that the dataset splits proposed in [34]
are rather new in this domain and the authors do not provide any
explanations for the splits, for a fairer comparison, we conduct ex-
periments with originally proposed train/validation splits as well as
with random splits for 3-fold cross-validation. Notably, the testing
relations are fixed, only the training and validation set are redis-
tributed (i.e., 139 training relations and 10 validation relations for
NELL-ZS, 469 training and 20 validation relations for Wikidata-ZS).
We evaluate our method and ZSGAN on these 4 splits for both
datasets and report the average results in Table 4. The results of ZS-
TransE and ZS-DistMult from original paper, referred as ZS-TransE
(Paper) and ZS-DistMult (Paper), are included in the comparison.

http://rtw.ml.cmu.edu/rtw/
https://www.wikidata.org/
http://rtw.ml.cmu.edu/resources/results/08m/NELL.08m.1115.ontology.csv.gz
https://pypi.org/project/Wikidata/
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Table 4: Results (%) of zero-shot knowledge graph completion with unseen relations. The underlined results are the best in
the whole column, while the bold results are the best in the pre-training group.

Pre-trained
KG Embedding Methods NELL-ZS Wikidata-ZS

𝑀𝑅𝑅 𝐻𝑖𝑡@10 𝐻𝑖𝑡@5 𝐻𝑖𝑡@1 𝑀𝑅𝑅 𝐻𝑖𝑡@10 𝐻𝑖𝑡@5 𝐻𝑖𝑡@1

TransE
ZS-TransE (Paper) 9.7 20.3 14.7 4.3 5.3 11.9 8.1 1.8
ZSGAN 23.4 37.3 30.4 16.0 17.7 25.8 20.7 13.1
OntoZSL 25.0 39.9 32.7 17.2 18.4 26.5 21.5 13.8

DistMult
ZS-DistMult (Paper) 23.5 32.6 28.4 18.5 18.9 23.6 21.0 16.1
ZSGAN 24.9 37.6 30.6 18.3 20.7 28.4 23.5 16.4
OntoZSL 25.6 38.5 31.8 18.8 21.1 28.9 23.8 16.7
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Figure 4: Performance of using different priorsw.r.t. different ZSLmethods on ImNet-A and ImNet-O. “ori” denotes the original
class embedding by word2vec or class hierarchy; “o2v” denotes the ontology-based class embedding. ACC (resp. Harmonic
Mean) is reported for the standard (resp. generalized) ZSL setting.

In Table 4, we categorize the results into two groups, based on the
different pre-trained KG embeddings. In each group, our OntoZSL
achieves consistent improvements over baselines on both datasets.
It indicates that the prior knowledge of KG relations that exists in
the ontological schema is superior to that in the textual descriptions.
It is also observed that a higher improvement is achieved when
the score function used for the ontology encoder is consistent with
that used for pre-training KG embeddings. For example, compared
with ZSGAN on NELL-ZS, the performance is improved by 2.6%
on 𝐻𝑖𝑡@10 with TransE-based pre-trained KG embedding (see the
second and third row of Table 4), while is only improved by 0.9%
on 𝐻𝑖𝑡@10 with DistMult-based KG embedding (see the fifth and
sixth row of Table 4).

5.3 Impact of Ontological schema
To further validate the effectiveness of our ontology-based class
semantics, we compare the capabilities of different prior knowledge
by applying different class embeddings to multiple ZSL methods
including some representative baselines as well as ours. Taking the
experiments on image classification datasets ImNet-A and ImNet-O
as examples, the originally used word embeddings of classes and
the ontology-based class embeddings are applied to the baselines
including DeViSE, SAE, DGP and LsrGAN and our method, respec-
tively. For DeViSE, SAE and LsrGAN, the original class embeddings
can be directly replaced with the ontology-based class embeddings
we learned, while for DGP which involves word embeddings of
classes and class hierarchy, we add attribute nodes produced in

our ontological schema into the hierarchical graph to predict the
unseen classifiers.

As reported in Figure 4, the ontology-based class embedding
achieves higher performance for all the methods. For those methods
that use class word embeddings as priors, the ontology-based class
embeddings have a more than 12% increment on two datasets under
the standard ZSL setting, and a more than 2.5% increment under the
GZSL setting. In particular, the harmonic mean of DeViSE increases
from 1.27% to 25.01% on ImNet-A and from 6.98% to 27.20% on
ImNet-O. On the other hand, our method expectedly has worse
performance after using word embeddings of classes as priors. Our
ontology-based class semantics also improve the performance of
DGP when we add attributes to its original class semantics. For
example, on ImNet-A, its performance is improved by 1.82% in the
standard ZSL setting and by 5.36% in the GZSL setting. To sum up,
our ontology-based class embedding which includes richer class
semantics actually performs better than those traditional priors and
is beneficial to kinds of ZSL methods.

5.4 Impact of Ontology Components
In this subsection, we evaluate the contribution of different com-
ponents of the ontological schemas by analyzing the performance
drop when one of them is removed. Specifically, with crippled on-
tological schema, we retrain the ontology encoder to generate class
embedding, and then take it as the input of generation model to syn-
thesize unseen features. We conduct experiments on both two tasks.
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Table 5: Results of OntoZSL on ImNet-A when textual
descriptions (“-text”), class hierarchy (“-hie”) or class at-
tributes (“-att”) are removed from the ontological schema.

Standard ZSL Generalized ZSL
𝑎𝑐𝑐 𝑎𝑐𝑐𝑠 𝑎𝑐𝑐𝑢 𝐻

all 39.00 37.86 27.94 32.15
- text 37.63 35.07 28.50 31.45
- hie 35.50 39.29 24.35 30.07
- att 33.88 38.07 23.71 29.22

Table 6: Results of OntoZSL on NELL-ZS when textual de-
scriptions (“-text”), relation and entity type hierarchy (“-
hierarchy”) or relation constrains (“-domain&range”) are re-
moved from the ontological schema.

𝑀𝑅𝑅 𝐻𝑖𝑡@10 𝐻𝑖𝑡@5 𝐻𝑖𝑡@1
all 0.250 39.9 32.7 17.2
- text 0.247 39.7 32.5 16.8
- hierarchy 0.221 35.8 29.5 14.7
- domain & range 0.243 38.0 31.6 16.7

For IMGC, we respectively consider removing the literal descrip-
tions, class hierarchy and class attributes in the ontological schema,
while for KGC, we consider removing relation constraints (i.e., do-
main and range constraints), relation and entity type hierarchy,
and literal descriptions. The results on ImNet-A and NELL-ZS are
shown in Table 5 and Table 6, respectively. The results on NELL-ZS
are based on the KG pre-training setting of TransE.

From Table 5, we can see that the performance of zero-shot image
classification is significantly declined when the class attributes are
removed under both standard and generalized ZSL settings. This
may be due to the following facts. First, the attributes describe quite
discriminative visual characteristics of classes. Second, the classes
in ImNet-A are fine-grained. They contain some sibling classes
whose differences by the taxonomy are not discriminative. One
example is Horse and Zebra in Figure 1. It is hard to distinguish
the testing images of such classes when there is a lack of attribute
knowledge. As for the KGC task, as shown in Table 6, we find that
the hierarchy of relation and entity type has a great influence on
the performance. It is probably because around 58% of the relations
in the NELL-ZS dataset are hierarchically related, while only nearly
30% of them have identical domain and range constraints.

We also find that the performance on both two tasks are slightly
influenced when the literal descriptions are removed, indicating
the class semantics that exist in text are weak or redundant com-
pared with other semantics. However, when all of these semantics
combined, the best results are achieved. This means these different
components of the ontological schema all have a positive contribu-
tion to the ZSL model and are complementary to each other.

6 CONCLUSION AND OUTLOOK
In this paper, we propose to use an ontological schema to model
the prior knowledge for ZSL. It not only effectively fuses the ex-
isting priors such as class hierarchy, class attributes and textual
descriptions for image classes, but also additionally introduces more

comprehensive prior information such as relation value constraints
for KG relations. Accordingly, we develop a new ZSL framework
OntoZSL, in which a well-suited semantic embedding technique is
used for ontology encoder and a Generative Adversarial Network is
adopted for feature generation. It achieves higher performance than
the state-of-the-art baselines on various datasets across different
tasks. The proposed ontological schemas are shown to be more
effective than the traditional prior knowledge.

In this work, we mainly focus on the newly-added KG relations
for the KGC task. In the future, we would extend our OntoZSL to
learn embeddings for those newly-added entities. Furthermore, we
also plan to further extend OntoZSL to explore other tasks such as
those related to natural language processing.
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A APPENDIX: DATASETS CONSTRUCTION
AND ATTRIBUTE ANNOTATION

In this appendix, we provide more details of ImNet-A and ImNet-O
(from ImageNet) and their manually annotating attributes.

A.1 Extracting Classes
ImageNet [9] is a widely used image classification dataset consisting
of labeled images of 21 thousand classes. We conditionally extract
different class families from its fine-grained parts. Classes in a
family have the same type, in which 1) the unseen classes are 1-hop
or 2-hops away from the seen classes according to the WordNet
texonomy (enabling the transferability from seen classes to unseen
classes); 2) the total number of seen and unseen classes is more
than 3 (making the classification is fine-grained); and 3) each class
has a Wikipedia entry (ensuring valid attribute descriptions from
Wikipedia for human annotation).

With these conditions, we extract a domain-specific subset ImNet-
A, which consists of 11 animal families, such as Bees,Ants, and Foxes,
and a general subset ImNet-O, which consists of 5 general object
families, such as Snack Food and Fungi.

A.2 Preparing Attribute List
Before annotating attributes, we first prepare the candidate attribute
list. Inspired by the attribute annotations of AwA, which describe
the color, shape, texture and important parts of objects, we reuse
some attributes from it as well as extract textual phrases which
characterize the appearances of classes from Wikipedia entries.
Fox example, one sentence of Wikipedia that describes the class
Spoonbill is: “Spoonbills are most distinct from the ibises in the
shape of their bill, which is long and flat and wider at the end.",
from which we can conclude the attribute long flat and wider bill.

A.3 Class-Specific Attribute Annotation
We invite volunteers to manually annotate attributes for these
classes. Specifically, for each class, annotators are asked to assign
3 ∼ 6 attributes from the attribute list with 25 images given as the
reference. Each class is reviewed by 3 ∼ 4 volunteers, and we take
the consensus as the final annotations. Finally, we annotate a total
of 85 attributes for ImNet-A classes and 40 attributes for ImNet-
O classes. We associate these attributes with their corresponding
classes to construct the ontological schema.
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