
Schema-aware Iterative Completion for Knowledge Graphs Revisited 1

Statements and Declarations. The authors would like to thank Huawei
for supporting the research on which this paper was based under grant
CIENG4721/LSC.



2 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Schema-aware Iterative Completion for

Knowledge Graphs Revisited

Fangrong Wang1, Alan Bundy1, Xue Li1, Ruiqi
Zhu1, Kwabena Nuamah1, Lei Xu2, Stefano Mauceri2

and Jeff Z. Pan1,3*

1School of Informatics, the University of Edinburgh, UK.
2Ireland Research Center, Huawei, Ireland.

3Edinburgh Research Centre, CSI, Huawei, UK.

*Corresponding author(s). E-mail(s): j.z.pan@ed.ac.uk;

Abstract

Recent success of knowledge graph (KG) has spurred widespread inter-
ests in methods for the problem of Knowledge Graph Completion (KGC).
However, efforts to understand the quality of the candidate triples from
these methods, in particular from the schema aspect, have been lim-
ited. In fact, most existing Knowledge Graph completion methods do
not guarantee that the expanded Knowledge Graphs are consistent with
the schema of the initial Knowledge Graph. Hence, schema-aware KGC
seems to be way to go.
In this paper, we revisited the notion of schema-aware KGC from the
aspects of sampling strategies, the type of triple producers, and the
ways that different KGC methods are combined. Accordingly, we present
Schema-aware Iterative Completion for KnowLEdge Graphs (SICKLE),
a system to integrate a variety of KGC methods, including embedding-
based methods, literal-embedding-based methods, rule-based methods
and a materialisation-based methods, together with an Approximate
Consistency Checking (ACC) approach to producing schema correct
triples.
Our experimental results show that our approach is able to
improve not only the schema-awareness of KGC in producing
schema-correct triples in link prediction task but also the per-
formance in the downstream task of type prediction. Our source
code is publicly available from https://github.com/sig4kg/SIKGC.

Keywords: knowledge graph completion, approximate reasoning



Schema-aware Iterative Completion for Knowledge Graphs Revisited 3

1 Introduction

In general, a knowledge graph can be seen as an ontology with an entity-centric
view, consisting of a set of interconnected typed entities and their attributes, as
well as some schema axioms for defining the vocabulary (terminology) used in
the knowledge graph [1]. Indeed, the use of knowledge graphs [1, 2] has become
popular in knowledge representation and knowledge management applications,
including search [3–6], recommendation [7–13], medical informatics [14–17],
finance [18–20], science [21–25], multi-modal content [26, 27], media [28–31],
software engineering [32–37] and industrial domains [1, 38, 39].

Knowledge Graph Completion aims to complete the structure of knowledge
graphs by predicting the missing entities or relationships in them and mining
unknown facts over the relational triples of the form ⟨h, r, t⟩, where h is the
head entity, r the relation and t the tail entity. The KGC can be performed by
either extracting new facts from external sources, such as textual documents,
or by eliciting implicit facts within the existing content of the KG. The latter
task is called link prediction (LP), the goal of which, given a knowledge graph,
a head (tail) entity e and a relation r, is to predict the tail (head) entity
⟨h, r, ?⟩ (⟨?, r, t⟩). The general links that connect entities are usually inferred
using techniques such as inductive learning, knowledge graph embedding and
rule mining. Under the LP category, there are at least two typical types of
triple producers, such as knowledge graph embedding and rule learning [40–47].
Knowledge graph embedding approaches, such as [48, 49] (and many others),
complete an input knowledge graph ABox by learning vector representations
of existing entities and relations for predicting missing relations. Rule learning
approaches, such as [50, 51], complete an input knowledge graph ABox by
learning rules based on patterns in the ABox. The learned rules can then be
used to produce new relation assertions. The type links that add types of
entities is called type prediction (TP). It is related to node classification task
[52–54]. For example, train a classifier on the features of node and inward and
outward edges to infer node types [55–57].

Correctness checking in KGC can be done by various methods, including
probabilistic triple classification with machine learning or statistical methods
[58–61], finding explanations from existing KG or external text evidence [62–
65] and consistency checking with defined, external or mined constraints [66–
69]. The triple classification methods and evidence mining methods usually do
not take the schema of the KG into account, so that a triple that is identified
as correct might be inconsistent with the existing KG.

Existing KGC research often uses the silver standard method [70] to mea-
sure the performance of Knowledge Graph completion approaches, which
assumes that the KG itself is already of reasonable quality. In the silver stan-
dard method, some existing links in the data sub-graph (ABox) are removed
for testing if triple producers can help to recover the missing links. Our exper-
iments bring the silver standard method into question. They show that only
89.9% triples are consistent with the original NELL-995 dataset [71] schema
and satisfy the domain and range constraints. The corresponding ratios for



4 Schema-aware Iterative Completion for Knowledge Graphs Revisited

the DBpedia Politics subset (DBped-P) [72] are 99.6% triples consistent with
the DBpedia-2016 1 schema and 57.8% triples satisfy the property domain
and range constraints. Also, previous research [73] show that translation based
methods, such as TransE, cannot properly capture simple rules; even Bilinear
models, such as SimplE [74] and ComplEx [75], are severely limited when rep-
resenting subsumption or equivalence between relations. This indicates that
embedding based triple producers might have limited capability in terms of
representing schema of Knowledge Graphs. If we apply embedding-based LP
directly on a given KG, the percentage of the results that are consistent with
the schema and satisfy the constraints is low. For example, when we use TransE
[48] to link the NELL-995 dataset, less than 50% of the first 10 results are
consistent with its schema.

Our previous work, SIC [72], challenged the silver standard method,
by proposing the notion of schema-correctness. SIC evaluated the schema-
correctness level for KGC task on different types of triple producers, including
a knowledge graph embedding method (E-method), a rule learning method (R-
method), an ontology reasoning method for materialisation (M-method) and
their combinations and iterations. SIC used an approximate consistency check-
ing (ACC) method [66] with its triple producers to detect the inconsistencies
that either already exist in the knowledge graph, or that are introduced by
triple producers during an iterative process, so that only the schema-correct
triples will be used in the next iteration of completion.

In this paper, we revisited the notion of schema-aware KGC. While our
core objective is similar to SIC, i.e., to produce schema-correct triples as many
as possible with respect to the schema of Knowledge Graph and to complete
a given KG with only schema-correct triples, we consider different strategies
to achieve this objective and thus raise different research questions.

Firstly, we develop a schema-aware sampling strategy to target the false
negative problem. The closed-world assumption (CWA) assumes that triples
present in the KG are true and triples not present in the KG are false. Under
the CWA, a common silver standard sampling strategy uses the existing triples
in a KG as positive examples, and creates negative examples by corrupting
positive triples and replacing head or tail with randomly selected entities.
However, the real-world KGs are usually dynamic and developing rapidly, it
is hard to assume a given KG is perfect. Under the open-world assumption,
the triples absent from the KG could be false negative. Our baseline system
SIC tackled the false positive problem by only using schema-correct triples
as positive examples, but it ignored the false negative problem. We tackle
the false negative problem by developing a schema-aware negative strategy
which generates schema-inconsistent triples and uses them as negative samples
during KG embedding training procedure. By exploiting logical consistency in
the sampling strategy, we would like to make high-rank triples as consistent
as possible.

1https://www.dbpedia.org/2016-10/



Schema-aware Iterative Completion for Knowledge Graphs Revisited 5

Secondly, we include a literal-embedding based KGC method, referred to
as the L-method, in our combined pipeline. SIC completes knowledge graphs
with transductive LP, where the full set of entities must be known during
training. However, most real-world KGs evolve quickly with new entities and
new triples being discovered over time. Recent years have witnessed increasing
interest in learning KG representations with extra literal information [76–
81]. The literal-embedding methods (L-method), such as DKRL [76], SSP [78],
Conmask [77], BLP [80] and many others, have the potential of linking novel
entities into existing KG, which referred as inductive LP [82]. Our goal in
integrating the L-methods is not just to use it to handle new nodes, but we
argue that combining literals and the per-trained language models can improve
schema-correctness in KGC pipeline compared to pure E-method. In Section
5, our experimental results confirmed this hypothesis.

Thirdly, we flexibly assemble KGC pipelines with four types of triple pro-
ducers (an E-method, a R-method, an M-method and a L-method) and an
ACC module in an iterative manner and run in parallel or series mode. The
different type of methods operate independently and are able to focus on their
strengths and can benefit each other with new schema-correct triples fed back
into next learning procedure. Our hypothesis is that the KGE’s schema features
can be enhanced by injecting new schema-correct data in iterative training.

In our strategies, the ACC module plays an important role in identify-
ing schema-correct triples and schema-inconsistent triples from a given KG
or expanded KG. We use schema-correct triples for learning and prediction
and only add new schema-correct triples to a target KG. Particularly, the M-
method only works on consistent KGs, hence the ACC module acts as a “clean
up” step to filter out inconsistent triples from the expanded KGs. We also
make use of schema-inconsistent triples in negative sampling of KGE training.
Our criterion of ACC is being able to detect as many as possible inconsistency
justifications from a large scale KG. In this paper, we propose a new ACC
method by applying the idea of knowledge compilation [83, 84], by transform-
ing the TBox in complex description logic, OWL 2 2 into a simpler description
logic, DL-Lite [85]. Based on the transformed TBox in DL-Lite, we designed
and calculated inconsistent justification patterns (IJPs) with more reasoning
power and more uniform forms than those in SIC. With this ACC method, we
scanned the ABox to identify inconsistent triples that match the IJPs. The
optimised ACC module is more effective and efficient than previous work men-
tioned in [66] in detecting errors in a Knowledge Graph containing millions of
triples.

With all these methods, we develop a unified system called SICKLE for
schema-aware iterative hybrid KGC. The features of SICKLE include:

• SICKLE extends the training data sampling strategy for E-methods and
L-methods. With our schema-aware sampling strategy, only schema-correct
triples are used for positive sampling and schema-inconsistent triples are
preferentially selected for negative sampling.

2https://www.w3.org/TR/owl2-overview/



6 Schema-aware Iterative Completion for Knowledge Graphs Revisited

• At the functional level, SICKLE applies a schema-aware sampling strategy
and includes L-methods, which encode entities with their literal informa-
tion with pre-trained language models, before applying knowledge graph
embedding (KGE) based learning.

• At the algorithm level, SICKLE optimises the ACC module to identify
inconsistent subsets from a given KG.

• At the implementation level, SICKLE flexibly assembles different triple pro-
ducers and ACC models in combinations and runs them in an iterative
manner for both Link Prediction (LP) and Type Prediction (TP). It uni-
fies data formats and manages data for different types of triple producers
and ACC modules. Thus, users no longer need to handle complicated data
processing for different triple producers.

We experimentally tested SICKLE on both community benchmarks and
an industrial dataset. To analyze the schema-awareness of the triple pro-
ducer pipelines in SICKLE, we followed SIC’s validation method: calculating
schema-consistency ratio, schema-correctness ratio, coverage and their har-
monica mean on a variety of triple producer combinations. We name this
validation method schema-aware silver completeness ratios. For E-methods
and L-methods, instead of evaluating KGC using the silver-standard [70], we
propose a schema-aware silver standard, which splits a portion of test data
from the original data set and extends it with new triples that materialised
from the given KG, then the evaluation matrix for LP and TP are calculated
based on the extended test set. Our main findings are as follows:

1. The schema-aware sampling strategy improves the schema-aware silver com-
pleteness ratios of the E-methods and the L-methods. It also has a positive
effect in the downstream TP task.

2. The L-methods outperformed the E-methods in producing schema-correct
triples, given high quality literal features and pre-trained language models.

3. The E-methods outperformed the L-methods in transductive LP, but if we
apply the entity representations learned in LP to the downstream TP task,
the L-methods outperforms the E-methods. It indicates that the L-methods
encode additional schema-related features from literal while learning KGE,
and these additional features are transferable to the downstream TP task.

4. The embeddings learned by iterative pipeline performs better in down-
stream TP tasks than embedding trained by single round. Furthermore, the
combinations of different types of triple producer outperformed single triple
producers on all schema-aware silver completeness ratios.

5. Even with one iteration, parallel pipeline runner approaches perform worse
than serial pipeline runner approaches in terms of productivity; however,
with the number of iteration increasing, the parallel approaches catch up.
Furthermore, parallel approaches are significantly more efficient.



Schema-aware Iterative Completion for Knowledge Graphs Revisited 7

2 Background

2.1 Schema-aware KGC

We define a knowledge graph G = (T ∪C)∪A, as consisting of a schema (T ∪C)
and A, which is a set of interconnected typed entities and their attributes (or
ABox in description logic terminology). The schema of a KG consists of a set
of ontological axioms T (or TBox in description logic terminology) that defines
the vocabulary used in a KG, as well as a set of constraints C. The ABox
statements captured in the knowledge graph are of two forms:

• Relation assertion r(h, t), where h is the head entity, r the relation and t
the tail entity. In the triple format, it can be rewritten as ⟨h, r, t⟩.

• Type assertion C(a), where a is an entity and C is a type. In the triple
format, it can be rewritten as ⟨a, rdf : type, C⟩.

Given a knowledge graph G = (T ∪C)∪A, SICKLE uses schema (T ∪C) to sup-
plement a set of schema-correct triples for the data sub-graph A. The previous
work [66, 72] regards the triples of a Knowledge Graph as being either schema-
correct, schema-incorrect, or schema-unknown in terms of their compliance
with the schema of that knowledge graph. We add two more categories, schema-
consistent and schema-inconsistent to better describe the different levels of
outputs from SICKLE’s ACC module.

• Schema-correct triples: consistent with the schema of the Knowledge
Graph and satisfying the constraints, such as domain and range

• Schema-incorrect triples: are either not consistent with the TBox or not
satisfying the constraints

• Schema-unknown triples: they are consistent with the schema, but not
yet satisfying the constraints, due to lack of some type information for their
hs or ts, i.e., neither schema-correct nor schema-incorrect

• Schema-consistent triples: they are consistent with the schema, and
not proved to violate the constraints, i.e, either schema-correct or schema-
unknown

• Schema-inconsistent triples: not consistent with the schema.

For example, given a set of schema axioms and type assertions:

• Domain(at school) = Student, Range(at school) = School, School ⊓
Person ⊑ ⊥;

• Student(jim), Person(anna), School(westhill primary).

We have three triple examples:

1. ⟨Jim, at school, westhill primary⟩ is schema-correct;
2. ⟨Jim, at school, anna⟩ is schema-inconsistent;
3. ⟨anna, at school, westhill primary⟩ is schema-unknown, yet schema-

consistent.



8 Schema-aware Iterative Completion for Knowledge Graphs Revisited

A schema-incorrect triple is not consistent with the schema of a knowledge
graph, or does not satisfy the constraints. While a schema-consistent triple is
either schema-correct or schema-unknown.

Definition 1 Given a Knowledge Graph G = (T ∪ C) ∪A, a triple (h, r, t), where h
and t are entities and r is a object property in G, with Ch, Ct being some types of
h and t resp., and Dr, Rr being some domain and range of r. We say (h, r, t) is a
schema-correct triple w.r.t. G if:

1. the TBox and expanded ABox
(
T ∪ A ∪ (h, r, t)

)
is consistent, and

2. Ch ≡ Dr and Ct ≡ Rr (domain and range constraints in C).

In Definition 1, the domain and range are used as constraints in C.

Definition 2 Given a Knowledge Graph G = (T ∪ C) ∪ A, a triple (h, r, t), where
h and t are entities and r is an object property in G, with Ch, Ct being some
types of h and t resp., and Dr, Rr being some domain and range of r. (h, r, t) is a
schema-incorrect triple w.r.t. G if:

1. T ∪ A |= (h, r, t) ⊑ ⊥, or
2. T ∪ A |= Ch ⊓Dr ⊑ ⊥, or
3. T ∪ A |= Ct ⊓Rr ⊑ ⊥.

Definition 3 Given a Knowledge Graph G = (T ∪ C) ∪ A, a triple (h, r, t), where
h and t are entities and r is an object property in G, (h, r, t) is a schema-unknown
triple w.r.t. G if it is neither schema-correct nor schema-incorrect w.r.t. G.

Definition 4 Given a Knowledge Graph G = (T ∪ C) ∪ A, a triple (h, r, t), where
h and t are entities and r is an object property in G, (h, r, t) is a schema-consistent
triple w.r.t. G if

(
T ∪ A ∪ (h, r, t)

)
is consistent.

Definition 5 Given a Knowledge Graph G = (T ∪ C) ∪A, a triple (h, r, t), where h
and t are entities and r is an object property in G, (h, r, t) is a schema-inconsistent
triple w.r.t. G if T ∪ A |= (h, r, t) ⊑ ⊥.

Our core objective is to produce “correct” triples as many as possible with
respect to the schema of a Knowledge Graph. SICKLE’s schema-aware KGC
pipeline expands a target KG with only schema-correct triples. It uses an ACC
module to not only detect the inconsistencies but also identify schema-correct
triples that either already exist in the Knowledge Graph, or are produced by
triple producers in an iterative process, so that only new schema-correct triples
will be added to the target KG. We also incorporate schema-awareness in
the KGE training process by implementing the schema-aware sampling strat-
egy, where only schema-correct triples are selected as positive examples and



Schema-aware Iterative Completion for Knowledge Graphs Revisited 9

schema-inconsistent triples are preferred to be selected as negative examples.
These definitions are used in our evaluation in Section 5.

2.2 Combined and Iterative KGC

Two of the most common KGC methods are the KG embedding (E-
method) and the logic rule learning (R-method). As discussed in [41], typical
embedding-based models first learn embedding vectors based on existing
triples. The prediction is done by replacing the head entity or tail entity with
candidate entities, then calculating the scores of all the candidate entities and
ranking the top k entities. A summary of recent embedding based models was
reviewed and analyzed in [40–42, 86–88]. Another research direction of KGC
is logic rule learning, which makes use of the symbolic nature of knowledge to
identify or learn logic rules from an existing set of triples. Rules over KGs are
of the form head← body, where head is an atom and body is a conjunction of
atoms. The rules are then applied to the existing KG to infer new triples.

Both the embedding-based method and the rule-based method attempt to
capture patterns present in KGs and generalize them so as to infer new triples,
but they have differences.

The underlying patterns captured by the E-methods are hidden in the mod-
els. The expressive capability of KG embeddings are related to the designed
characteristics of KGE models [87, 89] and distributions of the training data
[90]. [90] pointed out that one of the main challenges of embedding learning
is encoding sparse entities, in that the prediction results of sparse entities are
generally worse than those of frequent ones.

Unlike the KG embedding, the logic rule learning is explainable and can
provide insights for inference results. Given a target relation r, a straightfor-
ward approach of rule learning is to look for triples < a, r, b > and search
possible paths up to a certain length between a and b. Using the paths as rule
body, the confidence of candidate rules is calculated by dividing number of
supports with number of groundings with relation r in the KG. When applying
rule to infer new triples, given a completion task < a, r, ? >, the R-methods
select rules with r in its head and replace head entity with a, then search all
body groundings in a given KG [89]. When learning logic rules and applying
them on KGC, the R-methods require many extensive searches on a given KG.
Although the R-methods usually have some mechanisms, such as limiting the
length of paths, to balance running time and completeness, the huge search
space is still a challenge [68, 91, 92].
Different from the E-methods and the R-methods, the M-method infers new
triples from the given KG, where all axioms that logically follow (T ∪ C,A)
in G are materialised as new axioms. In [93], the materialisation is defined as
below:

Definition 6 (Materialisation) For an ontology O, its ontology materialisation is
the set {A ⊑ B | A,B ∈ NC ,O |= A ⊑ B} ∪ {a : A | A ∈ NC , a ∈ NI ,O |= a :



10 Schema-aware Iterative Completion for Knowledge Graphs Revisited

A}∪{(a, b) : r | r ∈ NP , a, b ∈ NI ,O |= (a, b) : r}, where NC , NP and NI are named
classes, named properties, and individuals in O.

Considered the differences between KGC methods, many existing work
[90, 94], including our baseline system SIC [72], combined different types of
KGC methods together, so that they can benefit and complement each other.
IterE [90] combined embedding learning and rule learning for link prediction,
in which rules are learned from embeddings and embeddings are learned from
existing triples and new triples inferred by rules. Recent work [94] combined
the outcome of rule based LP and embedding based LP in a post-processing
step, in which KGE scores are used as an additional information to change the
position in the ranking of rule-based link predictions. Our baseline system SIC
combined a E-method, a R-method and a M-method to generate new triples,
and make sure the produced triples are schema-correct, also it tends to pro-
duce as many schema-correct triples as possible in an iterative manner. Our
combination method is similar to SIC, in that we make use of KG schema and
combine multiple types of KGC methods to produce schema-correct triples.
But we consider different strategies to improve the KGC pipelines in produc-
ing schema-correct triples. The details of our strategies are described in next
section.

3 Our Approach

3.1 Problem Definition

As mentioned earlier, our core objective is to produce schema-correct triples as
many as possible with respect to the schema of Knowledge Graph. Although
the principle of combining multiple models into an ensemble to produce
schema-correct triples has been studied in SIC, we target this objective by
considering different strategies and raising new research questions:

• We developed a schema-aware sampling strategy, which targets the false
negative problem in common sampling strategy of CWA. We generate
schema-inconsistent triples as negative examples during KG embedding
training procedure, so that false negatives can be avoided. In addition, we
only use schema-correct triples as positive examples in training and only
schema-correct predictions are added to a target KG. Our hypothesis is that
the schema-aware sampling strategy would improve the KGC pipeline in
producing schema-correct triples.

• We include a literal-embedding based model in the system. Our hypothe-
sis of this strategy is that the entity literals and the knowledge stored in
a pre-trained language model would improve the schema-awareness when
producing new triples.

• We assemble KGC pipelines with different types of triple producers (an E-
method, a R-method, an M-method and a L-method), because we believe



Schema-aware Iterative Completion for Knowledge Graphs Revisited 11

that different methods can benefit and complement each other. The com-
bined pipelines can be executed in an iterative manner, so that different
types of triple producers can benefit each other with new schema-correct
triples fed back to learning procedure. Our hypothesis is that the KGE’s
schema features can be enhanced by injecting new schema-correct data in
combined and iterative training.

• We execute pipelines in both the series mode and the parallel mode. In dif-
ferent execution modes, pipelines share data in different ways. We would like
to know how different the execution setting would impact the performance
of pipelines in producing schema-correct triples.

Our strategies are designed to enhance schema-aware features in KGC
pipelines, so that the pipelines tend to produce more schema-correct triples. To
evaluate the efficacy of these strategies, we designed two tasks. One is produc-
ing schema-correct triples via LP, another is TP. We assemble KGC pipelines
with these strategies and their combinations to produce relation assertions via
LP task. We would like to know their efficacy in producing schema-correct
triples. Our TP task is a downstream task of LP, which uses the KGEs learned
in LP as input features and predict entity types. In a combined and iterative
pipeline, the KGEs are learned with more schema-correct triples in itera-
tions. We would like to know whether this data enhancement has advantage
in downstream TP task.

3.2 Schema-aware Sampling

The embedding-based KGC approaches focus on learning low-dimensional
embeddings for triple prediction. Conventional KGE methods, such as TransE
[48], ComplEx [75], SimplE [74] and many the others, are trained through
discriminating positive samples from negative ones. The sampling strategy,
especially negative sampling strategy, is important for KGE training [95]. The
CWA assumes that triples present in the KG are true and triples not present in
the KG are false. A commonly used silver standard sampling strategy uses the
existing triples in a KG as positive examples, and creates negative examples by
corrupting positive triples and replacing head or tail with randomly selected
entities [60]. However, this does not work under the open-world assumption,
because absent triples could possibly be false negatives [61]. The negative sam-
pling must consider the open world assumption, that the missing information
is unknown rather than false. Also, KGs are often constructed based on knowl-
edge extraction and may contain errors, hence existing triples may also be false
positives. For example, about 10% of triples in the NELL-995 dataset are not
consistent with its schema. In SICKLE, we use schema-correct triples as posi-
tive examples and leverage the ACC module to generate schema-inconsistent
triples as negative examples during KGE training procedure.

Many existing works have tackled the false negative problem [95]. For exam-
ple, TransR [96] applies different probabilities in head and tail replacement
to address the issue of false negatives. It gives more chance of replacing the



12 Schema-aware Iterative Completion for Knowledge Graphs Revisited

head in 1-to-many relations and the tail in many-to-1 relations, but it doesn’t
consider the schema like us. TRANSROWL [61] exploits schema in RDFS
and OWL to generate a selection of negative samples in the pre-processing
step for KGE training. Our method is different in that we generate negative
samples during the training process, and we also take into account the top
ranked schema-inconsistent predictions in an iterative pipeline, so that the new
training is able to specifically target the weaknesses of the previously trained
model. The existing work [97] is the closest method to our schema-aware sam-
pling strategy, in that it leverages schema to generate inconsistent triples as
negative examples and leveraging inconsistent predictions to derive negative
samples in an iterative training. It’s iterative training is exploited for the gen-
eration of negative samples. Our schema-aware sampling strategy differs from
[97] in that our iterative KGC pipeline is to iteratively produce schema-correct
triples, and top ranked schema-inconsistent predictions are the byproduct of
our KGC pipeline, so it’s natural to make use of them. Our baseline system
SIC [72] tackled the false positive problem by applying consistency checking
before and after the training procedure, but it ignored the false negative prob-
lem. In SIC’s pipeline setting, only schema-correct triples were used as the
training set, while the inconsistent triples were abandoned.

Our schema-aware sampling strategy, on the one hand, uses schema-correct
triples as positive examples; on the other hand, we dynamically generate
inconsistent negative examples, consisting of the schema-inconsistent triples
predicted in the previous round and random schema-inconsistent triples.

Our schema-aware sampling strategy involves two subsets of an expanded
ABox A′: the schema-inconsistent subset (Sincon) and the schema-correct sub-
set (Scor). Based on Definition 2 - 5, these two sets are computed by equation
(1) and (2), respectively.
Sincon contains the triples involved in any proof of false ⊥ in the extended

ABox A′ but which do not occur in the input ABox A. Here G′ = A′ ∪
T ; function ∈̇(π,G) returns the triple r(h, t) that completes the proof π and
r(h, t) ̸∈ A; G′ ⊢π ⊥ means that π is a proof of ⊥ in G′.

Sincon = {r(h, t) | ∃π. r(h, t)∈̇(π,G) ∧ (G′ ⊢π ⊥)} (1)

It’s worth noting, the equation (1) can apply to the original KG, if we
regard the original ABox as A′ and ∅ as A, any triples in the original ABox
that complete the proof π are inconsistent triples under this equation. While
for an expanded KG, we identify new triples that complete the proof π as
inconsistent triples, but considering the interaction among all axioms, which
is often the reason for inconsistency.

The set of schema-correct triples Scor are the ones not in the schema-
inconsistent subset Sincon and also satisfy the constraints C, which are domain
and range constraints in our case.

Scor = {r(h, t) | r(h, t) ∈ (A′ \ Sincon) ∧ Ch ≡ Dr ∧ Ct ≡ Rr} (2)



Schema-aware Iterative Completion for Knowledge Graphs Revisited 13

For positive sampling, we alter the traditional silver standard sampling
by setting schema-correct subset Scor as positive examples, instead of A. We
define the schema-aware positive sampling as below:

Definition 7 (Schema-aware Positive Sampling) Given a knowledge graph G =
(T ∪ C) ∪ A′, we use the schema-correct subset Scor in A′ as positive examples for
triple producers in SICKLE.

Our negative sampling strategy has two sources of negative samples: (1)
a schema-inconsistent subset of top ranks in the last round prediction in
an iterative pipeline; (2) randomly generated inconsistent triples. Intuitively,
incorporating feedback from inconsistent predictions back to the iterative
pipeline would reduce frequently encountered inconsistent predictions in future
training. However, there’s usually not enough top ranked inconsistent predic-
tions from last round to do all the negative sampling, especially when the
specified number of negative samples is much more than positive samples in the
KGE model training. In that case, we need dynamically generate inconsistent
triples for each batch of training data loaded in the KG embedding training.
The final schema-aware negative samples are selected from both the inconsis-
tent top ranked predictions and inconsistent random generations. In practice,
as the KG embedding training procedure reads training data in batches, we
dynamically generate schema-inconsistent triples for each batch of positive
examples Bpos. We formalize the generation of inconsistent negative examples
as Definition 8:

Definition 8 (Random Schema-inconsistent Negative Examples) During the train-
ing procedure of a KGE model, given the positive examples Scor and the schema
T , for each batch of triples Bpos ⊆ Scor, we randomly generate a set of schema-
inconsistent negative examples:

Bincon = {r(h′, t′) | T ∪ Scor |= r(h′, t′) ⊑ ⊥} (3)

where h′ ∈ EB and t′ ∈ EB , EB are the entities in Bincon.

Example 1 Given two relation assertions: α1, α2, which are in A′ but not A, and the
TBox and ABox: T ∪ A′, and the schema-correct subset of the ABox: Scor, where:

1. Scor ⊑ A′,
2. {α1, α2} ⊓ Scor ⊑ ⊥,
3. T ∪ Scor |= {α1, α2} ⊑ ⊥,
4. (T ∪ Scor ∪ α1) is consistent,
5. (T ∪ Scor ∪ α2) is consistent.

In this example, we can conclude that α1 and α1 belong to Sincon. Thus,
We can not add {α1, α2} into the target KG, because they complete a proof of
inconsistency, w.r.t. item 3 in Example 1. However, neither α1 or α1 belongs to



14 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Bincon, w.r.t. item 4 and 5, because we only focus on the interactions between
negative examples and existing positive examples when reasoning inconsistency
for negative sampling.

In an iterative pipeline, we make use of the schema-inconsistent subset
Sincon of top ranks from previous round predictions and select them as negative
samples together with the generated inconsistent negative examples.

With Sincon and Bincon, we formalize the schema-aware negative sampling
as Definition 9:

Definition 9 (Schema-aware Negative Sampling) During the training procedure
of an KGE model, the schema-aware negative examples Bneg for batch Bpos are
randomly sampled from (Sincon ∪Bincon).

The definitions in this section formalised a few key steps of algorithms
in Section 4.2 and Section 3.5. Also, Scor computed by equation (2) are
incorporated in the evaluation in Section 5.

3.3 Literal-embedding based Method

In SICKLE, we include a literal-embedding model, referred to as L-method.
Most of the embedding-based methods discussed in [41, 42, 88] are structure
based embeddings, which do not make use of any literal information about the
entities. In fact, literals in a KG encode additional information which is not
captured by the entities or relations. Typical types of literals are text literals,
numeric literals, image literals and external information linked to entities [81].
Recent works [76–80] have begun to explore the use of textual descriptions
available in knowledge graphs to learn vector representations of entities in order
to perform LP. They pointed out that literals can bring advantages to pure
structure-based KGC by enriching the representation of entities and relations
with semantic information. For example, literals are a natural substitute for
missing topological features of novel entities or disconnected entities, hence
they can help with predicting links for novel entities [77].

Following [80], the input KG of the L-methods is defined as a tuple G =
(NI , NP , T r,D), consisting of a set of individuals NI , a set of named properties
NP , schema-correct triples Scor, and entity descriptions D. For each entity
ei ∈ NI , there exists a description dei = (w1, ..., wn) ∈ D, where all wi are
words in a vocabulary V . Given a Knowledge Graph G = (NI , NP , T r,D), the
L-methods are able to complete G by producing a set of missing triples Tr′ =
{r(h, t) | r(h, t)�∈Tr, h ∈ N ′

I , t ∈ N ′
I , r ∈ NP } in the incomplete Knowledge

Graph G where N ′
I is an entity superset.

Modern language models, such as BERT [98], automatically acquire knowl-
edge from large-scale corpora via pre-training. Especially, phrases of the same
type are relatively close in pre-trained text representation. For example, the
cosine similarity between Barack Obama and George W. Bush from BERT
encoding is 0.997, because both entities play similar roles and have similar



Schema-aware Iterative Completion for Knowledge Graphs Revisited 15

context in text corpus. Previous literal-embedding based KGEs focused on
improving the LP accuracy based on the closed world assumption. There is
no evaluation on whether the literal information would benefit the ontolog-
ical schema-awareness. In SICKLE, in terms of our research objectives, we
investigate if the literal features, such as the entity names and descriptions,
and the knowledge stored in the pre-trained language model would improve
the schema-awareness in KGC, compared to basic KG embedding learning
algorithms.

3.4 Combined and Iterative KGC

We combine an E-method, a R-method, a M-method, a L-method and an
ACC module to produce schema-correct triples. Similar to the E-methods,
the L-methods also learn embeddings for entities and relations. In SICKLE,
the difference of the L-methods and the E-methods is that, for L-methods,
the entity or relation embedding is initialised by encoding its text literal with
a pre-trained language model, while for E-methods, it is a “one-hot” index
vector.

In a SICKLE pipeline, the ACC module acts as a ”cleanup” step. The ACC
is applied at the beginning of the pipeline to filter out any schema-inconsistent
triples existing in the original KG and only schema-correct triples are fed
to triple producers. Moreover, the outputs of the E-methods, the L-methods
and the R-methods contain a large portion of triples that not consistent with
the input KG; the ACC is ran after each of these producer modules to iden-
tify schema-correct subset and schema-inconsistent subset, so that only the
schema-correct subset are fed to next triple producer or next iteration for
training and prediction. The schema-inconsistent triples are preferred to be
selected as negative examples in our schema-aware negative sampling strategy.
We do not run ACC after the M-method, because the triples from M-method
are already schema-correct.

In SICKLE, the schema-aware KGC only expands the input KG with
schema-correct triples. The new version of KG G′ consists of the original
schema and schema-correct subset: G′ = (T ∪ C) ∪ Scor.

We assemble KGC pipelines with single or multiple triple producers and
the ACC module. A pipeline can be executed in an iterative manner, and run
in either series or parallel mode. An iterative pipeline can be run many rounds,
until a certain stop condition is satisfied, for example, the specified number of
iterations has been completed. In the series mode, each triple producer in a
pipeline is executed one by one. The ACC is executed after each triple producer
if needed, and only schema-correct triples are fed to next triple producer in the
pipeline. In the parallel mode, all triple producers in a pipeline are executed
in parallel. And after all triple producers finish prediction, their results are
collected and merged, then fed to the ACC module. We illustrate examples of
the series pipeline and parallel pipeline in Figure 1 and Figure 2.

In the combined and iterative pipeline, the new schema-correct subsets are
incorporated into training and producing procedures. The KGEs learned from



16 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Fig. 1 An example of series iterative pipeline with R-methods, M-method and L-methods.

Fig. 2 An example of parallel iterative pipeline with R-methods, M-method and L-methods.

a combined and iterative pipeline are trained with more schema-correct triples
from different triple producers and from iterations. Our hypothesis is that the
KGE learned with this data augmentation would contain more schema-related
features, hence can produce more schema-correct triples than KGE learned in
single-pass and can bring benefits to downstream schema-related tasks, such
as TP. SICKLE supports flexible assembly of pipelines. By testing different
pipeline combinations and configurations, we would like to compare pipeline
performance in producing schema-correct triples. We also test the KGE learned
from different pipelines on a downstream TP task, which exploits the KGE to
predict entity types.

3.5 Strategy for Approximate Consistency Checking

The conventional reasoning services for Description Logic ontologies, are usu-
ally expensive, due to the high reasoning complexity [93]. The consistency
checking services provided by OWL reasoners, such as HermiT [99] and TrOWL
[100], are relatively fast to detect if a given KG is consistent or not, how-
ever, the justification service that identify explanations for inconsistencies in
a KG is time consuming. In the iterative pipeline, the expanded Knowledge
Graphs can become a lot larger than the original Knowledge Graph. Due to
the scalability issues of sound and complete reasoners, we decided to consider
the approximate consistency checking (ACC) method that was introduced in
[66]. This approach learns a few inconsistent justification patterns (IJPs) from
TBox, and then uses the patterns to justify inconsistent subsets in ABox. How-
ever, one drawback of ACC described in [66] is that it relies only on explicit



Schema-aware Iterative Completion for Knowledge Graphs Revisited 17

constraints defined in the given KG, such as domain, range and class disjoint-
edness, and ignores deeper reasoning. This drawback makes it difficult to be
applied to rich expressive ontologies and hard to identify complex inconsistent
explanations from the expanded KGs in an iterative pipeline. To tackle this
problem, we designed a new ACC module to support a certain level of multi-
hop reasoning. Our notion of consistency checking in this paper relies on two
criteria: (1) is able to identify explanations with a certain level of multi-hop
reasoning; (2) can quickly process large KGs, so that it is possible to integrate
the ACC into KGC pipelines.

Example 2 Given these axioms:
Range(has parent) = Person,
Range(works for) = Organisation,
DisjointWith(Person,Organisation),
has parent(Anna, John Lewis),
works for(Mary, John Lewis).

In Example 2, the designed IJPs, such as (A(a), Range(r) = R,R⊓A ⊑ ⊥)
in [66], is not able to identify
{has parent(Anna, John Lewis), works for(Mary, John Lewis)} as an
schema-inconsistent subset, because entity John Lewis doesn’t have type
axioms in this example. However, based on the CWA, we can infer and obtain
axioms in Example 3.

Example 3 Inferred axioms:
∃has parent− ⊑ Person,
∃works for− ⊑ Organisation,
∃has parent− ⊓ ∃works for− ⊑ ⊥.

Let’s design a new IJP: ∃r1− ⊓ ∃r2− ⊑ ⊥. In Example 3, the
disjointedness axiom ∃has parent− ⊓ ∃works for− ⊑ ⊥ matches the
new IJP ∃r1− ⊓ ∃r2− ⊑ ⊥. The new IJP is able to identify the
schema-inconsistent subset in Example 2: any subset in the form of
(works for(x, e), has parent(y, e)) is schema-inconsistent subset. Then we can
justify {has parent(Anna, John Lewis), works for(Mary, John Lewis)} is a
schema-inconsistent subset.

The basic idea of our ACC approach is that we calculate a series of IJPs
from the TBox with such reasoning power; then we scan and match IJPs in
an ABox to detect inconsistencies that either already exist in the KG, or are
introduced by triple producers in an iterative process.

To calculate IJPs, such as ∃has parent− ⊓∃works for− ⊑ ⊥, we apply an
idea of knowledge compilation [83, 84] by semantically approximating a source
ontology O1 in a more expressive DL L1 (source language OWL 2) with its
least upper-bound O2 in a less expressive DL L2 (target language DL-Lite). In



18 Schema-aware Iterative Completion for Knowledge Graphs Revisited

our approach, we only apply the knowledge compilation on the TBox, namely
TBox transformation [93].

DL-Lite [85] is a Description Logic language specifically tailored to capture
basic ontology languages, while keeping a low complexity of reasoning, in par-
ticular, reasoning is polynomial in the size of the instances in the knowledge
graph. As usual in Description Logics, DL-Lite allows representing the domain
of interest in terms of concepts, denoting sets of objects, and roles, denoting
binary relations between objects. DL-Lite supports the following axioms:

1. class inclusion axioms: B ⊑ C where B denotes a basic concept
B ::= A | ∃R | ∃R−, C is a general class C ::= B | ¬B | C1 ⊓C2, A denotes
a named class and R denotes a named property;

2. functional property axioms: Func(R), Func(R−), where R is a named
property;

3. individual axioms: B(a),R(a, b) where a and b are named individuals.

Compared to OWL 2, DL-Lite is simple from the language point of
view, in which only membership of a concept or a role can be asked.
After the TBox transformation, some OWL 2 property characteristics,
such as Domain(r), Range(r), InverseOf(r1, r2), SubperpertyOf(r1, r2),
DisjointWith(C1, C2), are normalized to class subsumption and role sub-
sumption in DL-Lite syntax. Hence we can easily look for the TBox IJPs in
the form of subsumption axioms, such as
(∃works for− ⊑ ¬∃has parent−,∃has parent− ⊑ ¬∃works for−).

Then we scan the ABox axioms to identify the ABox IJPs, such as the
subsets in the form of (works for(x, e), has parent(y, e)). The approximated
TBox preserves rich information in the original TBox. We designed a list of
IJPs with DL-Lite syntax in Table 1, so that we can easily calculate simple
but relatively comprehensive IJPs from an approximated TBox in DL-Lite and
detect inconsistent subsets from an ABox. The details of the algorithms will
be further described in Section 4.3.

As we mentioned before, our ACC should have the capability to process
large KGs. Our algorithm of ACC is designed to target this objective. Gener-
ally, the roles of TBox and ABox are different and so are their logic operations.
TBox operations are based more on inferring and tracing or verifying class
memberships in the hierarchy. ABox operations are more rule-based and gov-
ern fact checking, instance checking, consistency checking, and the like [93]. In
a knowledge graph, the size of the ABox is usually much bigger than the size
of TBox3, so ABox reasoning is generally more complex on a larger scale than
that for the TBox [93]. In our ACC strategy, the reasoning is performed on
TBox and ABox separately. The TBox transformation and TBox IJP calcula-
tion relies on an OWL 2 reasoner. Usually the reasoning services are expensive
[93], but our TBox reasoning is performed only once, and can be performed

3Based on the LOD-a-lot survey of the Linked Open Data cloud, Frank van Harmelen estimates
that of 23.8 billion unique statements only 565 million could be classified as rules - the rest being
facts, i.e., rules make up just under 2% of the total. For more detail, see https://frankvanharmelen.
home.blog/2020/07/13/2-makes-all-the-difference-on-the-lod-cloud/ accessed 24.02.22.

https://frankvanharmelen.home.blog/2020/07/13/2-makes-all-the-difference-on-the-lod-cloud/
https://frankvanharmelen.home.blog/2020/07/13/2-makes-all-the-difference-on-the-lod-cloud/


Schema-aware Iterative Completion for Knowledge Graphs Revisited 19

Table 1 Inconsistency Justification Patterns

ID TBox subset of the Pattern ABox subset of the Pattern
1 ∃r ⊓A ⊑ ⊥ ⟨e1, r, e2⟩, ⟨e1, rdf : type,A⟩
2 ∃r1 ⊓ ∃r2 ⊑ ⊥ ⟨e1, r1, e2⟩, ⟨e1, r2, e3⟩
3 ∃r1 ⊓ ∃r2− ⊑ ⊥ ⟨e1, r1, e2⟩, ⟨e3, r2, e1⟩
4 ∃r1− ⊓A ⊑ ⊥ ⟨e2, r1, e1⟩, ⟨e1, rdf : type,A⟩
5 ∃r1− ⊓ ∃r2 ⊑ ⊥ ⟨e2, r1, e1⟩, ⟨e1, r2, e3⟩
6 ∃r1− ⊓ ∃r2− ⊑ ⊥ ⟨e2, r1, e1⟩, ⟨e3, r2, e1⟩
7 FunctionalProperty(r) ⟨e1, r, e2⟩, ⟨e1, r, e3⟩

8
FunctionalProperty(r1), r2 ⊑ r1 ⟨e1, r1, e2⟩, ⟨e1, r2, e3⟩

⟨e1, r2, e2⟩, ⟨e1, r2, e3⟩

9
FunctionalProperty(r1), r2− ⊑ r1 ⟨e1, r1, e2⟩, ⟨e3, r2, e1⟩

⟨e2, r2, e1⟩, ⟨e3, r2, e1⟩
10 Asymmetric(r) ⟨e1, r, e2⟩, ⟨e2, r, e1⟩

11
Asymmetric(r1), r2 ⊑ r1 ⟨e1, r1, e2⟩, ⟨e2, r2, e1⟩

⟨e1, r2, e2⟩, ⟨e2, r2, e1⟩

12
Asymmetric(r1), r2− ⊑ r1 ⟨e1, r1, e2⟩, ⟨e1, r2, e2⟩

⟨e2, r2, e1), ⟨e1, r2, e2)
13 Irreflexive(r) ⟨e, r, e⟩
14 A1 ⊓A2 ⊑ ⊥ ⟨e1, rdf : type,A1⟩, ⟨e1, rdf : type,A2⟩
15 A1 ⊓ ∃Rx ⊑ ⊥ ⟨e1, rdf : type,A1⟩, ⟨e1, rx, e2⟩
16 A1 ⊓ ∃R−

x ⊑ ⊥ ⟨e1, rdf : type,A1⟩, ⟨e2, rx, e1⟩

offline. The ABox scanning is the more active part of ACC, which is performed
on the fly to match the IJPs in the ABox. This two-step strategy performs
complex and time-consuming reasoning on a relatively small TBox, and per-
forms simple scanning and matching on the large ABox. As a result, the ACC
is efficient in dealing with large KGs, which allows us to integrate it in an iter-
ative pipeline for identifying schema-inconsistent subsets or make use of it in
a KGE training procedure for schema-aware negative sampling.

4 Implementation

4.1 Overall Architecture

Figure 3 illustrates the overall architecture of SICKLE. We assemble pipelines
with four types of triple producers: an E-method, a R-method, a L-method
and an M-method and an ABox scanner from the ACC module.

The E-methods and L-methods train KGEs, then use the KGEs to pre-
dict new triples based on the existing KG. We pick the top K triples from the
ranked candidates, within a threshold γ. We integrated a literal based KGE
system, namely BLP [80], and extend it to E-methods and L-methods. In the
inductive mode, the BLP system encodes an entity by encoding its textual
description with a pre-trained language model, then the basic KG embedding
learning algorithm is carried out as usual. It can be regarded as fine-tuning a



20 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Fig. 3 Overall structure of SICKLE and an example of ACC implementation.

pre-trained language model with an LP objective. BLP provides a convenient
configuration to run inductive LP in combination with pre-trained language
models, such as BERT [98]; and it supports a few relational models, namely
TransE [48], ComplEx [75], and SimplE [74]. BLP also supports transduction
LP, hence it can be executed as the E-methods as well. In order to fairly com-
pare the experimental results for the E-methods and the L-methods, we used
BLP as the experimental model of both the E-methods and the L-methods.

We adopted the inductive KGE learning algorithm in BLP as described
in Algorithm 1, which makes use of a pre-trained language model for learn-
ing representations of entities via a LP objective. We used the pre-trained
bert-base-cased model as the encoder, but other pre-trained models based
on Transformers are equally applicable. Given an entity description dei =
(w1, ..., wn), the encoder pre-processes it by adding special tokens [CLS] and
[SEP ] to the beginning and end of the description. The format of the input

to the language model is d̂ei = ([CLS], w1, ..., wn, [SEP ]). The output is a
sequence of contextual embeddings of the language model’s hidden size for this
piece of text, and we use representation of the [CLS] token from the last layer
of the BERT model as entity representations in our models.



Schema-aware Iterative Completion for Knowledge Graphs Revisited 21

Algorithm 1: Learning KGE via L-method

Input: KG G′ = (NI , NP , T r,D), entity encoder fθ with parameters
θ, and a KGE model ℓ

Output: θ
1 θ = {θ} ∪ {rj | r ∈ NP }

foreach (ei, rj , ek) ∈ Tr do
2 (e′i, rj , e

′
k)← negativeSampling(ei, rj , ek)

sp ← s(fθ(dei), rj , fθ(dek))
sn ← s(fθ(dei′), rj , fθ(dek′))
θ ← ℓ(θ, sp, sn)

3 end

We implemented the TP as a multi-label classifier with the KGE learned
from either E-methods or L-methods as input features. We only predict the
maximum 50 most frequent types. The multi-label classification boils down
to doing binary classification for each type; we use binary cross entropy to
measure the error for each type. In the implementation, we combined the
binary cross entropy loss function with a Sigmoid function. We used the same
approach to calculate the loss of prediction.

We integrated AnyBURL [92], a popular rule-based LP model as base
model of R-method. AnyBURL (acronym for Anytime Bottom-Up Rule Learn-
ing) treats each training fact as a compact representation of a very specific
rule; it then tries to generalize it, in order to cover and satisfy as many training
facts as possible. It has been analyzed in a recent paper [44], that AnyBURL
is a very competitive KGC system in its accuracy and efficiency.

Materialisation, or the M-method, is a powerful tool for completing a KG.
It uses a reasoner to compute all individuals’ concepts and roles in a KG. We
assume the original TBox is in OWL 2, which is a rich Description Logic. Our
baseline system SIC used HermiT [99] to materialise KGs, however the mate-
rialisation on the NELL-995 dataset with HermiT took more than 24 hours
on a 3.60GHz Intel i7-6850K CPU and 64G memory Linux server. It becomes
urgent to speed up the M-method, so that we can integrate M-method in a
KGC pipeline. Hence, SICKLE integrates a high-performance tractable OWL
2 reasoners, namely Konclude [101]. We extended and wrapped Konclude’s
interface, so that we can infer and query all entailed relation assertions and
type assertions in one call. With Konclude, the materialisation of the NELL-
995 dataset took less than 10 minutes. Therefor, it is feasible to integrate the
M-method into a combined KGC pipeline.

The ACC module has three functions, the TBox transformation, the TBox
scanner, and the ABox scanner. The TBox transformation is to approximate a
TBox from OWl 2 to DL-Lite. The TBox scanner is to calculate IJPs from the
TBox in DL-Lite. The TBox transformation, the TBox scanner are calculated
only once in advance. We only need to integrate the ABox scanner in a pipeline.
SICKLE assumes that a target Knowledge Graph has a schema, which at least
contains subsumption hierarchies, as well as domain and range information.
However, for Knowledge Graphs that lack a schema, one can use ontology



22 Schema-aware Iterative Completion for Knowledge Graphs Revisited

learning tools [102] to generate a schema for such a Knowledge Graph. The
details of ACC implementation are described in Section 4.3.

The new triples from the E-methods, the L-methods and the R-methods
should be scanned with ACC, before merging into the existing KG. But
the triples from the M-method are always schema-correct, the new relation
assertion triples from M-method are directly added to a target KG.

The original implementations of individual KGC methods are scattered,
making it difficult to combine them together to obtain the benefits of each.
Users have to set up each system and spend extra time converting data formats
that are required by different systems and transferring data between each
other. To tackle this issue, we encapsulate the data format of triple producers.
Each of them shares the same data interface and its triple producing process
can be regarded as a black box. All triple producers and the ABox scanner
use a context object to manage input and output data in a pipeline, so that it
is convenient to combine them in a pipeline. The encapsulation has a few key
benefits, including hiding data, more flexibility and being easy to reuse. We
only need to call the triple producer modules in just a few lines of code and
there is no need to worry about the complicated dependencies, configurations
and various data formats. With the encapsulation, we can assemble pipelines
with multiple triple producers in one combination.

An assembled pipeline can be executed in an iterative manner, and the
triple producers in a pipeline iteration can be executed in series or in parallel.
All these execution options are configured at running time.

4.2 Schema-aware Sampling Strategy

There are two aspects to our schema-aware sampling strategy: (1) schema-
correct triples as positive samples; (2) schema-inconsistent triples as negative
samples. In SICKLE, the schema-aware positive sampling is that we only feed
schema-correct triples to individual triple producers, and it is mandatory in our
KGC pipeline. The schema-aware negative sampling means that we generate
and select schema-inconsistent triples as negative samples in KG embedding
training procedure. The schema-aware negative sampling is an optional feature
in our KGC pipeline. Both positive and negative sampling strategies rely on
ACC module, but use it in different ways.

When we detect schema-correct triples in a pipeline, the input of ACC is
the whole KG G = (T ∪ C) ∪ A′, SICKLE uses schema T ∪ C to supplement
a set of schema-correct triples for the data sub-graph A′. The data sub-graph
A′ could be the initial ABox or an expanded ABox.

The schema-aware negative sampling is performed in the KG embed-
ding training procedure. The KG embedding model training procedure reads
training data in batches, hence we dynamically generate schema-aware neg-
ative samples for each batch of training data. We describe the process of
schema-aware negative sampling in Algorithm 2: In step 2, we generate a
number of random negative triples for each positive triple. Bcorrupt may con-
tain false negative triples, based on the open-world assumption. Hence, we



Schema-aware Iterative Completion for Knowledge Graphs Revisited 23

Algorithm 2: Schema-aware Negative Sampling

Input:
TBox: T ,
schema-correct set: Scor,
schema-inconsistent set: Sincon,
a minibatch of size b from Scor: Bpos

Output: (Bpos, Bneg)
1 foreach r(h, t) ∈ Bpos do

// sample n corrupted triples

2 Bcorrupt ← Bcorrupt ∪ corrupt
(
r(h, t), n

)
;

3 end
// Definition 8

4 Bincon ← identifyBatchInconsistency(T ,Scor, Bcorrupt) ;
// Definition 9

5 Bneg ← randomSample(Bincon ∪ Sincon) ;

identify the schema-inconsistent subset from Bcorrupt, according to Definition
8. In step 5, we randomly select negative examples from both the random
schema-inconsistent subset and the schema-inconsistent subset of previous
predictions.

4.3 ACC

According to the approach described in Section 3.5, the implementation of
ACC consists of three parts:

• TBox Transformation: a TBox approximation module replaces the TBox
T1 of a source ontology in a more expressive DL L1 (OWL 2) with its least
upper-bound T2 in a less expressive DL L2 (DL-Lite).

• TBox IJP Calculation: a TBox scanner module infers T2 and calculates
the ABox and TBox IJPs.

• ABox IJP scanning: An ABox scanner module scans ABox A and filters
out triples that match the IJPs learned in step 2.

TBox Transformation We apply an idea of knowledge compilation by
semantically approximating a source ontology O1 in a more expressive DL L1

(source language OWL 2) with its least upper-bound O2 in a less expressive
DL L2 (target language DL-Lite). In this setting, we have O1 |= O2 [103]. In
our strategy, we only apply knowledge compilation on the TBox.

In this paper, we have designed an algorithm to transform TBox from OWL
2 to DL-Lite, so that we can transform most of the OWL 2 ontology syntax
to DL-Lite syntax.

The algorithm of “TBox Transformation from OWL 2 to DL-Lite” is
described in Algorithm 3. We assume the source TBox T1 is in OWL 2. Fol-
lowing [103], we use NC , NP to denote the set of named classes and named
properties used in T1. For named properties in T1, we assign new named classes



24 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Algorithm 3: TBox transformation from OWL2 to DL-Lite

Input: TBox in OWL2: T1
Output: TBox in DL-Lite: T2

1 Initialize T2 ← ∅, N ← ∅, D ← ∅ ;
2 foreach Ai ∈ NC do
3 Ni ← ¬Ai ;
4 N ← N ∪ {Ni}
5 end
6 foreach rk ∈ NP do
7 Dk ← ∃rk ;

8 Dk+1 ← ∃r−k ;
9 D ← D ∪ {Dk, Dk+1} ;

10 Nk ← ¬Dk ;
11 Nk+1 ← ¬Dk+1 ;
12 N ← N ∪ {Nk, Nk+1} ;
13 end
14 T2 ← T1 ∪D ∪N ;

// call a L1 reasoner to infer T2
15 Classification(T2) ;
16 foreach rk ∈ NP do
17 Replace Nk with ¬Dk in T2 ;
18 Replace Nk+1 with ¬Dk+1 in T2 ;
19 Replace Dk with ∃rk in T2 ;

20 Replace Dk+1 with ∃r−k in T2 ;

21 end
22 foreach Ai ∈ NC do
23 Replace Ni with ¬Ai in T2 ;
24 end

D to class existential description ∃r and ∃r−. We assign new named classes N
to the complement expressions of named classes NC ∪D. The basic idea is to
represent those expressions with their name assignments, so that the classifi-
cation service from an OWL 2 reasoner can normalize them to subsumption
form.

D = {Dk ≡ ∃rk, Dk+1 ≡ ∃r−k },
N = {Nk ≡ ¬Dk, Nk+1 ≡ ¬Dk+1, Ni ≡ ¬Ai}.

(4)

where rk denotes the named properties in NP , Ai denotes the named classes
in NC , 1 ≤ k ≤ numr, numr is the total number of named properties, 1 ≤ i ≤
numa, numa is the total number of named classes in T1.

Then we apply the classification service of an OWL 2 reasoner, which com-
putes all the subsumption among named classes and named properties in the
expanded TBox: T1 ∪D ∪N . After applying classification, the class axioms in
the expanded TBox are normalised into the following two forms: B1 ⊑ B2 and
B1 ⊑ ¬B2, including axioms using vocabulary in D and N .



Schema-aware Iterative Completion for Knowledge Graphs Revisited 25

Then we replace D and N with their original expressions in those axioms
having vocabulary of D and N . The purpose of replacing is to remove the
additional named classes D and N , while keeping their axioms in the form of
class expressions.

In Algorithm 3, we use the classification service provided by the TrOWL
reasoner, but slightly extended the interface of TrOWL so that we get all the
direct and indirect class subsumption and object property subsumption in one
call.
TBox IJP Calculation We design and calculate IJPs based on the approx-
imated TBox containing DL-Lite expressions. We kept the Asymmetric and
Inreflexive constraints from OWL 2, because they are not expressed in DL-
Lite, but we need them in IJPs. The optimised IJPs are described in Table
1. Algorithm 4 illustrates how to compute pattern 1 in Table 1 by TBox
reasoning.

Algorithm 4: TBox IJPs 1, ∃r ⊓A ⊆ ⊥
Input: TBox T2
Output: p1 = {(r, SetA) | r ∈ NP , SetA = {A | ∃r⊓A ⊑ ⊥, A ∈ NC}},

where NP are named properties, NC are named classes in T2
1 Initialize P1 ← ∅ ;
2 foreach r ∈ NP do
3 SetA = ∅ ;
4 foreach ∃r ⊑ ¬Ai in T2 do
5 SetA ← SetA ∪ {Ai} ;
6 end
7 Add (r, SetA) into p1 ;

8 end

Algorithm 5: TBox IJPs 2, ∃r1 ⊓ ∃r2 ⊆ ⊥
Input: TBox T2
Output: p2 = {(r1, Setr2) | r1 ∈ NP , Setr2 = {r2 | ∃r1 ⊓ ∃r2 ⊑ ⊥}},

where NP are named properties in T2;
1 Initialize P2 ← ∅ ;
2 foreach r1 ∈ NP do
3 Setr2 = ∅ ;
4 foreach ∃r1 ⊑ ¬∃r2 in T2 do
5 Setr2 ← Setr2 ∪ {r2} ;
6 end
7 Add (r1, Setr2) into p2 ;

8 end



26 Schema-aware Iterative Completion for Knowledge Graphs Revisited

The TBox transformation and The TBox scanner are implemented in Java
with a tractable OWL 2 reasoner named TrOWL [100]. TrOWL inherits the
OWLAPI 4, which is more convenient for us to manipulate the ontology.
ABox IJP scanning Once we learned the IJPs from the TBox, we scan
the ABox to identify inconsistent triples that complete the IJPs in column 3
of Table 1. The inconsistency can be repaired by removing any of the asser-
tions that complete the patterns. In our iterative pipeline setting, we prefer to
remove newly predicted triples, although they may not be the smallest subset
of repairing.

Algorithm 6: ABox Scanning Strategy of p1
Input: IJP: p1, ABox subset to scan: S
Output: Schema-inconsistent subset Sincon1 under p1

1 Initialize Sincon1 ← ∅, Scon1 ← S ;
2 foreach (r, SetA) ∈ p1 do
3 TRr ← getTriplesByProperty(r);
4 foreach ⟨h, r, t⟩ in TRr do
5 if isNew(⟨h, r, t⟩) and getRDFTypes(h) ∩ SetA ̸= ⊥ then
6 Sincon1 ← Sincon1 ∪ {⟨h, r, t⟩} ;
7 end

8 end

9 end

Algorithm 7: ABox Scanning Strategy of p2
Input: IJP: p2, ABox subset to scan: S
Output: Schema-inconsistent subset Sincon2 under p2

1 Initialize Sincon2 ← ∅, Scon2 ← S ;
2 foreach (r1, Setr2) ∈ p2 do
3 TRr1 ← getTriplesByProperty(r1);
4 TRr2 ← getTriplesByProperties(Setr2);
5 Headsr2 ← getAllHeadEntities(TRr2) ;
6 foreach ⟨h, r, t⟩ in TRr1 do
7 if isNew(⟨h, r, t⟩) and h ∈ Headsr2 then
8 Sincon2 ← Sincon2 ∪ {⟨h, r, t⟩} ;
9 end

10 end

11 end

4http://owlapi.sourceforge.net/



Schema-aware Iterative Completion for Knowledge Graphs Revisited 27

Algorithm 8: ABox Scanner for consistency checking

Input: IJPs P = [p1, p2, ..., pn], ABox A, expanded ABox A′

Output: Schema-consistent subset Scon and schema-inconsistent
subset Sincon under P , where Scon ∪ Sincon = A′ and
Scon ∩ Sincon = ⊥

1 Initialize Sincon ← ∅, Scon ← ∅ ;
2 foreach pi in P do
3 S ← A′ \ Sincon ;

// identify inconsistent triples in S with pi
4 Sincon ← Sincon ∪ scanWithIJP (pi,S) ;
5 end
6 Scon ← A′ \ Sincon ;

Algorithm 9: ABox Scanning for domain and range constraints

Input: Schema-consistent subset Scon
Output: Schema-correct subset Scor that satisfy domain and range

constraints.
1 Initialize Scon ← ∅ ;
2 foreach r ∈ NP do
3 TRr ← getTriplesByProperty(r);
4 foreach ⟨h, r, t⟩ in TRr do
5 if getRDFTypes(h) ∩ getDomain(r) ̸= ⊥ and

getRDFTypes(t) ∩ getRange(r) ̸= ⊥ then
6 Scor ← Scor ∪ {⟨h, r, t⟩} ;
7 end

8 end

9 end

Because the TBox IJPs focus on property characteristics, the triples fed to
the individual pattern scanning strategy are grouped by properties. Algorithm
6 illustrates how to scan the ABox with pattern 1 of Table 1, which checking
whether any classes of the head entity belong to the disjoint set of domain.
Algorithm 7 illustrates how to detect inconsistent subsets with pattern 2 of
Table 1, which having two relation assertions to complete the proof of incon-
sistency. We only check new triples in an expanded ABox, but consider the
interaction of all axioms. If the input ABox is the initial KG, we treat all rela-
tion assertions as new triples, and check consistency for all triples. For each
IJP, we scan the ABox assertions once to (numr − 1) ∗numa times, w.r.t. dif-
ferent IJPs, where numr is the number of relations and numa is the number of
ABox assertions. Hence, the ABox scanning is polynomial-time complete. In



28 Schema-aware Iterative Completion for Knowledge Graphs Revisited

our implementation, the ABox scanning is further accelerated by data analysis
tool, such as Pandas 5 and its GPU extension CuDF 6.

Each IJP in Table 1 has an ABox scanner strategy that implements the
same interface, so that we can flexibly register specific IJPs in a pipeline.
Algorithm 8 shows the program of consistency checking for an ABox, w.r.t.
the equation (1) and the equation (2).

The schema-correct subset is finally computed by scanning the schema-
consistent relation assertions to identify those satisfying domain and range
constraints as described in Algorithm 9.

Our ACC approach is soundness-preserving syntactic approximation. Since
the IJPs listed in Table 1 do not cover all possible inconsistent patterns, it can-
not guarantee soundness for inconsistency checking and justifications. Hence,
we make ACC fully extensible to future variants, where all IJP strategies have
the same interface but design their own scanning strategies, as shown in Figure
3.

5 Evaluations

5.1 Evaluation Matrix

5.1.1 Schema-aware Silver Completeness Ratios

We evaluated a variety of schema-aware KGC pipelines with single methods
or their combinations in the correctness ratio, coverage ratio, consistency ratio
and their harmonic mean.

The function fCorrectness is to calculate the schema correctness ratio of a
KGC approach across all iterations.

fCorrectness =
1

n
∗

n∑
i=1

| Sicor |
| εi |

(5)

where εi is the set of new triples produced by a triple producer at iteration i,
Sicor is the schema-correct triples in εi.
Without knowing the ‘complete’ Knowledge Graph, it is rather hard to define
a proper measure for completeness. Instead, [72] used the notion of cover-
age, to account for the scale of schema-correct triples added into the original
Knowledge Graph. The function fCoverage is defined as:

fCoverage =

∑n
i=1 | Sicor |
| Y |

(6)

where Y is a subset of the target Knowledge Graph G that consists of schema-
unknown plus schema-correct triples. Larger fCoverage scores are an indication

5https://pandas.pydata.org/
6https://rapids.ai/start.html



Schema-aware Iterative Completion for Knowledge Graphs Revisited 29

that the used KGC pipeline has produced higher number of new schema-correct
triples.

We define fConsistent as:

fConsistency =
1

n
∗

n∑
i=1

| Sicon |
| εi |

(7)

where Sicon is the schema-consistent triples in εi.
The function fh is the harmonic mean of fCorrectness, fCoverage and fConsistent.

fh =
3

1
fcorrectness

+ 1
fcoverage

+ 1
fConsistency

(8)

These functions are to evaluate how good the KGC pipelines are at producing
schema-correct triples.

5.1.2 Schema-aware Silver Standard

A traditional evaluation strategy for KGC is to use a subset of the given KG
as a test set, often referred to as silver standard evaluation. A problem with
the silver standard approach is that a knowledge graph itself might not be
complete, thus could potentially produce false negative results. As for gold
standard evaluations, the result quality is usually measured in recall, preci-
sion, and F-measure [70]. The silver standard evaluation is usually applied to
measure the performance of KGC approaches on how well a given triple is
replicated by a KGC method, with hit@n and MRR calculated against the
test set [70].

In this paper, we would like to produce more schema-correct triples. We
also would like to see how well the triple producer elicits the schema-related
features, for example, predicting implicit triples that are inferred by the given
KG. Hence, we designed the Schema-aware Silver Standard. Instead of splitting
a subset of a given KG as a test set, our schema-aware silver standard is tested
on a union of the KG’s materialised triple set and the test set split from a given
KG. If only results of the M-method were used for schema-aware silver, the
number of test triples might not be sufficient. Therefore, we combined results
of the M-method and the test set split from the given KG as the schema-
aware silver test set. We formalise the schema-aware silver standard for a given
knowledge graph G = (T ∪ C) ∪ A as below:

• Schema-aware silver standard for LP We split the relation assertions
Srel in A to LPtrain, LPdev, LP

∗
test, the schema-aware silver test set Stest

is generated by extend LPtest with relation assertions inferred from the M-
method:
LPtest = LP ∗

test ∪ {r(a, b) | G |= r(a, b), r ∈ NP , a, b,∈ NI}
• Schema-aware silver standard for TP We extend the type assertions
Stype in A with materialised type assertions:



30 Schema-aware Iterative Completion for Knowledge Graphs Revisited

S′
type = Stype ∪ {A(a) | G |= A(a), A ∈ NC , a ∈ NI}. the schema-aware

silver standard for TP is generated by splitting the type assertions S′
type to

TPtrain, TPdev, TPtest

NC , NP , NI are named classes, named properties and instances in G.
We evaluate LP and TP separately. We calculate hit@n and MRR for LP

evaluation. While for the TP, we calculate recall, precision, and F1, because the
type assertions are relatively more complete than the relation assertions w.r.t.
our datasets. Also the materialisation infers implicit entity type assertions and
flattens class hierarchy.

5.2 Datasets

Our notion of schema-consistency in this paper relies on 2 criteria: (1) high
enough number of triples, and (2) a schema that has a rigid hierarchy of con-
cepts and rich object properties. Following the dataset analysis in [72], we
performed experiments with three Knowledge Graphs: the NELL-995 Knowl-
edge Graph, the DBpedia politics subset, namely DBped-P [72] and a subset
of a KG extracted from a network company’s operation and management logs,
namely TREAT [67].

The NELL-995 knowledge graph is a dataset developed at Carnegie Mellon
University and contains 142,065 triples. The schema of the NELL-995 Knowl-
edge Graph has 1187 concepts, 894 object properties and many types of object
property axioms, such as inverse object properties, functional object property,
asymmetric object property, irreflexive object property, and object property
domain and range. DBpedia-2016 is a large-scale, multilingual Knowledge
Graph that has more than 3 billion triples, 685 concepts and 2,795 proper-
ties. DBped-P is a subset of DBpedia-2016, containing 352,754 triples that
are related to political issues. We use a subset of the original DBpedia-2016
schema 7, only contains the concepts, properties and their axioms related to
the ABox assertions in DBped-P. It has 305 concepts, 188 object properties
and many types of object property axioms, such as inverse object properties,
functional object property, and object property domain and range. We also
expanded the ABox of the original DBped-P with more type assertions from
a recent DBpedia-2021 release.

The TREAT dataset contains 27,487 triples of network services, compo-
nents and events. The schema of TREAT has 35 concepts, 18 object properties
and a few object property axioms, such as symmetric object property, object
property domain and range.

Considering our notion of schema-correctness, we manually create con-
straints for those properties missing domain or range, by generating dummy
domain and range constraints as the union of the types based on the types of
head and tail entities. After the repairing, the initial schema-correctness ratios
of DBped-P and NELL-995 are over 99%. [43] pointed out that SIC’s efficacy
is limited to the number of constraints furnished before running consistency

7http://wiki.dbpedia.org/downloads-2016-04



Schema-aware Iterative Completion for Knowledge Graphs Revisited 31

checking. In Table 2, we compared the fcorrectness scores of top 10 predici-
tons with TransE on both original and repaired datasets. Our schema-aware
experiment is performed on the repaired datasets, which can better reflect the
efficacy of different strategies described in Section 3.

Table 2 fcorrectness of top 10 predictions with E-methods on original and repaired
datasets

Dataset
TransE SimplE ComplEx

Original Repaired Original Repaired Original Repaired
NELL-995 0.34 0.62 0.33 0.61 0.31 0.54
DBped-P 0.43 0.64 0.45 0.63 0.41 0.67

5.3 Experimental Setting

We assemble pipelines with four types of triple producers: the R-methods,
the M-method, the E-methods and the L-methods. Under the E-method and
L-method categories, we evaluated three KG embeddding models: TransE,
SimplE and ComplEx. We use BERT as the text encoder in L-method for
both NELL-995 and DBped-P datasets. Different from NELL-995 and DBped-
P datasets, the TREAT dataset uses a domain specific FastText 8 pre-trained
language model as text encoder. Because the literal information from TREAT
is very domain specific, the BERT pre-trained model doesn’t work well on
it. Moreover, the log corpus for constructing TREAT dataset contains a lot
of acronyms and sub-words, and usually do not follow a natural language
grammar [67]. We then trained a character level language model by FastText
from a log corpus related to the TREAT KG, and used it as text encoder.

The literal features in the L-methods are entity names and descriptions.
For NELL-995 dataset only, we tested two different types of literal features:
one is the original entity text, another is the type extended literal, which is the
concatenation of entity type name and entity name. The type extended literal
contains additional explicit type information. We did not test the other two
datasets with type extended literal, because they had their own reasons. The
literal features for DBped-P dataset were extracted from WikiPedia pages, and
the corpus set for training the BERT pre-trained models contains WikiPedia
pages. We assume that the pre-trained BERT models have already encoded
some type context for DBped-P entities. And most of the entity text in the
TREAT dataset already contains type descriptions.

We ran each triple producer in either single-pass or 2 to 3 iterations,
according to the sizes of datasets. Also, we ran pipelines with combined triple
producers in iterative manner.

We evaluate individual methods and combined pipelines in both schema-
aware silver completeness ratios and schema-aware silver standard matrix.

8https://fasttext.cc/



32 Schema-aware Iterative Completion for Knowledge Graphs Revisited

5.4 Empirical Results

5.4.1 Schema-aware Silver Completeness ratios

We compare the schema-aware silver completeness ratios among a variety of
pipelines, w.r.t. our research objectives and strategies described in Section 3.

In Figure 4, 5 and 6, we compared the E-methods and the L-methods with
iterative pipelines. In these three figures, we use the original embedding-based
models as baseline and run them in an iterative manner, without apply-
ing ACC at any middle point. With only the base model, the fcorrectness
and fconsistency dropped quickly in iterations, because both schema-correct,
schema-unknown and schema-incorrect triples are added into the target
KG in iterations. With SICKLE pipelines, obviously, the E-methods and
the L-methods achieved higher fcorrectness, fconsistency and fh scores than
the baselines in iterations. It means SICKLE pipelines are more efficient in
producing schema-correct triples than basic embedding models in iterative
KGC pipeline. This observation indicates that the ACC module played an
important role in the SICKLE pipeline and improved the overall performance
of producing schema-correct triples. In both Figure 4 and Figure 5, the
L-methods outperformed the E-methods in almost all schema-aware silver
completeness ratios. In Figure 4, the performance of the L-methods with
extended type literals is even better. One possible reason is that higher-
quality literal features, such as the type information, can positively impact
the performance of L-methods.



Schema-aware Iterative Completion for Knowledge Graphs Revisited 33

Fig. 4 NELL-995 dataset. Compare E-methods and L-methods in the schema-aware silver
completeness performance

Fig. 5 DBped-P dataset. Compare E-methods and L-methods in the schema-aware silver
completeness performance



34 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Fig. 6 TREAT dataset. Compare E-methods and L-methods in the schema-aware silver
completeness performance

In Figure 7, Figure 8 and Figure 9, we compared the E-methods, the E-
methods with schema-aware negative sampling, the L-methods, and the L-
methods with schema-aware negative sampling. From these figures, we can see
that the triple producers with schema-aware negative sampling outperformed
the triple producers without it in all schema-aware silver completeness ratios.
It means that the schema-aware negative sampling strategy improved the E-
methods and the L-methods in producing schema-correct triples.

Although the schema-aware negative sampling strategy has positive impact
on the performance of schema-aware silver completeness ratios, involving
ontological reasoning in training procedure would significantly increase the
computing resource consumed. The E-methods with schema-aware negative
sampling strategy took more than 24 hours on NELL-995 dataset for just one
iteration, while it was about 2 hours without the schema-aware negative sam-
pling strategy on a Linux server with an Intel Xeon Silver 4314 CPU and a
Nvidia A100 80GB PCIe GPU. Hence, we only run one iteration for NELL-995
and DBped-P datasets with schema-aware negative sampling strategy, because
there should be a balance between the small incremental performance and the
large resource and time consuming.



Schema-aware Iterative Completion for Knowledge Graphs Revisited 35

Fig. 7 NELL-995 dataset. Compare E-method, L-method and schema-aware negative sam-
pling strategy in the schema-aware silver completeness performance

Fig. 8 DBped-P dataset. Compare E-method, L-method and schema-aware negative sam-
pling strategy in the schema-aware silver completeness performance



36 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Fig. 9 TREAT dataset. Compare E-method, L-method and schema-aware negative sam-
pling strategy in the schema-aware silver completeness performance

In Figures 10, 11 and 12, we compared the M-method, the L-methods, the
R-methods and their combinations. The M-method achieved highest scores
in fcorrectness and fconsistency, but lowest scores in fcoverage. The R-methods
outperformed the L-methods in all four measures, which means the R-methods
is more capable of catching the schema features in predicting new triples. We
also combine different triple producers in pipelines and run in an iterative
manner. The triple producers are combined and executed in series or in parallel.
In Figure 10, the one round combinations outperformed most of the single
methods running three rounds in fcoverage with NELL-995 dataset. In Figure
11 and Figure 12, the combined pipeline generally achieved higher scores in
fh. The series pipeline slightly outperformed the parallel pipeline in the first
round, while as the number of iterations increases, this gap decreases. For
obvious reasons, the series pipeline shares new data during each iteration, while
the parallel pipeline does not share new data until the second iteration. The
above observations indicate that combining different types of triple producers
can produce more schema-correct triples.



Schema-aware Iterative Completion for Knowledge Graphs Revisited 37

Fig. 10 NELL-995 dataset. Compare single methods and combined methods in the schema-
aware silver completeness performance

Fig. 11 DBped-P dataset. Compare single methods and combined methods in the schema-
aware silver completeness performance



38 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Fig. 12 TREAT dataset. Compare single methods and combined methods in the schema-
aware silver completeness performance

We configured the embedding dimension for TransE, SimplE and Com-
plEx to 128 on all three datasets. The learning rate, batch size and maximum
training iterations were configured w.r.t. the size of the training set and the
loss convergence. We ran the combined pipeline with the TREAT dataset on a
Linux server with a 3.60GHz Intel i7-6850K CPU and 64G memory. The exe-
cution time of a serialized combination was less than 1 hour in one iteration,
while it increased to 2 hours in 3 iterations as the number of triples increased.
We ran the combination pipelines with DBped-P and NELL-995 on a Linux
server with an Intel Xeon Silver 4314 CPU and a Nvidia A100 80GB PCIe
GPU. The execution time of a combination pipeline for the NELL-995 dataset
was about 3.5 hours in serial and 2.5 hours in parallel. The execution time of
a combination pipeline with DBped-P was much longer, which was about 8
hours for 1 iteration in serial mode and 4 hours in parallel mode. Most of the
execution time was spent in training KGE and the prediction with R-methods
(The AnyBURL training was much faster than its prediction on large KGs).
The execution time for a single method in 3 iterations was much longer than
the combined pipeline in 1 iteration. We recommend running the pipeline in
combination and in parallel mode, as it is the most efficient and effective mode.

We summarize the observations as below:

• The L-methods outperformed the E-methods in almost all schema-aware sil-
ver completeness ratios, given high quality literal features and text encoder.
One possible reason is that higher-quality literal features, such as the type



Schema-aware Iterative Completion for Knowledge Graphs Revisited 39

information, can be transferred to KG embedding via L-methods to some
degree.

• The schema-aware negative sampling strategy slightly improved the schema-
aware silver completeness ratios for the E-methods and the L-methods. If
the E-methods are used as a benchmark to compare the L-methods and the
schema-aware negative sampling strategy, then the growth from the schema-
aware negative sampling strategy is not as significant as the effect of the
literal features. Also, the L-methods are more efficient than E-methods with
the schema-aware negative sampling strategy, as the later need extra time
to do ontology reasoning during its training procedure.

• The R-methods achieved the best scores on fcoverage and achieved relative
high scores on all other schema-aware silver completeness ratios. It means
the LP results of the R-methods are usually more schema-aware than the
E-methods and the L-methods.

• The M-method produced triples of very good quality; however, its coverage
level is far from that of the other triple producers. We recommend combining
the M-method with other methods to produce more high-quality results.

• Combinations of different types of triple producers outperformed single triple
producers in the production of schema-correct triples.

5.4.2 Schema-aware Silver Standard Matrix

We tested the R-method, the E-methods and the L-methods on both LP and
TP tasks based on schema-aware silver standard. In the LP evaluation, we
calculated hit@1,3,10 and MRR. And we calculated recall, precision, and F1
in the TP evaluation for entities and their types.

We also compared two different negative sampling strategies on E-methods
and L-methods: one is random negative sampling, another is schema-aware
negative sampling. For NELL-995 only, we tested two different types of literal
features for the L-method: one is the original entity text, another is the type
extended literal, which is the concatenation of entity type name and entity
text. We also evaluated the KGEs learned from combination pipelines in the
downstream TP task. The results of schema-aware silver standard LP are
described in Tables 3, 4, 5, and the results of TP are described in Tables 6, 7
and 8. In these tables, E denotes E-method, L denotes L-method, neg denotes
schema-aware negative sampling, type denotes L-method with additional type
literal.

Based on these results, we made the following analysis:
E-methods VS L-methods
As described in Table 3, 4 and 5, the E-methods significantly outperformed
the L-methods in the LP task in most cases. We attribute this to the more
challenging problem faced by literal encoders: they must learn a complicated
function from words to an entity representation, while the E-methods learns a
lookup table with one embedding per entity and relation. This observation is
also reported in [80].



40 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Table 3 NELL dataset schema-aware silver standard evaluation in LP.

Model Measure E L Ltype Eneg Ltype,neg

TransE

Hit@1 0.04 0.05 0.08 0.04 0.08

Hit@3 0.10 0.13 0.14 0.10 0.16

Hit@10 0.18 0.23 0.24 0.20 0.26

MRR 0.09 0.12 0.14 0.10 0.15

SimplE

Hit@1 0.17 0.02 0.10 0.17 0.08

Hit@3 0.27 0.06 0.15 0.28 0.17

Hit@10 0.39 0.18 0.25 0.39 0.28

MRR 0.24 0.07 0.15 0.24 0.16

ComplEx

Hit@1 0.18 0.06 0.11 0.18 0.12

Hit@3 0.28 0.11 0.18 0.28 0.19

Hit@10 0.40 0.21 0.28 0.41 0.28

MRR 0.25 0.11 0.17 0.25 0.18

While as described in Table 6 and 7, the L-methods outperformed the E-
methods in the TP task, given high quality literal and text encoders. In our
experiment setting, the TP is a downstream task of LP. It uses the entity
embeddings learned in LP as input feature to predict multiple entity types.
The L-methods encode additional context features from literal, for example,
the cosine similarity between Barack Obama and George W. Bush from BERT
encoding is 0.997. And these additional features are transferable to the down-
stream TP task. This is especially reflected in the type extended literal applied
to the NELL dataset: encoding type information with entity literal can effec-
tively improve LP and TP performance. However, literal does not bring the
expected benefits to TREAT dataset in TP in the first iteration. A possible
reason is that the text encoder for TREAT dataset is very different from the
encoder that used for NELL-995 and DBped-P. The text encoder for TREAT
literal was trained on technical manual and log messages via FastText, which
was trying to catch sub-words and acronyms, but didn’t involve much entity
and class information. Two similar entity names may only similar in their
surface form, but distinguished in context, which increases the challenge of
training with literal encoder. This is another observation that literal qualities
affect L-method’s performance.
Schema-aware negative sampling strategy
The schema-aware negative sampling strategy brings positive effects in LP
and TP with the DBped-P and NELL-995 datasets. While with the TREAT
dataset, this sampling strategy decreased the performance in LP and TP



Schema-aware Iterative Completion for Knowledge Graphs Revisited 41

Table 4 DBped-P datasets schema-aware silver standard evaluation in LP.

Model Measure E L Eneg Lneg

TransE

Hit@1 0.03 0.06 0.07 0.05

Hit@3 0.11 0.14 0.12 0.14

Hit@10 0.21 0.27 0.23 0.24

MRR 0.09 0.13 0.11 0.12

SimplE

Hit@1 0.08 0.06 0.08 0.06

Hit@3 0.18 0.13 0.19 0.18

Hit@10 0.28 0.23 0.29 0.24

MRR 0.15 0.13 0.16 0.13

ComplEx

Hit@1 0.11 0.06 0.10 0.06

Hit@3 0.21 0.13 0.20 0.14

Hit@10 0.31 0.24 0.33 0.24

MRR 0.18 0.12 0.18 0.12

in the first iteration, but after three iterations, it improved performance in
TP. There are a few possible reasons for the decreased performance on the
TREAT dataset. Firstly, the schema-aware negative sampling strategy ignored
the schema-correct negative samples; the bias it brings is amplified on a
small dataset, which in turn affects the evaluation matrix of LP. Secondly,
the TREAT literal encoder contains less context information than BERT, it
doesn’t work as well as it should when the training set is small. But when we
do several rounds of training by injecting new schema-correct triples, it catches
up and exceeds the E-methods in TP.

Although the schema-aware negative sampling strategy can improve the
performance in LP and TP, it requires much more computing resources
and time to reason each batch of training data, so as to generate schema-
inconsistent negative samples. We did not apply the schema-aware negative
sampling strategy to the iterative pipeline for all datasets, because we need to
consider the balance between performance and cost.
Single-pass, combination and iterative pipelines
We evaluated TP with single-pass, combination and iterative pipelines. Our
hypothesis is that the embeddings learned in an iterative manner may have
an advantage in the downstream TP task, because the schema features are
enhanced by injecting new schema-correct data in iterative training. Our exper-
imental results in Table 6, 7 and 8 confirmed this hypothesis. On the three
datasets, the iterative learned KGE performs better than the single-pass KGE
in the downstream TP task. Also, the TP performance of the L-methods
increase more than the E-methods, with the increase of iteration. We further



42 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Table 5 TREAT datasets schema-aware silver standard evaluation in LP.

Model Measure E L Eneg Lneg

TransE

Hit@1 0.05 0.03 0.04 0.03

Hit@3 0.10 0.06 0.10 0.08

Hit@10 0.27 0.12 0.24 0.23

MRR 0.11 0.06 0.09 0.09

SimplE

Hit@1 0.13 0.03 0.08 0.02

Hit@3 0.25 0.08 0.15 0.02

Hit@10 0.41 0.19 0.27 0.02

MRR 0.22 0.08 0.14 0.02

ComplEx

Hit@1 0.11 0.03 0.10 0.03

Hit@3 0.23 0.09 0.18 0.07

Hit@10 0.40 0.22 0.32 0.17

MRR 0.18 0.09 0.16 0.07

inject schema-correct data from R-method and M-method in KG embed-
ding training, by running combined pipelines in iterative manner. In Table
9, the combined pipeline achieved higher scores than the single L-method.
This indicates that the KGEs from the combined and iterative KGC pipeline
encode more features related to the schema, and have the potential to benefit
downstream task such as TP.

5.5 Comparing our ACC with existing Reasoners

We evaluate our ACC approach with a designed use case: given a KG, we
extend it with a set of random generated relation assertions, then we collect all
the justifications that are generated by a tractable reasoner. We check whether
our approach can detect all the incorrect relation assertions that are stated
in each of these explanations. We compare our ACC approach with exiting
reasoners in terms of:

• How many inconsistent triples (in percentage) that are identified by an
existing reasoner, can also be detected by our approach.

• How long our ACC module takes compared to reasoning time of existing
reasoners.

In doing reasoning, the existing reasoner has two steps which are the consis-
tency checking and generating justification, hence the total time for a reasoner
is the consistency checking plus generating justification. Generating justifica-
tion is often most costly since it needs to calculate the minimal inconsistent
subset of a knowledge graph. Our ACC approach consists of three steps, which



Schema-aware Iterative Completion for Knowledge Graphs Revisited 43

Table 6 NELL dataset schema-aware silver standard evaluation in TP.

Model Iteration Measure E L Ltype Eneg Lneg Lneg,type

TransE

1 Pr 0.79 0.77 0.87 0.79 0.82 0.84

Rec 0.65 0.72 0.78 0.80 0.89 0.90

F1 0.69 0.75 0.82 0.80 0.85 0.87

3 Pr 0.79 0.90 0.93 - - -

Rec 0.70 0.82 0.80 - - -

F1 0.74 0.86 0.86 - - -

SimplE

1 Pr 0.66 0.63 0.72 0.75 0.77 0.78

Rec 0.92 0.71 0.74 0.76 0.76 0.84

F1 0.72 0.66 0.73 0.75 0.77 0.82

3 Pr 0.75 0.79 0.88 - - -

Rec 0.75 0.75 0.81 - - -

F1 0.75 0.77 0.84 - - -

ComplEx

1 Pr 0.70 0.64 0.71 0.82 0.80 0.83

Rec 0.68 0.89 0.76 0.85 0.83 0.85

F1 0.69 0.70 0.73 0.83 0.81 0.84

3 Pr 0.71 0.78 0.78 - - -

Rec 0.71 0.73 0.78 - - -

F1 0.71 0.75 0.78 - - -

are TBox transformation, TBox scanning, and ABox scanning. The total time
of our approach is the sum of three steps.

We show the effectiveness of our ACC approach, a complete and sound
reasoner, namely HermiT [104], an approximate reasoner TrOWL and the ACC
service provided by SIC. For both Hermit and TrOWL, we implement the
experiment with OWLAPI to verify consistency and generate explanations if
the input KG is not consistent. The ACC service provided by SIC doesn’t
have TBox transformation, and it relies on HermiT to identify its IJPs in the
original TBox. We used three datasets: DBped-P, NELL-995, and TREAT, but
expand the initial KG by adding a few randomly generated inconsistent triples.
The results of comparison can be seen in Table 10 In Table 10, Exp stands for
the number of explanations that the justification service of HermiT generated.
Each explanation consists of one or several axioms that cause inconsistency in
the input KG. CC stands for the time that the reasoner took for ”Consistency
Checking” and JG stands for the time for ”Justification Generation”. Cov
stands for the coverage of the explanations. It refers to how many axioms in
explanations detected by the HermiT’s justification service are identified by



44 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Table 7 DBped-P schema-aware silver standard evaluation in TP.

Model Iteration Measure E L Eneg Lneg

TransE

1 Pr 0.86 0.86 0.87 0.85

Rec 0.95 0.97 0.96 0.98

F1 0.90 0.90 0.90 0.91

2 Pr 0.86 0.87 - -

Rec 0.97 0.99 - -

F1 0.91 0.92 - -

SimplE

1 Pr 0.85 0.86 0.85 0.86

Rec 0.95 0.98 0.95 0.98

F1 0.90 0.91 0.90 0.91

2 Pr 0.90 0.87 - -

Rec 0.91 0.99 - -

F1 0.91 0.92 - -

ComplEx

1 Pr 0.86 0.86 0.86 0.86

Rec 0.96 0.96 0.98 0.98

F1 0.90 0.91 0.90 0.91

2 Pr 0.86 0.87 - -

Rec 0.97 0.99 - -

F1 0.91 0.92 - -

TrOWL, SIC, and our approach. TT stands for ”TBox Transformation”. Our
TBox transformation is the most costly among three steps, since it needs to
calculate all subsumption in named classes and properties and the extended
named classes described in Algorithm 3. But the TBox transformation is a
one-off process, and only needs to be calculated once in advance. TS stands
for ”TBox scanning” and AS stands for ”ABox scanning”. Both the TS and
the AS are much more efficient than the conventional reasoning service for
generating justification. Our implementation is more efficient and quicker than
SIC’s TS and AS.

6 Related Work

The work presented in this paper is most related to those studies addressing
combining logical rules and KGE models for KGC. A few studies [105–108]
aimed at learning joint models that inject logic into KG embeddings to obtain
more predictive entity and relation embeddings. Approaches belonging to this
category tightly integrate rule learning and embedding based approaches,



Schema-aware Iterative Completion for Knowledge Graphs Revisited 45

Table 8 TREAT schema-aware silver standard evaluation in TP.

Model Iteration Measure E L Eneg Lneg

TransE

1 Pr 0.87 0.86 0.86 0.87

Rec 0.85 0.82 0.90 0.85

F1 0.86 0.84 0.89 0.86

3 Pr 0.88 0.94 0.96 0.95

Rec 0.83 0.91 0.93 0.96

F1 0.86 0.92 0.94 0.95

SimplE

1 Pr 0.86 0.85 0.93 0.87

Rec 0.90 0.84 0.90 0.86

F1 0.89 0.84 0.92 0.87

3 Pr 0.88 0.91 0.94 0.94

Rec 0.86 0.93 0.93 0.94

F1 0.87 0.92 0.94 0.94

ComplEx

1 Pr 0.88 0.86 0.88 0.88

Rec 0.86 0.87 0.86 0.91

F1 0.87 0.87 0.87 0.90

3 Pr 0.89 0.93 0.93 0.98

Rec 0.89 0.93 0.93 0.95

F1 0.89 0.93 0.93 0.97

but are mostly restricted to a type of rule which does not allow for con-
stants. EmbedS [109], TransC [60], Cose [110] and OntoZSL [111] enrich their
embedding models by considering ontological information, such as classes and
hierarchy. Compared to these works, our system deals with a wider range of
ontological schema axioms, such as symmetric relations, asymmetric relations,
irreflexive, inverse of, domain, range, disjointedness and hierarchy. KALE [105]
learns KGEs by jointly modeling translation based embedding and logic, where
logical rules are represented as first-order logic formulae and modelled by
t-norm fuzzy logics. TRANSOWL [61] and its variants, inject background
knowledge during learning process by defining specific constraints, such as
inverse of, equivalence, subsumption, on the energy functions for considered
axioms. However, according to the analysis in [73], translation based methods
cannot properly capture simple rules. Some joint models may be limited by
the expressive capability of their base translation based models.

Some recent work tries to combine KGE and rule-learning in a collabora-
tive or complementary manner. The IterE [90] was designed to address the
sparsity problem for embedding learning and also the efficiency problem for



46 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Table 9 The schema-aware silver standard evaluation in TP, compared the L-methods
and the combination pipeline of R-method, M-method and L-methods. In the combination
pipeline, the KG embeddings fed to TP are learned from last L-method in the series
pipeline. We use the base embedding model having highest TP scores in the combination
pipeline. For NELL-995, we used the type extended literals for L-method.

Dataset Iteration Measure L R-M-L

NELL

1 Pr 0.87 0.89

Rec 0.78 0.88

F1 0.82 0.89

3 Pr 0.93 0.94

Rec 0.80 0.93

F1 0.86 0.93

DBped-P

1 Pr 0.86 0.86

Rec 0.96 0.97

F1 0.91 0.91

2 Pr 0.87 -

Rec 0.99 -

F1 0.92 -

TREAT

1 Pr 0.86 0.88

Rec 0.87 0.85

F1 0.87 0.86

3 Pr 0.93 0.98

Rec 0.93 0.96

F1 0.93 0.97

rule learning. It runs in an iterative manner in which rules are learned from
embeddings and embeddings are learned from existing triples and new triples
inferred by rules. A more recent study [94] constructs a simple method to com-
bine the outcomes of rule-based and latent approaches in a post-processing
step. Its combination strategy ensures that the rule-based method and the KG
embedding model operate independently, but interact by aggregating rank-
ings, for example, using the KG embedding scores as additional information
to change the position in the ranking of a rule-based KGC. None of these
methods guarantee that an expanded Knowledge Graph is consistent with the
ontological schema of the original Knowledge Graph. Our baseline SIC [72]
iteratively exploits existing KGC methods and schema based logical reasoning,
for both producing triples and checking schema correctness. Compared to SIC,
our SICKLE has a series of new features, such as literal-based triple producer



Schema-aware Iterative Completion for Knowledge Graphs Revisited 47

T
a
b
le

1
0

A
C
C

P
er
fo
rm

a
n
ce

C
o
m
p
a
ri
so
n

D
at
as
et

H
er
m
iT

T
rO

W
L

S
IC

O
u
r
A
p
p
ro
a
ch

E
x
p

C
C

J
G

C
ov

C
C

J
G

C
ov

T
S

A
S

C
ov

T
T

T
S

A
S

D
B
p
ed
-P

25
32
s

3:
50
:0
0

10
0%

9s
2:
39
:2
0

1
0
0
%

2
:4
5
:0
0

0
:5
7
:1
8

1
0
0
%

0
:1
4
:3
0

5
s

0
:1
:5
6

N
E
L
L

12
5s

2:
10
:1
4

10
0%

2s
1:
40
:2
3

10
0
%

1
:1
5
:0
0

0
:4
0
:3
0

1
0
0
%

4
:1
0
:3
1

1
6
s

0
:2
:0
7

T
R
E
A
T

55
70
4m

s
0:
59
:2
2

10
0%

26
5m

s
0:
12
:1
3

1
0
0
%

3
1
s

1
7
s

1
0
0
%

0
:0
0
:1

1
s

8
5
m
s



48 Schema-aware Iterative Completion for Knowledge Graphs Revisited

and schema-aware negative sampling, which improves the schema-correctness.
We also re-designed the ACC module to make it more complete.

Another strand of research has focused on applying logic rules in their
KGE sampling strategies. In [107], a method was proposed to encode logical
consistency into the distributed representation to make high-rank triples as
consistent as possible. On one hand, triples entailed by datalog rule are selected
as positive examples. On the other hand, it adds optimal objective function on
certain negative triples that are inconsistent with the logical constraints. But
it only used a small set of inconsistent triples in the optimal objective func-
tion for consideration of efficiency and scalability. TRANSOWL [61] avoids
false positives by exploiting the available axioms, specified in RDFS and OWL,
namely domain, range, disjointWith, functionalProperty, to generate negative
examples. A more recent work[97] proposed a method that leverages schema to
dynamically generate inconsistent triples as negative examples in its training
procedure. Their consistency checking strategy assumes the given ontologies
are in DL-Lite. It considered the syntax and semantics that can be directly
translated from OWL to DL − LiteS⊔, however it is not clear how it han-
dles other syntax in OWL 2. These sampling strategies are similar to our
schema-aware negative sampling strategy, in that the ontological knowledge
is taken into account for the generation of negative samples. But our work is
different from it in at least two ways. On the one hand, our approximate con-
sistency checking method takes into account both efficiency and rich expressive
power by approximate TBox from OWL 2 to DL-Lite. On the other hand, we
apply schema-aware sampling strategy on iterative KGC pipeline with combi-
nations of different KGC approaches and ACC module. We make use of the
schema-inconsistent triples identified in each iteration, so the schema-aware
negative sampling strategy and KGE training become a convenient and natural
combination.

7 Conclusion and Future Work

In this paper, we revisited the notion of the schema-aware Knowledge Graph
completion problem and presented a schema-aware iterative hybrid knowledge
graph completion system, namely SICKLE. SICKLE provides a combinational
implementation that allows easy assembling of four types of triple produc-
ers (embedding-based method, literal-embedding based method, rule-based
method and materialisation) in pipelines and perform approximate consistency
checking on produced triples, so that only schema-correct triples are added to
the target KG.

Previous research [73] shows that translation based methods, such as
TransE, cannot properly capture simple rules; even Bi-linear models, such
as SimplE and ComplEx, are severely limited when representing subsump-
tion or equivalence between relations. This indicates that embedding based
triple producers might have limited capability in terms of representing schema



Schema-aware Iterative Completion for Knowledge Graphs Revisited 49

of Knowledge Graphs. We tackle this problem by considering a few strate-
gies from different level. From system level, we combined different types of
triple producers and an approximated consistency checking module to produce
schema-correct triples and run it in iterative manner. Only schema-correct
triples are added to the target KG and used in iterative training. From a func-
tional level, we integrate a literal-embedding based methods. We found that
the knowledge from pre-trained language models improves schema-awareness
in KGC tasks, in particular, benefit schema-related KGC tasks, such as TP.
At the algorithm level, we implemented a schema-aware sampling strategy for
the E-methods and the L-methods. The schema-correct triples are sampled
as positive examples and schema-inconsistent triples are sampled as negative
examples. We found that this sampling method had a positive effect in pro-
ducing schema-correct triples in pipeline and improved the performance in
downstream TP task.

There are many potential paths for future work. Firstly, it would be inter-
esting to include probabilistic reasoning to rank the new triples. The final rank
could be based on a combination of scores from several different triple produc-
ers. Secondly, it might be an idea to further restrict our notion of correctness.
Even though the quality of schema-correct triples is a lot better than the
schema-incorrect ones, it does not mean that all the schema-correct triples are
semantically correct. One straightforward approach is to further include some
negative rules as constraints [68, 112], in addition to the domain and range
constraints considered in this paper. Thirdly, it might be interesting to see
how our proposed framework can be applied in some dynamic settings, such
as reasoning and learning for stream Knowledge Graphs [113] and temporal
Knowledge Graph completion [114–116]. Furthermore, we want to integrate
and extend our framework with knowledge extraction, for example, unsuper-
vised learning triples from pre-trained language models [117] and extracting
triples from streamed data [67, 118].

Declarations

Ethical Approval

Not applicable.

Authors’ contributions

Fangrong Wang did all the experiments, as well as some of the related detailed
design, and most of the writing. Jeff Z. Pan proposed the original ideas, super-
vised the work and writing, as well as revising the paper. The other authors
contributed through discussions of the paper drafts and comments on them as
well as helping with polishing the paper.



50 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Competing interests

The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported
in this paper.

Funding

The authors would like to thank Huawei for supporting the research on which
this paper was based under grant CIENG4721/LSC.

Availability of data and materials

https://github.com/sig4kg/SIKGC

References

[1] Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H. (eds.): Exploiting
Linked Data and Knowledge Graphs for Large Organisations. Springer,
??? (2017)

[2] Pan, J.Z., Calvanese, D., Eiter, T., Horrocks, I., Kifer, M., Lin, F.,
Zhao, Y.: Reasoning Web: Logical Foundation of Knowledge Graph
Construction and Querying Answering. Springer, ??? (2017)

[3] Guha, R., McCool, R., Miller, E.: Semantic search. In: WWW ’03: Pro-
ceedings of the 12th International Conference on World Wide Web, pp.
700–709 (2003)

[4] Pan, J.Z., Taylor, S., Thomas, E.: Reducing Ambiguity in Tagging
Systems with Folksonomy Search Expansion. In: the Proc. of the 6th
European Semantic Web Conference (ESWC2009) (2009)

[5] Nguyen, D.Q., Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.Q.: A
capsule network-based embedding model for knowledge graph comple-
tion and search personalization. In: NAACL-HLT (1), pp. 2180–2189.
NAACL-HLT, ??? (2019)

[6] Gu, Y., Zhou, T., Cheng, G., Li, Z., Pan, J.Z., Qu, Y.: Relevance
Search over Schema-Rich Knowledge Graphs. In: Proc. of the 12th ACM
International WSDM Conference (WSDM2019), pp. 114–122 (2019)

[7] Wang, H., Zhang, F., Xie, X., Guo, M.: Dkn: Deep knowledge-aware
network for news recommendation. In: Proceedings of the 2018 World
Wide Web Conference, pp. 1835–1844 (2018)

[8] Wang, X., Wang, D., Xu, C., He, X., Cao, Y., Chua, T.-S.: Explainable
reasoning over knowledge graphs for recommendation. In: Proceedings

https://github.com/sig4kg/SIKGC


Schema-aware Iterative Completion for Knowledge Graphs Revisited 51

of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 5329–5336
(2019)

[9] Tu, K., Cui, P., Wang, D., Zhang, Z., Zhou, J., Qi, Y., Zhu, W.: Con-
ditional graph attention networks for distilling and refining knowledge
graphs in recommendation. In: Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management, pp.
1834–1843 (2021)

[10] Wu, S., Sun, F., Zhang, W., Xie, X., Cui, B.: Graph neural networks in
recommender systems: a survey. ACM Computing Surveys 55(5), 1–37
(2022)

[11] Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: KGAT: Knowledge
Graph Attention Network for Recommendation. In: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 2019), pp. 950–958 (2019)

[12] Xian, Y., Fu, Z., Muthukrishnan, S., de Melo, G., Zhang, Y.: Reinforce-
ment knowledge graph reasoning for explainable recommendation. In:
Proceedings of SIGIR, pp. 285–294 (2019)

[13] Yang, Y., Huang, C., Xia, L., Li, C.: Knowledge graph contrastive
learning for recommendation. In: Proceedings of SIGIR, pp. 1434–1443
(2022)

[14] Wu, H., Wang, M., Zeng, Q., Chen, W., Nind, T., Jefferson, E.R., Bennie,
M., Black, C., Pan, J.Z., Sudlow, C., Robertson, D.: Knowledge Driven
Phenotyping. In: Proc. of Medical Informatics Europe (MIE 2020), pp.
1327–1328 (2020)

[15] Tripodi, I.J., Callahan, T.J., Westfall, J.T., Meitzer, N.S., Dowell,
R.D., Hunter, L.E.: Applying knowledge-driven mechanistic inference to
toxicogenomics. Toxicology in Vitro (2020)

[16] Zhang, R., Hristovski, D., Schutte, D., Kastrin, A., Fiszman, M.,
Kilicoglu, H.: Drug repurposing for covid-19 via knowledge graph
completion. Journal of Biomedical Informatics 115 (2021)

[17] Zeng, X., Tu1, X., Liu, Y., Fu, X., Su, Y.: Toward better drug discovery
with knowledge graph. Current Opinion in Structural Biology 72, 114–
126 (2022)

[18] Deng, S., Zhang, N., Zhang, W., Chen, J., Pan, J.Z., Chen, H.:
Knowledge-Driven Stock Trend Prediction and Explanation via Tempo-
ral Convolutional Network. In: Proc. of the World Wide Web Conference
(WWW 2019), pp. 678–685 (2019)



52 Schema-aware Iterative Completion for Knowledge Graphs Revisited

[19] Cheng, D., Yang, F., Wang, X., Zhang, Y., Zhang, L.: Knowledge graph-
based event embedding framework for financial quantitative investments.
In: SIGIR, pp. 2221–2230 (2020)

[20] Zhu, X., Ao, X., Qin, Z., Chang, Y., Liu, Y., He, Q., Li, J.: Intelligent
financial fraud detection practices in post-pandemic era. The Innovation
2 (2021)

[21] Xu, H., Giunchiglia, F.: Sko types: an entity-based scientific knowledge
objects metadata schema. Journal of Knowledge Management 19(1), 60–
70 (2015)

[22] Auer, S., Kovtun, V., Prinz, M., Kasprzik, A., Stocker, M., Vidal, M.-E.:
Towards a Knowledge Graph for Science. In: Proc. of the 8th Interna-
tional Conference on Web Intelligence, Mining and Semantics (WIMS
2018), pp. 1327–1328 (2018)

[23] Edelstein, E., Pan, J.Z., Soares, R., Wyner, A.: Knowledge-driven intelli-
gent survey systems towards open science. New Generation Computing,
397–421 (2020)

[24] Pan, J.Z., Edelstein, E., Bansky, P., Wyner, A.: A Knowledge Graph
Based Approach to Social Science Surveys. Data Intell. 3(4), 477–506
(2021)

[25] Kelley, A., Garijo, D.: A framework for creating knowledge graphs of
scientific software metadata. Quant. Sci. Stud. 2, 1423–1446 (2021)

[26] Liang, S., Zhu, A., Zhang, J., Shao, J.: Hyper-node relational graph
attention network for multi-modal knowledge graph completion. ACM
Transactions on Multimedia Computing, Communications and Applica-
tions 19(2), 1–21 (2023)

[27] Xu, C., Guan, Z., Zhao, W., Wu, H., Niu, Y., Ling, B.: Adversarial
incomplete multi-view clustering. In: IJCAI, vol. 7, pp. 3933–3939 (2019)

[28] Rospocher, M., van Erp, M., Vossen, P., Fokkens, A., Aldabe, I., Rigau,
G., Soroa, A., Ploeger, T., Bogaard, T.: Building event-centric knowledge
graphs from news. J. Web Semant. 37-38 (2016)

[29] Pan, J.Z., Pavlova, S., Li, C., Li, N., Li, Y., Liu, J.: Content based Fake
News Detection Using Knowledge Graphs. In: Proc. of the International
Semantic Web Conference (ISWC2018), pp. 669–683 (2018)

[30] Abu-Salih, B., Al-Tawil, M., Aljarah, I., Faris, H., Wongthongtham,
P.: Relational learning analysis of social politics using knowledge graph
embedding. Data Mining and Knowledge Discovery, 1497–1536 (2021)



Schema-aware Iterative Completion for Knowledge Graphs Revisited 53

[31] Liu, J., Wang, C., Li, C., Li, N., Deng, J., Pan, J.Z.: DTN: Deep triple
network for topic specific fake news detection. J. Web Semant. 70 (2021)

[32] Phil, T., Z., P.J., Daniel, O., Evan, W., Michael, U., Elisa, K.: Ontology
driven architectures and potential uses of the semantic web in systems
and software engineering. W3C Working Draft Working Group Note
2006/02/11 (2006)

[33] Holger, K., Daniel, O., Phil, T., Evan, W., Z., P.J., Michael, U.: A seman-
tic web primer for object-oriented software developers. W3C Working
Group Note 9 March 2006, W3C (2006)

[34] Pan, J.Z., Staab, S., Aßmann, U., Ebert, J., Zhao, Y. (eds.): Ontology-
Driven Software Development. Springer, ??? (2013)

[35] Pan, J.Z., Zhao, Y. (eds.): Semantic Web Enabled Software Engineering.
IOS Press, ??? (2014)

[36] Xie, C., Yu, B., Zeng, Z., Yang, Y., Liu, Q.: Multilayer internet-of-things
middleware based on knowledge graph. IEEE Internet Things J. 8, 2635–
2648 (2021)

[37] Althar, R.R., Samanta, D.: The realist approach for evaluation of com-
putational intelligence in software engineering. Innov. Syst. Softw. Eng.
17, 17–27 (2021)

[38] Bader, S.R., Grangel-González, I., Nanjappa, P., Vidal, M.-E.,
Maleshkova, M.: A Knowledge Graph for Industry 4.0. In: Proceedings of
the 17th Extended Semantic Web Conference (ESWC 2020), pp. 465–480
(2020)

[39] Buchgeher, G., Gabauer, D., Gil, J.M., Ehrlinger, L.: Knowledge graphs
in manufacturing and production: A systematic literature review. IEEE
Access 9 (2021)

[40] Cai, H., Zheng, V.W., Chang, K.C.C.: A Comprehensive Survey of Graph
Embedding: Problems, Techniques, and Applications. IEEE Transac-
tions on Knowledge and Data Engineering 30(9), 1616–1637 (2018)
arXiv:1709.07604. https://doi.org/10.1109/TKDE.2018.2807452

[41] Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A Survey on Knowl-
edge Graphs: Representation, Acquisition and Applications, 1–26 (2020)
arXiv:2002.00388

[42] Chen, X., Jia, S., Xiang, Y.: A review: Knowledge reasoning over knowl-
edge graph. Expert Systems with Applications 141 (2020). https://doi.
org/10.1016/j.eswa.2019.112948

https://arxiv.org/abs/1709.07604
https://doi.org/10.1109/TKDE.2018.2807452
https://arxiv.org/abs/2002.00388
https://doi.org/10.1016/j.eswa.2019.112948
https://doi.org/10.1016/j.eswa.2019.112948


54 Schema-aware Iterative Completion for Knowledge Graphs Revisited

[43] Hur, A., Janjua, N., Ahmed, M.: A Survey on State-of-the-art Tech-
niques for Knowledge Graphs Construction and Challenges ahead (2021)
arXiv:2110.08012

[44] Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowl-
edge graph embedding for link prediction: A comparative analysis.
ACM Transactions on Knowledge Discovery from Data 15(2) (2021)
arXiv:2002.00819. https://doi.org/10.1145/3424672

[45] Zhang, W., Chen, J., Li, J., Xu, Z., Pan, J.Z., Chen, H.: Knowledge
Graph Reasoning with Logics and Embeddings: Survey and Perspective
(2022) arXiv:2202.07412

[46] Xu, C., Zhao, W., Zhao, J., Guan, Z., Song, X., Li, J.: Uncertainty-
aware multiview deep learning for internet of things applications. IEEE
Transactions on Industrial Informatics 19(2), 1456–1466 (2023). https:
//doi.org/10.1109/TII.2022.3206343

[47] A survey on deep learning based knowledge tracing. Knowledge-Based
Systems 258, 110036 (2022). https://doi.org/10.1016/j.knosys.2022.
110036

[48] Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.:
Translating embeddings for modeling multi-relational data. Advances in
Neural Information Processing Systems, 1–9 (2013)

[49] Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph
embedding by relational rotation in complex space. 7th International
Conference on Learning Representations, ICLR 2019, 1–18 (2019)
arXiv:1902.10197

[50] Tran, H.D., Stepanova, D., Gad-Elrab, M.H., Lisi, F.A., Weikum, G.:
Towards nonmonotonic relational learning from knowledge graphs. Lec-
ture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 10326
LNAI, 94–107 (2017). https://doi.org/10.1007/978-3-319-63342-8 8

[51] Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Any-
time bottom-up rule learning for knowledge graph completion. IJCAI
International Joint Conference on Artificial Intelligence 2019-Augus,
3137–3143 (2019). https://doi.org/10.24963/ijcai.2019/435

[52] Fang, U., Li, J., Akhtar, N., Li, M., Jia, Y.: GoMIC: Multi-
view image clustering via self-supervised contrastive heterogeneous
graph co-learning. World Wide Web (2022). https://doi.org/10.1007/
s11280-022-01110-6

https://arxiv.org/abs/2110.08012
https://arxiv.org/abs/2002.00819
https://doi.org/10.1145/3424672
https://arxiv.org/abs/2202.07412
https://doi.org/10.1109/TII.2022.3206343
https://doi.org/10.1109/TII.2022.3206343
https://doi.org/10.1016/j.knosys.2022.110036
https://doi.org/10.1016/j.knosys.2022.110036
https://arxiv.org/abs/1902.10197
https://doi.org/10.1007/978-3-319-63342-8_8
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.1007/s11280-022-01110-6
https://doi.org/10.1007/s11280-022-01110-6


Schema-aware Iterative Completion for Knowledge Graphs Revisited 55

[53] Yang, S., Cai, B., Cai, T., Song, X., Jiang, J., Li, B., Li, J.: Robust cross-
network node classification via constrained graph mutual information.
Knowledge-Based Systems 257, 109852 (2022). https://doi.org/10.1016/
j.knosys.2022.109852

[54] Fang, U., Li, J., Lu, X., Mian, A., Gu, Z.: Robust image clustering
via context-aware contrastive graph learning. Pattern Recognition 138,
109340 (2023). https://doi.org/10.1016/j.patcog.2023.109340

[55] Pan, W., Wei, W., Mao, X.-L.: Context-aware Entity Typing in Knowl-
edge Graphs, 2240–2250 (2021) arXiv:2109.07990. https://doi.org/10.
18653/v1/2021.findings-emnlp.193

[56] Ge, X., Wang, Y.-C., Wang, B., Kuo, C.-C.J.: Core: A Knowledge Graph
Entity Type Prediction Method Via Complex Space Regression and
Embedding. SSRN Electronic Journal (2022). https://doi.org/10.2139/
ssrn.3985428

[57] Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Hor-
rocks, I.: OWL2Vec*: embedding of OWL ontologies. Machine Learning
110(7), 1813–1845 (2021) arXiv:2009.14654. https://doi.org/10.1007/
s10994-021-05997-6

[58] Fionda, V., Pirrò, G.: Fact checking via evidence patterns. IJCAI
International Joint Conference on Artificial Intelligence 2018-July(ii),
3755–3761 (2018). https://doi.org/10.24963/ijcai.2018/522

[59] Fionda, V., Pirró, G.: Triple2Vec: Learning Triple Embeddings from
Knowledge Graphs. Aaai (2019) arXiv:1905.11691

[60] Lv, X., Hou, L., Li, J., Liu, Z.: Differentiating concepts and instances
for knowledge graph embedding. Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP
2018, 1971–1979 (2018) arXiv:1811.04588. https://doi.org/10.18653/v1/
d18-1222

[61] D’Amato, C., Quatraro, N.F., Fanizzi, N.: Injecting Background Knowl-
edge into Embedding Models for Predictive Tasks on Knowledge Graphs.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 12731
LNCS, 441–457 (2021). https://doi.org/10.1007/978-3-030-77385-4 26

[62] Bhatia, S., Dwivedi, P., Kaur, A.: Tell Me Why Is It So? Explain-
ing Knowledge Graph Relationships by Finding Descriptive Support
Passages (2018) arXiv:1803.06555

[63] Pirrò, G.: Fact-checking via path embedding and aggregation. CEUR

https://doi.org/10.1016/j.knosys.2022.109852
https://doi.org/10.1016/j.knosys.2022.109852
https://doi.org/10.1016/j.patcog.2023.109340
https://arxiv.org/abs/2109.07990
https://doi.org/10.18653/v1/2021.findings-emnlp.193
https://doi.org/10.18653/v1/2021.findings-emnlp.193
https://doi.org/10.2139/ssrn.3985428
https://doi.org/10.2139/ssrn.3985428
https://arxiv.org/abs/2009.14654
https://doi.org/10.1007/s10994-021-05997-6
https://doi.org/10.1007/s10994-021-05997-6
https://doi.org/10.24963/ijcai.2018/522
https://arxiv.org/abs/1905.11691
https://arxiv.org/abs/1811.04588
https://doi.org/10.18653/v1/d18-1222
https://doi.org/10.18653/v1/d18-1222
https://doi.org/10.1007/978-3-030-77385-4_26
https://arxiv.org/abs/1803.06555


56 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Workshop Proceedings 2722, 149–158 (2020) arXiv:2011.08028

[64] Du, J., Pan, J.Z., Wang, S., Qi, K., Shen, Y., Deng, Y.: Validation of
Growing Knowledge Graphs by Abductive Text Evidences. Proceedings
of the AAAI Conference on Artificial Intelligence 33, 2784–2791 (2019).
https://doi.org/10.1609/aaai.v33i01.33012784

[65] Gad-Elrab, M.H., Urbani, J., Stepanova, D., Weikum, G.: Exfakt: A
framework for explaining facts over knowledge graphs and text. WSDM
2019 - Proceedings of the 12th ACM International Conference on
Web Search and Data Mining, 87–95 (2019). https://doi.org/10.1145/
3289600.3290996

[66] Wiharja, K., Pan, J.Z., Kollingbaum, M., Deng, Y.: More is better:
Sequential combinations of knowledge graph embedding approaches.
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 11341
LNCS, 19–35 (2018). https://doi.org/10.1007/978-3-030-04284-4 2

[67] Wang, F., Bundy, A., Li, X., Zhu, R., Nuamah, K., Xu, L., Mauceri, S.,
Pan, J.Z.: LEKG: A System for Constructing Knowledge Graphs from
Log Extraction. ACM International Conference Proceeding Series (i),
181–185 (2021). https://doi.org/10.1145/3502223.3502250

[68] Ahmadi, N., Huynh, V.P., Meduri, V., Ortona, S., Papotti, P.: Mining
Expressive Rules in Knowledge Graphs. Journal of Data and Information
Quality 12(2) (2020). https://doi.org/10.1145/3371315

[69] Loster, M., Mottin, D., Papotti, P., EhmA¼ller, J., Feldmann, B.,
Naumann, F.: Few-shot knowledge validation using rules. The Web Con-
ference 2021 - Proceedings of the World Wide Web Conference, WWW
2021, 3314–3324 (2021). https://doi.org/10.1145/3442381.3450040

[70] Paulheim, H.: Knowledge graph refinement: A survey of approaches and
evaluation methods. Semantic Web 8(3), 489–508 (2016). https://doi.
org/10.3233/SW-160218

[71] Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R.,
Mitchell, T.M.: Toward an architecture for never-ending language learn-
ing. Proceedings of the National Conference on Artificial Intelligence 3,
1306–1313 (2010)

[72] Wiharja, K., Pan, J.Z., Kollingbaum, M.J.: Schema aware iterative
Knowledge Graph completion. Journal of Web Semantics, 100616 (2020).
https://doi.org/10.1016/j.websem.2020.100616

[73] Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding

https://arxiv.org/abs/2011.08028
https://doi.org/10.1609/aaai.v33i01.33012784
https://doi.org/10.1145/3289600.3290996
https://doi.org/10.1145/3289600.3290996
https://doi.org/10.1007/978-3-030-04284-4_2
https://doi.org/10.1145/3502223.3502250
https://doi.org/10.1145/3371315
https://doi.org/10.1145/3442381.3450040
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.1016/j.websem.2020.100616


Schema-aware Iterative Completion for Knowledge Graphs Revisited 57

to ontology embedding? an analysis of the compatibility between vector
space representations and rules. Principles of Knowledge Representation
and Reasoning: Proceedings of the 16th International Conference, KR
2018, 379–388 (2018) arXiv:1805.10461

[74] Kazemi, S.M., Poole, D.: Simple embedding for link prediction in
knowledge graphs. Advances in Neural Information Processing Systems
2018-Decem(NeurIPS), 4284–4295 (2018) arXiv:1802.04868

[75] Trouillon, T., Welbl, J., Riedel, S., Ciaussier, E., Bouchard, G.: Complex
embeddings for simple link prediction. 33rd International Conference on
Machine Learning, ICML 2016 5, 3021–3032 (2016) arXiv:1606.06357

[76] Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of
knowledge graphs with entity descriptions. 30th AAAI Conference on
Artificial Intelligence, AAAI 2016, 2659–2665 (2016)

[77] Shi, B., Weninger, T.: Open-world knowledge graph completion. 32nd
AAAI Conference on Artificial Intelligence, AAAI 2018, 1957–1964
(2018) arXiv:1711.03438

[78] Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: Semantic space projec-
tion for knowledge graph embedding with text descriptions. 31st AAAI
Conference on Artificial Intelligence, AAAI 2017, 3104–3110 (2017)
arXiv:1604.04835

[79] Niu, L., Fu, C., Yang, Q., Li, Z., Chen, Z., Liu, Q., Zheng, K.:
Open-world knowledge graph completion with multiple interaction atten-
tion. World Wide Web 24(1), 419–439 (2021). https://doi.org/10.1007/
s11280-020-00847-2

[80] Daza, D., Cochez, M., Groth, P.: Inductive Entity Represen-
tations from Text via Link Prediction. In: Proceedings of the
Web Conference 2021, vol. 1, pp. 798–808. ACM, New York,
NY, USA (2021). https://doi.org/10.1145/3442381.3450141.
http://arxiv.org/abs/2010.03496%0Ahttp://dx.doi.org/10.1145/3442381.3450141
https://dl.acm.org/doi/10.1145/3442381.3450141

[81] Gesese, G.A., Biswas, R., Alam, M., Sack, H.: A Survey on Knowledge
Graph Embeddings with Literals: Which model links better Literal-ly?
0(0) (2019) arXiv:1910.12507

[82] Teru, K.K., Denis, E.G., Hamilton, W.L.: Inductive relation prediction
by subgraph reasoning. 37th International Conference on Machine Learn-
ing, ICML 2020 PartF16814(1), 9390–9399 (2020) arXiv:1911.06962

https://arxiv.org/abs/1805.10461
https://arxiv.org/abs/1802.04868
https://arxiv.org/abs/1606.06357
https://arxiv.org/abs/1711.03438
https://arxiv.org/abs/1604.04835
https://doi.org/10.1007/s11280-020-00847-2
https://doi.org/10.1007/s11280-020-00847-2
https://doi.org/10.1145/3442381.3450141
https://arxiv.org/abs/1910.12507
https://arxiv.org/abs/1911.06962


58 Schema-aware Iterative Completion for Knowledge Graphs Revisited

[83] Selman, B., Kautz, H., Hill, M.: nowledge Compilation Horn Approxi-
mations (1991)

[84] Kautz, H., Selman, B.: Knowledge compilation and theory approxima-
tion. Journal of the ACM 43, 193–224 (1996)

[85] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.:
DL-Lite: Tractable description logics for ontologies. Proceedings of the
National Conference on Artificial Intelligence 2, 602–607 (2005)

[86] Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding:
A survey of approaches and applications. IEEE Transactions on Knowl-
edge and Data Engineering 29(12), 2724–2743 (2017). https://doi.org/
10.1109/TKDE.2017.2754499

[87] Nguyen, D.Q.: A survey of embedding models of entities and relation-
ships for knowledge graph completion, 1–14 (2017) arXiv:1703.08098

[88] Chen, Z., Wang, Y., Zhao, B., Cheng, J., Zhao, X., Duan, Z.: Knowl-
edge graph completion: A review. IEEE Access 8, 192435–192456 (2020).
https://doi.org/10.1109/ACCESS.2020.3030076

[89] Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuck-
enschmidt, H.: Fine-grained evaluation of rule- and embedding-based
systems for knowledge graph completion. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 11136 LNCS, 3–20 (2018). https:
//doi.org/10.1007/978-3-030-00671-6 1

[90] Zhang, W., Chen, J., Paudel, B., Zhu, H., Wang, L., Zhang, W.,
Bernstein, A., Chen, H.: Iteratively learning embeddings and rules for
knowledge graph reasoning. The Web Conference 2019 - Proceedings
of the World Wide Web Conference, WWW 2019, 2366–2377 (2019)
arXiv:1903.08948. https://doi.org/10.1145/3308558.3313612

[91] Lajus, J., Galárraga, L., Suchanek, F.: Fast and Exact Rule Mining
with AMIE 3. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 12123 LNCS, 36–52 (2020). https://doi.org/10.1007/
978-3-030-49461-2 3

[92] Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Any-
time bottom-up rule learning for knowledge graph completion. IJCAI
International Joint Conference on Artificial Intelligence 2019-Augus,
3137–3143 (2019) arXiv:arXiv:2004.04412v1. https://doi.org/10.24963/
ijcai.2019/435

https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
https://arxiv.org/abs/1703.08098
https://doi.org/10.1109/ACCESS.2020.3030076
https://doi.org/10.1007/978-3-030-00671-6_1
https://doi.org/10.1007/978-3-030-00671-6_1
https://arxiv.org/abs/1903.08948
https://doi.org/10.1145/3308558.3313612
https://doi.org/10.1007/978-3-030-49461-2_3
https://doi.org/10.1007/978-3-030-49461-2_3
https://arxiv.org/abs/arXiv:2004.04412v1
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.24963/ijcai.2019/435


Schema-aware Iterative Completion for Knowledge Graphs Revisited 59

[93] Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL.
Artificial Intelligence 235, 95–155 (2016). https://doi.org/10.1016/j.
artint.2015.10.004

[94] Christian Meilicke, Patrick Betz, H.S.: Why a naive way to Combine
Symbolic and Latent Knowledge Base Completion works surprisingly
well. 3rd Conference on Automated Knowledge Base, 1–26 (2021)

[95] Qian, J., Li, G., Atkinson, K., Yue, Y.: Understanding Negative Sam-
pling in Knowledge Graph Embedding. International Journal of Artificial
Intelligence & Applications 12(1), 71–81 (2021). https://doi.org/10.
5121/ijaia.2021.12105

[96] Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by
translating on hyperplanes. Proceedings of the National Conference on
Artificial Intelligence 2(June 2014), 1112–1119 (2014). https://doi.org/
10.1609/aaai.v28i1.8870

[97] Jain, N., Tran, T.K., Gad-Elrab, M.H., Stepanova, D.: Improving Knowl-
edge Graph Embeddings with Ontological Reasoning. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 12922 LNCS, 410–426
(2021). https://doi.org/10.1007/978-3-030-88361-4 24

[98] Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training
of deep bidirectional transformers for language understanding. arXiv,
4171–4186 (2018)

[99] Shearer, R., Motik, B., Horrocks, I.: HermiT: A highly-eficient OWL
reasoner. CEUR Workshop Proceedings 432 (2009)

[100] Thomas, E., Pan, J.Z., Ren, Y.: TrOWL: Tractable OWL 2 reasoning
infrastructure. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics) 6089 LNCS(PART 2), 431–435 (2010). https://doi.org/10.1007/
978-3-642-13489-0 38

[101] Steigmiller, A., Liebig, T., Glimm, B.: Konclude : System Description
(2014)

[102] Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H.: Exploit-
ing Linked Data and Knowledge Graphs in Large Organisations.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45654-6.
http://link.springer.com/10.1007/978-3-319-45654-6

[103] Pan, J.Z., Thomas, E.: Approximating OWL-DL Ontologies. AAAI,
1434–1439 (2007)

https://doi.org/10.1016/j.artint.2015.10.004
https://doi.org/10.1016/j.artint.2015.10.004
https://doi.org/10.5121/ijaia.2021.12105
https://doi.org/10.5121/ijaia.2021.12105
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1007/978-3-030-88361-4_24
https://doi.org/10.1007/978-3-642-13489-0_38
https://doi.org/10.1007/978-3-642-13489-0_38
https://doi.org/10.1007/978-3-319-45654-6


60 Schema-aware Iterative Completion for Knowledge Graphs Revisited

[104] Shearer, R., Motik, B., Horrocks, I.: HermiT: A Highly-Efficient Rea-
soner for Description Logics. Cs.Ox.Ac.Uk, 1–13 (2008)

[105] Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding
knowledge graphs and logical rules. EMNLP 2016 - Conference on Empir-
ical Methods in Natural Language Processing, Proceedings, 192–202
(2016). https://doi.org/10.18653/v1/d16-1019

[106] Guo, S., Ding, B., Wang, Q., Wang, L., Wang, B.: Knowl-
edge Base Completion via Rule-Enhanced Relational Learning. In:
Communications in Computer and Information Science vol. 650,
pp. 219–227 (2016). https://doi.org/10.1007/978-981-10-3168-7 22.
http://link.springer.com/10.1007/978-981-10-3168-7 22

[107] Du, J., Qi, K., Shen, Y.: Knowledge graph embedding with logical
consistency. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 11221 LNAI, 123–135 (2018). https://doi.org/10.1007/
978-3-030-01716-3 11

[108] Ding, B., Wang, Q., Wang, B., Guo, L.: Improving knowledge graph
embedding using simple constraints. ACL 2018 - 56th Annual Meeting
of the Association for Computational Linguistics, Proceedings of the
Conference (Long Papers) 1(ii), 110–121 (2018) arXiv:1805.02408. https:
//doi.org/10.18653/v1/p18-1011

[109] Diaz, G., Fokoue, A., Sadoghi, M.: EmbedS: Scalable, Ontology-aware
Graph Embeddings. (2018). https://doi.org/10.5441/002/edbt.2018.40

[110] Gao, H., Zheng, X., Li, W., Qi, G., Wang, M.: Cosine-Based Embed-
ding for Completing Schematic Knowledge. In: Tang, J., Kan, M.-Y.,
Zhao, D., Li, S., Zan, H. (eds.) Natural Language Processing and Chinese
Computing, pp. 249–261. Springer, Cham (2019)

[111] Geng, Y., Chen, J., Chen, Z., Pan, J.Z., Ye, Z., Yuan, Z.,
Jia, Y., Chen, H.: OntoZSL: Ontology-enhanced zero-shot learn-
ing. In: The Web Conference 2021 - Proceedings of the World
Wide Web Conference, WWW 2021, pp. 3325–3336. ACM, New
York, NY, USA (2021). https://doi.org/10.1145/3442381.3450042.
https://dl.acm.org/doi/10.1145/3442381.3450042

[112] Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: Associa-
tion Rule Mining under Incomplete Evidence in Ontological Knowledge
Bases, 413–422 (2013). https://doi.org/10.1145/2488388.2488425

[113] Kazemi, S.M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P.,
Poupart, P.: Representation learning for dynamic graphs: A survey.

https://doi.org/10.18653/v1/d16-1019
https://doi.org/10.1007/978-981-10-3168-7_22
https://doi.org/10.1007/978-3-030-01716-3_11
https://doi.org/10.1007/978-3-030-01716-3_11
https://arxiv.org/abs/1805.02408
https://doi.org/10.18653/v1/p18-1011
https://doi.org/10.18653/v1/p18-1011
https://doi.org/10.5441/002/edbt.2018.40
https://doi.org/10.1145/3442381.3450042
https://doi.org/10.1145/2488388.2488425


Schema-aware Iterative Completion for Knowledge Graphs Revisited 61

Journal of Machine Learning Research 21, 1–73 (2020) arXiv:1905.11485

[114] Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: Hyperplane-based tempo-
rally aware knowledge graph embedding. Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP
2018, 2001–2011 (2020). https://doi.org/10.18653/v1/d18-1225

[115] Lacroix, T., Obozinski, G., Usunier, N.: Tensor Decompositions for
temporal knowledge base completion, 1–12 (2020) arXiv:2004.04926

[116] Liu, Y., Hua, W., Xin, K., Zhou, X.: Context-Aware Tempo-
ral Knowledge Graph Embedding. Lecture Notes in Computer
Science, vol. 11881, pp. 583–598. Springer, Cham (2019). https:
//doi.org/10.1007/978-3-030-34223-4 37. http://link.springer.com/10.
1007/978-3-030-34223-4{ }37

[117] Wang, C., Liu, X., Song, D.: Language Models are Open Knowledge
Graphs, 1–30 (2020) arXiv:2010.11967

[118] Ekelhart, A., Ekaputra, F.J., Kiesling, E.: The SLOGERT Framework
for Automated Log Knowledge Graph Construction. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 12731 LNCS, 631–646
(2021). https://doi.org/10.1007/978-3-030-77385-4 38

https://arxiv.org/abs/1905.11485
https://doi.org/10.18653/v1/d18-1225
https://arxiv.org/abs/2004.04926
https://doi.org/10.1007/978-3-030-34223-4_37
https://doi.org/10.1007/978-3-030-34223-4_37
http://link.springer.com/10.1007/978-3-030-34223-4{_}37
http://link.springer.com/10.1007/978-3-030-34223-4{_}37
https://arxiv.org/abs/2010.11967
https://doi.org/10.1007/978-3-030-77385-4_38


62 Schema-aware Iterative Completion for Knowledge Graphs Revisited

A Results in Table

The data in Table 12, 11, and 13 correspond to figures in section 5.

Table 11 DBped-P dataset, the schema-aware silver completeness performance of
R-method, M-method, E-methods, L-methods and their combinations.

Triple Producers Iteration ε fCorrectness fCoverage fConsistency fh
M 1 1,447,026 1.0 0.10 1.0 0.25
R 1 4,581,505 0.97 2.48 0.99 1.23

BaseTransE 1 2,848,923 0.64 1.16 0.80 0.82
BaseSimplE 1 3,548,906 0.56 1.70 0.79 0.83
BaseComplEx 1 2,931,531 0.67 1.23 0.87 0.87

ETransE 1 3,275,792 0.81 1.49 0.91 1.00
ESimplE 1 2,946,067 0.65 1.24 0.91 0.87
EComplEx 1 3,416,227 0.83 1.59 0.89 0.92
LTransE 1 3,287,436 0.82 1.49 0.98 1.03
LSimplE 1 3,386,236 0.83 1.57 0.98 1.05
LComplEx 1 3,321,803 0.81 1.52 0.95 1.03
ETransE,neg 1 3,413,456 0.81 1.59 0.95 1.03
ESimplE,neg 1 3,325,336 0.77 1.52 0.94 0.99
EComplEx,neg 1 3,443,047 0.85 1.62 0.96 1.05
LTransE,neg 1 3,434,348 0.84 1.61 0.99 1.07
LSimplE,neg 1 3,612,969 0.85 1.74 0.99 1.08
LComplEx,neg 1 3,423,937 0.81 1.60 0.99 1.06

R 2 9,463,578 0.95 6.19 0.99 1.35
BaseTransE 2 4,559,090 0.44 2.46 0.47 0.63
BaseSimplE 2 5,318,803 0.37 3.04 0.37 0.52
BaseComplEx 2 5,031,490 0.49 2.82 0.50 0.68

ETransE 2 5,961,640 0.86 3.53 0.94 1.20
ESimplE 2 6,001,799 0.85 3.56 0.86 1.04
EComplEx 2 5,640,944 0.88 3.28 0.95 1.21
LTransE 2 6,541,701 0.87 3.98 0.99 1.24
LSimplE 2 6,738,119 0.87 4.12 0.99 1.25
LComplEx 2 6,161,072 0.87 3.68 0.97 1.22
R-M-L 1 7,734,123 0.96 4.88 0.99 1.33
M-R-L 1 7,403,056 0.91 4.63 0.99 1.29
R-L-M 1 7,609,075 0.94 4.78 0.99 1.31

M, L, R (parallel) 1 6,237,373 0.90 3.74 0.97 1.26



Schema-aware Iterative Completion for Knowledge Graphs Revisited 63

Table 12 The schema-aware silver completeness performance for NELL-995.

Triple Producers Iteration ε fCorrectness fCoverage fConsistency fh
M 1 575,380 1.0 1.76 1.0 1.17
R 1 979,393 0.81 3.70 0.82 1.10

BaseTransE 1 670,600 0.62 2.22 0.63 0.82
BaseSimplE 1 668,487 0.61 2.21 0.62 0.81
BaseComplEx 1 616,222 0.54 1.96 0.55 0.71

ETransE 1 737,314 0.67 2.54 0.68 0.89
ESimplE 1 698,764 0.61 2.36 0.63 0.82
EComplEx 1 653,434 0.55 2.14 0.57 0.74
LTransE 1 787,723 0.74 2.78 0.74 0.98
LSimplE 1 700,222 0.59 2.37 0.63 0.81
LComplEx 1 625,460 0.52 2.01 0.56 0.71

LTransE,type 1 851,765 0.76 3.09 0.77 1.02
LSimplE,type 1 874,045 0.79 3.20 0.79 1.05
LComplEx,type 1 836,679 0.79 3.02 0.79 1.05
ETransE,neg 1 744,489 0.67 2.57 0.68 0.90
ESimplE,neg 1 709,309 0.63 2.41 0.65 0.86
EComplEx,neg 1 629,874 0.56 2.02 0.61 0.76

LTransE,type,neg 1 904,838 0.78 3.35 0.79 1.05
LSimplE,type,neg 1 897,539 0.77 3.31 0.79 1.05
LComplEx,type,neg 1 847,007 0.79 3.07 0.80 1.06

R 2 2,008,316 0.82 8.65 0.82 1.18
BaseTransE 2 1,271,418 0.43 5.11 0.25 0.46
BaseSimplE 2 1,038,690 0.40 3.99 0.21 0.40
BaseComplEx 2 1,027,210 0.37 3.94 0.21 0.39

ETransE 2 1,269,118 0.69 5.10 0.70 0.97
ESimplE 2 1,157,494 0.62 4.56 0.64 0.89
EComplEx 2 1,136,217 0.59 4.46 0.61 0.84
LTransE 2 1,545,433 0.63 6.43 0.67 0.93
LSimplE 2 1,404,820 0.55 5.75 0.67 0.93
LComplEx 2 1,174,789 0.76 4.65 0.59 0.80

LTransE,type 2 1,635,268 0.67 6.86 0.79 1.10
LSimplE,type 2 1,652,168 0.78 6.94 0.73 1.00
LComplEx,type 2 1,397,690 0.82 5.72 0.78 1.10

R 3 3,080,193 0.82 13.81 0.83 1.20
BaseTransE 3 2,162,641 0.33 9.39 0.16 0.32
BaseSimplE 3 1,490,708 0.31 6.16 0.12 0.25
BaseComplEx 3 1,554,531 0.28 6.47 0.12 0.25

ETransE 3 1,932,420 0.69 8.29 0.70 1.00
ESimplE 3 1,533,817 0.61 6.37 0.62 0.88
EComplEx 3 1,549,775 0.59 6.45 0.60 0.86
LTransE 3 2,731,963 0.65 12.13 0.71 0.99
LSimplE 3 2,209,418 0.66 9.62 0.70 0.97
LComplEx 3 1,955,428 0.60 8.40 0.61 0.88

LTransE,type 3 2,936,882 0.76 12.23 0.80 1.14
LSimplE,type 3 2,356,820 0.71 10.33 0.72 1.02
LComplEx,type 3 2,824,321 0.78 12.58 0.78 1.12

R-M-L 1 1,990,646 0.87 8.57 0.88 1.24
M-R-L 1 1,998,032 0.82 8.61 0.83 1.18
R-L-M 1 1,972,090 0.81 8.48 0.82 1.17
R-M-L 2 4,001,632 0.84 18.24 0.88 1.26
M-R-L 2 4,288,686 0.82 19.62 0.85 1.23
R-L-M 2 4,074,015 0.80 18.59 0.82 1.19

R, L, M (parallel) 1 1,801,252 0.79 7.70 0.80 1.14
R, L, M (parallel) 2 4,475,505 0.82 20.52 0.82 1.21



64 Schema-aware Iterative Completion for Knowledge Graphs Revisited

Table 13 TREAT dataset; the schema-aware silver completeness performance of
R-method , M-method, E-methods, L-methods and their combinations.

Triple Producers Iteration ε fCorrectness fCoverage fConsistency fh
M 1 47,266 1.0 0.48 1.0 0.65
R 1 159,296 0.70 2.43 0.99 1.44

BaseTransE 1 122,227 0.84 2.07 0.96 1.10
BaseSimplE 1 119,185 0.76 1.99 0.96 1.05
BaseComplEx 1 118,475 0.76 1.97 0.96 1.05

ETransE 1 127,086 0.87 2.19 0.95 1.25
ESimplE 1 118,803 0.74 1.99 0.95 1.08
EComplEx 1 118,745 0.74 1.98 0.94 1.08
LTransE 1 130,421 0.78 2.27 0.99 1.16
LSimplE 1 140,988 0.79 2.54 0.99 1.19
LComplEx 1 142,725 0.78 2.58 0.99 1.20
ETransE,neg 1 135,759 0.93 2.41 0.99 1.35
ESimplE,neg 1 133,995 0.88 2.36 0.99 1.28
EComplEx,neg 1 131,353 0.86 2.30 0.99 1.26
LTransE,neg 1 131,484 0.79 2.30 0.99 1.18
LSimplE,neg 1 174,513 0.80 3.38 0.99 1.30
LComplEx,neg 1 146,573 0.81 2.68 0.98 1.26

R 2 273,587 0.98 5.87 0.99 1.36
BaseTransE 2 193008 0.57 3.85 0.58 0.80
BaseSimplE 2 141872 0.43 2.56 0.45 0.61
BaseComplEx 2 152498 0.48 2.83 0.50 0.67

ETransE 2 197,944 0.92 3.97 0.96 1.26
ESimplE 2 160,135 0.78 3.02 0.96 1.13
EComplEx 2 166,169 0.79 3.17 0.95 1.14
LTransE 2 185,286 0.72 3.65 0.99 1.12
LSimplE 2 193,810 0.70 3.87 0.99 1.11
LComplEx 2 196,330 0.69 3.93 0.99 1.11
ETransE,neg 2 187,450 0.96 3.71 0.99 1.29
ESimplE,neg 2 178,393 0.93 3.48 0.99 1.26
EComplEx,neg 2 184,899 0.91 3.64 0.99 1.26
LTransE,neg 2 190,387 0.72 3.78 0.99 1.13
LSimplE,neg 2 204,295 0.88 4.13 0.99 1.25
LComplEx,neg 2 202,907 0.83 4.10 0.99 1.22

R 3 389,204 0.98 8.78 0.99 1.40
BaseTransE 3 261,730 0.45 5.57 0.46 0.65
BaseSimplE 3 171,763 0.32 3.31 0.34 0.47
BaseComplEx 3 186,576 0.36 3.68 0.41 0.55

ETransE 3 239,195 0.94 5.01 0.97 1.30
ESimplE 3 173,047 0.76 3.34 0.96 1.13
EComplEx 3 181,280 0.78 3.55 0.96 1.15
LTransE 3 227,472 0.67 4.72 0.99 1.11
LSimplE 3 227,143 0.64 4.71 0.99 1.08
LComplEx 3 235,414 0.64 4.91 0.99 1.08
ETransE,neg 3 242,761 0.97 5.10 0.99 1.34
ESimplE,neg 3 192,639 0.94 3.84 0.99 1.29
EComplEx,neg 3 197,555 0.90 3.96 0.99 1.26
LTransE,neg 3 229,777 0.68 4.77 0.99 1.11
LSimplE,neg 3 216,870 0.91 4.44 0.99 1.28
LComplEx,neg 3 242,783 0.71 5.10 0.99 1.15

R-M-L 1 263,479 0.87 5.62 0.99 1.51
M-R-L 1 266,692 0.87 5.70 0.99 1.51
R-L-M 1 267,361 0.87 5.71 0.99 1.50
R-M-L 2 428,528 0.85 9.76 0.99 1.32
M-R-L 2 426,555 0.85 9.72 0.99 1.31
R-L-M 2 428,726 0.85 9.77 0.99 1.31

M, L, R (parallel) 1 219,923 0.85 4.52 0.98 1.43
M, L, R (parallel) 2 366,714 0.91 8.21 0.99 1.35


	Statements and Declarations
	Introduction
	Background
	Schema-aware KGC
	Combined and Iterative KGC

	Our Approach
	Problem Definition
	Schema-aware Sampling
	Literal-embedding based Method
	Combined and Iterative KGC
	Strategy for Approximate Consistency Checking

	Implementation
	Overall Architecture
	Schema-aware Sampling Strategy
	ACC

	Evaluations
	Evaluation Matrix
	Schema-aware Silver Completeness Ratios
	Schema-aware Silver Standard

	Datasets
	Experimental Setting
	Empirical Results
	Schema-aware Silver Completeness ratios
	Schema-aware Silver Standard Matrix

	Comparing our ACC with existing Reasoners

	Related Work
	Conclusion and Future Work
	Results in Table

